PERFORMANCE OF THE EXISTING TRICKLING FILTER

AT SOYSAPURA HOUSING SCHEME

Ву

S.G.G.Rajkumar

Department of Civil Engineering

University of Moratuwa

Moratuwa, Sri Lanka

March, 1997

PERFORMANCE OF THE EXISTING TRICKLING FILTER AT SOYSAPURA HOUSING SCHEME

BY

SOMASUNDARAM GNANAPIRAGASAM GANAN RAJKUMAR

200000 මොරනුව විශ්ව විදාහලය. 🗳 ලංකාම මොරටුව.

Thesis Submitted in Partial

Fulfillment of

University of Moratuwa, Sri Lanka. The Requirement for the Degree of

1+

Master of Engineering in

Environmental Engineering & Management

67575 4m Thesis Coll.

Department of Civil Engineering

University of Moratuwa

March, 1997

<u>624"97"</u> 628.3

THIS THESIS HAS NOT BEEN PREVIOUSLY PRESENTED IN WHOLE OR PART TO ANY UNIVERSITY OR INSTITUTION FOR A HIGHER DEGREE

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

×

2

me S.G.G. RAJKUMAR

MARCH, 1997

ABSTRACT

Communities living in flats produce both liquid and solid waste in large quantities. The liquid waste is called the wastewater. This wastewater will be a potential threat to the environment.

Soysapura Housing Scheme treatment plant was taken up for this research study. This plant consists of Imhoff tank, trickling filter, humus tank and sludge drying beds. In this treatment plant performance of trickling filter was selected for detailed study.

Grab samples were taken from inlet of the imhoff tank, trickling filter, humus tank and from the outlet of the humus tank. Grab samples were taken from 05 30 hrs. to 19 30 hrs. in two hourly intervals. Sampling was done by having a small gap between the first set of sampling and second set of sampling with the idea to see any variation in wastewater inflow patterns over a period. From the samples collected bio-chemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS) and pH were determined.

i

The performance of the trickling filter was under detail study. A relationship for organic loading and trickling filter efficiency was obtained. It was found that the removal efficiency improved with increase of organic loading. Also a relationship of COD & BOD for the influent of trickling filter was obtained. With the loading pattern, the plant could be classified as a low rate trickling filter. Also this plant could treat further additional load after carrying out the suggested improvements.

The cause of trickling filter performance are discussed and areas which require further study and development are identified and recommendations are made for future investigations.

www.lib.mrt.ac.lk

ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to Mr. S. Pathinather, Senior Lecturer of the University of Moratuwa and the supervisor of this research for his guidance, encouragement and useful suggestions during this research study.

The author acknowledges the assistance and encouragement given by Mr. L.S.P.J. De Silva, D.G.M. (Western), National Water Supply & Drainage Board (NWS&DB).

The Cooperation extended by Mr. Melawathanthirige, Manager, Colombo Sewerage Operations, NWS&DB, is gratefully acknowledged.

The author is thankful to Mr. Ranatunga, OIC, of the Soysapura, wastewater treatment plant for making necessary arrangement to collect sample and providing other need full assistance.

The wastewater sample collectors, Mr. Dharmasiri & Mr. Piyasiri are gratefully appreciated.

Sincere thanks are extended to Mrs. Shanthi Hewawasam for processing this script.

iii

The author is thankful to National Water Supply & Drainage Board for the facilities provided to carryout this research study.

The facilities provided by the University of Moratuwa are gratefully appreciated.

The author is grateful to Mr. M. Wickramage, Former G.M., NWSDB, Dr. S. Buvendralingam, Dr. M. Jayaweera and course coordinator Prof. (Mrs).N.Ratnayake for their contributions at the presentation prior to writing the thesis.

The author gratefully appreciates the National Resources and Environmental Policy Project (NAREPP) for the financial assistance given to carryout this research study.

Friends & colleagues are gratefully appreciated for their encouragement & assistance.

Þ

TABLE OF CONTENTS

.

7

M

b,

		<u>Page No.</u>	
(I)	Abstract	i	
(II)	Acknowledgement	iii	
(III)	Table of Contents	v	
(IV)	List of Figures	x	
(V)	List of Tables	xi	
(VI)	Notations	xii	
Chapter 1			

1.0	Introduction	1
1.1	General University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	1
1.2	Objective of Sewage Treatment	4
1.3	History and Types of Attached Growth Biological Treatment	6
1.4	Scope of this Research	9
1.5 Chapter 2	Arrangement of this Thesis	10
chapter z		
2.0	Literature Review and Theoretical Consideration	11
2.1	Fixed Medium	12
2.2	Reaction & Interaction in Trickling Filter	13
2.3	Process Design	51

,

. .

Chapter 3

ڪر

Ŧ

+

M.

3.0	Methods and Materials	54
3.1	Experimental Work	54
3.2	Treatment Plant Description	57
3.3	Sampling	58
3.4	Sundry Information About Soysapura Trickling Filter	59
Chapter 4		
4.0	Results	61
4.1	Relationship Between BOD and COD in the Influent to the Trickling Filter	61
4.2	Treatment Efficiency	61

Pattern of Organic Loading 64 4.4

Chapter 5

5.0	Discussion,	Conclusions	and	Recommendations	68
5.1	Discussion				69

5.2	Organic Loading and Removal Efficiency	69
5.3	Present Performance	76
5.4	Conclusions	78
5.5	Recommendations	80
5.6	Recommendation for Further Work	81
List of References		
Appendix A	A Tabulation of Results	86
Appendix B	B Photographs	100

۵

1

+

LIST OF FIGURES

.

*

+

**

<u>Page No.</u>

Chapter 2		
Figure 2.1	Microbial Slime Layer	12
Figure 2.2	Biological Filter	15
Figure 2.3	Diagram of Aerobic and Anaerobic Sublayer for a Trickling Filter	24
Figure 2.4	Under Drain Blocks in Trickling Filter	33
Figure 2.5	Typical Cross-Section of a Trickling Filter	35
Figure 2.6	Reaction Type Jet Nozzle	37
Figure 2.7	Recirculation Patterns University of Moratuwa, Sri Lanka.	48
Chapter 3	www.lib.mrt.ac.lk	
Figure 3.1	Layout Plan of De Soysapura Sewage Treatment Plant	55
Figure 3.2	Details of Trickling Filter	56
Chapter 4		
Figure 4.1	Relationship between BOD and COD for Trickling Filter	62
Figure 4.1 Figure 4.2	Relationship between BOD and COD for Trickling Filter Relationship between Organic Loading & Removal Efficiency of Trickling Filter	62
Figure 4.1 Figure 4.2 Figure 4.3	Relationship between BOD and COD for Trickling Filter Relationship between Organic Loading & Removal Efficiency of Trickling Filter Diurnal Organic Loading in Trickling Filter	62 64 66

<u>Tables</u>

):

T

+

.

		Page No.
Chapter 2		
Table 2.1	Typical Information for	
	Trickling Filter	45
Table 2.2	Information on Physical	
	Properties of Trickling	
	Filter Media	46
Appendix A	7	
Table 1	Results Sample 1	86
1.1	Sample 2	87
1.2	Sample 3	88
1.3	Sample 4	89
1.4	Sample 5	90
Table 2	Average Results	91
Table 3	BOD and COD Loading in Trickling Filter	92
Table 4	Ratio of COD/BOD_s on Average Results	93 y
Table 5	Treatment Efficiency on Average Results	94
Table 6	Efficiency on Individual Results	95
Table 7	Variation of BOD removal efficiency wit loading rate in trickling filter	h 97
Table 8	Hourly variation of organic loading in trickling filter	98
Table 9	Efficiency variation in trickling filter removal	99

<u>Notations</u>

.

Ň

BOD	Bio Chemical Oxygen Demand	(mg/l)
CM	Centimetre	
COD	Chemical Oxygen Demand	(mg/l)
Cu.m	Cubic Metre	(m³)
d	Day	
hrs.	Hours	
Kg	Kilogramme	
1	Litre	
min	minute	
m	Metre	
Q	Volumetric Flow Rate	(m^3/d)
rev	Revolution University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations	
rpm	Revolution Per Minute	
Sa	Specific Surface Area per unit	(m^2/m^3)
	volume	
Sec	Second	
SS	Suspended Solid	(mg/l)
т	Temperature	(°/C)
v	Volume	(m ³⁾
Wz	Surface Area of Filter Medium	(m ²⁾

x