PERFORMANCE EVALUATION OF WHITE COCONUT OIL BASED METAL WORKING FLUID

Krishan Chanaka Wickramasinghe

(179265C)

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

September 2020

PERFORMANCE EVALUATION OF WHITE COCONUT OIL BASED METAL WORKING FLUID

Krishan Chanaka Wickramasinghe

(179265C)

Thesis submitted in partial fulfillment of the requirements for the Master of Engineering in Manufacturing Systems Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

September 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the master's thesis under my supervision.

Name of the supervisors: Dr. G.I.P Perera Dr. Himan KG Punchihewa Mr.S.W.M.A.I Senavirathne

Signature of the supervisor: Date:

Name of the supervisor: Dr. G.I.P Perera

Signature of the supervisor: Date:

Name of the supervisor: Dr. Himan KG Punchihewa

Signature of the co-supervisor: Date:

Name of the co-supervisor: Mr.S.W.M.A.I Senavirathne

DEDICATION

To the most courageous two persons who guided me to great achievements: my beloved father *Sri Lal Daneial Wickramasinghe* and mother *Pearl Wickramasinghe*

ACKNOWLEDGEMENT

As a graduate student of the Faculty of Engineering, University of Moratuwa, I have to complete a research project for the partial fulfillment of the requirements for the MEng. in Manufacturing Systems Engineering. For that, I selected the topic "Performance Evaluation of White Coconut oil-based Metal Working Fluid". I am highly indebted to University of Moratuwa for the opportunity. Exclusively I would like to express my gratitude towards Dr. G.I.P Perera, Dr. Himan KG Punchihewa and Mr.S.W.M.A.I Senavirathne for their guidance and constant supervision as well as for providing necessary information regarding the project and for their support in completing the research project. Their kind co-operation and encouragement inspired me in completion of this project. Further, I acknowledge Mr. R.K.P.S Ranaweera for his valuable comments on my research. I would like to express my special gratitude and thanks to University of Ruhuna for giving me such information, time and engineering workshop facilities. My thanks and appreciation go to my colleagues in developing the project and people who have willingly helped me out with their abilities.

ABSTRACT

Metal Working Fluids (MWFs) play a significant role in metal machining operations and vastly used in aerospace, automotive and marine industries to produce high tech components. The main purpose of using MWF during cutting operation is to facilitate a layer of lubricant between work tool interfaces to abate friction and heat. In the present context, industries practice to use mineral-based MWFs as of its good functional performance. However, health and environmental legislations have bounded the usage due to its carcinogenic behavior and adverse effects to the environment. Therefore, the requirement of ecological and user-friendly cutting fluid has raised substantially in manufacturing industries. Researchers have taken much effort to find an alternative for mineral oils and concluded the importance of vegetable oils as a substitute to use for the MWF. However, neat vegetable oil express poor cooling capability during machining due to its low oxidation stability. The authors have formulated a white coconut oil-based water soluble MWF to overcome the poor cooling ability by using water and permitted food grade surfactants. The main intention of the research is to assess the industrial applicability of the formulated fluid in term of functional performance while ensuring health and safety of the operators and environmental impact. The surface quality, chip curl radius, chip formation of 0.2% C and AISI 304 steels while using formulated novel white coconut oil based MWF, mineral oil based MWF in flood cooling and dry machining configurations have investigated for the conventional turning operation. The machining parameters were selected according to the recommended specifications of the work materials and tool manufacturers. Coated carbide indexable inserts have been used for the turning operation and surface quality of each set of cutting parameters were measured. Further, tool wear was investigated using scanning electron microscope (SEM). Work tool interface temperature was simulated using the DEFORM platform. The invented novel white coconut oil based MWF expressed better values for almost all the set of machining parameters when compared to the other cooling configurations and proven its industrial applicability for the sustainable machining. The performance of the formulated white coconut oil based MWF can be enhanced by adding nanoparticles and it is worthwhile to conduct the machining operations for hard to cut materials for further confirmation of the industrial applicability.

Keywords: Metalworking Fluid, Surface Quality, Turning, Tool Wear, Vegetable oil

TABLE OF CONTENTS

	Page
Declaration	i
Dedication	ii
Acknowledgement	iii
Abstract	iv
Table of content	V
List of figures	vii
List of tables	xi
List of abbreviations	Х
CHAPTER 01: INTRODUCTION	1
1.1 Research Aims and Objectives	4
1.2 Thesis Overview	4
CHAPTER 02: LITERATURE REVIEW	6
2.1 Methods of Metal Working Fluids Application	7
2.2 Categories of the Metal Working Fluids	8
2.2.1 Straight Oils	8
2.2.2 Soluble Oils	9
2.2.3 Synthetic Metal Working Fluids	10
2.3 The Environmental Impact of Metal Working Fluids	11
2.4 Disposal of Metal Working Fluids	11
2.5 Biodegradability of Metal Working Fluids	12
2.6 Adverse Effect of the Mineral oil based MWF	12
2.7 Role of Emulsions in Metal Working Fluids	16

2.7.1 Importance of Hydrophilic and Lithophilic (HLB) value	18
2.7.2 Categories of Emulsion	18
2.7.3 The Role of Emulsifier in Emulsion	19
2.8 Additives used in Metal Working Fluid Formulation	20
2.9 Vegetable Oils	21
2.10 Minimum Quantity Lubrication (MQL)	23
2.11 Nano Metal Working Fluids	25
2.12 Summary of Literature Review	27
CHAPTER 03: METHODOLOGY	29
3.1 Experimental Investigation of Surface Quality	29
3.2 Experimental Investigation of Chip Curl Radius and Chip Form	33
3.3 Work Tool Interface Temperature Simulation	34
CHAPTER 04: Results and Discussion	38
4.1 Surface Quality Investigation	38
4.2 Chip Curl Radius and Chip Form Investigation	43
4.3 Tool Wear Investigation	52
4.4 Simulation of Work Tool Interface Temperature	54
CHAPTER 05: CONCLUSION	57
PUBLICATIONS	59
REFERENCES	60

LIST OF FIGURES

Figure 1-1: Temperature distribution of work tool interface in dry cutting	1
Figure 2-1: The shear mechanism and chip removal in cutting region	6
Figure 2-2: (a) Flood Cooling (b) Jet Cooling (c) Mist Cooling	8
Figure 2-3: Categories of the Water-Soluble Metal Working Fluids	9
Figure 2-4: Raspatory diseases and Cancer symptoms	13
Figure 2-5: Skin irritations during Metal Working Fluids usage	14
Figure 2-6: (a) oil - water and (b) water - oil emulsion	18
Figure 2-7: Schematic representation of MQL application	24
Figure 2-8: Rolling elements in the tool chip interface	26
Figure 3-1: Measuring Surface Roughness of the Work Material	29
Figure 3-2: Selected cutting tool geometry	33
Figure 3-3: Parameters for the chip curl radius	33
Figure 3-4: Measuring chip curl radius parameters	34
Figure 3-5: Initial configuration for the simulation	34
Figure 3-6: Work tool interface temperature at initial cutting	35
Figure 3-7: Work tool interface temperature at simulation step of 11	36
Figure 3-8: Unsteady thermal simulation step of 22	36
Figure 4-1: Surface roughness-Ra variation for 0.2% C steel at 0.5mm depth of cu	t39
Figure 4-2: Surface roughness-Ra variation for 0.2% C steel at 1 mm depth of cut	39
Figure 4-3: Surface roughness-Ra variation for AISI 304 steel 0.5mm depth of cut	: 42
Figure 4-4: Surface roughness-Ra variation for AISI 304 steel 1 mm depth of cut	42
Figure 4-5: Chip curl radius variation for 0.2% C steel at 0.5 mm depth of cut	43
Figure 4-6: Chip curl radius variation for 0.2% C steel at 1 mm depth of cut	44

Figure 4-7: Chip curl radius variation for AISI 304 steel at 0.5 mm depth of cut	45
Figure 4-8: Chip curl radius variation for AISI 304 steel at 1 mm depth of cut	46
Figure 4-9: ISO 3685 chip form classification standard	48
Figure 4-10: Initial tool geometry of the nose in cutting tool	52
Figure 4-11: Initial tool geometry of the flank face in cutting tool	52
Figure 4-12: Tool geometry of the cutting tool of commercial MWF	53
Figure 4-13: Cutting edges in tool insert	53
Figure 4-14: Load prediction during initial unsteady thermal simulation	54
Figure 4-15: Maximum work tool interface temperature	54
Figure 4-16: Work tool interface temperature at steady state step 31	55
Figure 4-17: Principal stress distribution during the machining process	56

LIST OF TABLES

Table 2-1: Advantages comparison of cutting fluids	10
Table 2-2: Disadvantages comparison of cutting fluids	10
Table 2-3: Advantages and disadvantages of MWF emulsions and neat oils	17
Table 2-4: Compilation of additives used in MWFs	20
Table 2-5: Comparison of the properties of vegetable oils and mineral oil	22
Table 2-6: Advantages and Disadvantages of Vegetable Base MWF	23
Table 3-1: Chemical composition of 0.2% C steel (Weight %)	30
Table 3-2 Chemical composition of AISI 304 steel (Weight %)	30
Table 3-3: Physical Properties of 0.2% C steel	30
Table 3-4: Physical Properties of AISI 304 C steel	30
Table 3-5: Recommended cutting parameters for the tool	31
Table 3-6: Recommended cutting parameters for the materials	32
Table 4-1: MSR values for 0.2% C steel at developed MWF	38
Table 4-2: MSR values for 0.2% C steel at commercial MWF	38
Table 4-3: MSR values for 0.2% C steel at dry machining	38
Table 4-4: MSR values for AISI 304 steel at developed MWF	40
Table 4-5: MSR values for AISI 304 steel at commercial MWF	41
Table 4-6: MSR values for AISI 304 steel at dry machining	41
Table 4-7: Chip form classification details of 0.2%C steel	49
Table 4-8: Chip form classification details of AISI 304 steel	49
Table 4-9: Chip morphology of 0.2% C steel for dry and developed MWF	50
Table 4-10: Chip morphology of 0.2% C steel for MWF and developed MWF	50
Table 4-11: Chip morphology of AISI 304 steel for dry and developed MWF	51
Table 4-12: Chip morphology of AISI 304 steel for MWF and developed MWF	51

LIST OF ABBREVIATIONS

Abbreviation	Description
AISI	American Iron and Steel Institute
BOD	Biological Oxygen Demand
BUE	Built Up Edge
COD	Chemical Oxygen Demand
СМ	Chip Morphology
CNC	Computer Numerical Control
CR	Curl Radius
DoC	Depth of Cut
HLB	Hydrophilic Lithophilic Balance
IARC	International Agency for Research on Cancer
MSDS	Materials Safety Data Sheet
MR	Mean Roughness
MWF	Metal Working Fluid
SD	Standard Deviation