PAYMENT RECEIPTS VALIDATION THROUGH DUPLICATE ELIMINATION USING OPTICAL CHARACTER RECOGNITION

Vinoch Selvarathinam

(189355L)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2020

PAYMENT RECEIPTS VALIDATION THROUGH DUPLICATE ELIMINATION USING OPTICAL CHARACTER RECOGNITION

Vinoch Selvarathinam

(189355L)

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another per-son except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:Date:Name:S.Vinoch

ACKNOWLEDGEMENTS

My sincere appreciation goes to my family for the continuous support and motivation given to make this thesis a success. I also express my heartfelt gratitude to Dr. Indika Perera, my supervisor, for the supervision and advice given throughout to make this research a success. I also thank my parents, brothers for their heartfelt support. Last but not least I also thank my friends who supported me in this whole effort.

ABSTRACT

Optical Character Recognition (OCR) is the method of digital image retrieval of the characters. The idea behind OCR is to obtain an image or pdf format document and extract the characters from that image and present it in an editable format to the user.

This thesis focused on research related to extract the information such as vendor name, category of the receipt (food related, travel related etc.) and amount from the receipt which can be printed and hand written. Further to identifying the mentioned information, expanded the research on identifying the duplicate receipts as well.

Petty Cash is an accessible store of money kept by organizations for expenditure on small items. When an employee wants to reimburse the amount that he/she spent, they need to fill a voucher with the date of the expense, amount, vendor, reason of the expense and attach the supporting documents (receipts) which will consume papers. In this digital world, easily we can automate this process using digital platforms and tools.

Mobile phones are significantly playing major roles in our day-to-day life more than ever and the usage of mobile phones are increasing drastically compare to desktop computers. In order to reduce the carbon foot print, we can take necessary steps to reduce the paper usage. Building a mobile application which can automate the petty cash process which includes OCR capability on receipts would engage the users to use it in their organizations.

This is the first time, OCR on receipts and duplicate identifier is researched and done. There are no researches conducted on this.

Keywords: Image Processing, Optical Character Recognition, Neural Network

TABLE OF CONTENTS

Decl	aration	i
Acknowledgements		
Abstract		
Table Of Contents		
List	Of Figures	VII
List	Of Abbreviations	IX
1.	Introduction	1
	1.1 Use Of Petty Cash In The Organizations	1
	1.2 Cash Frauds In Petty Cash	2
	1.3 Research Problem	3
	1.4 Main Challenges In Optical Character Recognition	3
	1.5 Motivation For The Research	6
	1.6 Application Of Ocr And Duplicate Identifier Process	6
	1.7 Objective Of The Research	8
	1.8 Contribution Of The Research	9
2.	Literature Review	10
	2.1 Necessity Of Petty Cash In Organizations	10
	2.2 History Of Optical Character Recognition	11
	2.3 Growth Of Optical Character Recognition	12
	2.4 Types Of Optical Character Recognitions System	14
	2.5 Text Identification And Extraction From Image Using Optical	
	Character Recognition	15

2.5.1 Histogram Based Approach	15
2.6 Techniques In Optical Character Recognition	16
2.6.1 Pre-Processing Phase	16
2.6.2 Segmentation Phase	17
2.6.3 Normalization Phase	19
2.6.4 Feature Extraction Phase	19
2.6.5 Classification Phase	20
2.6.6 Postprocessing Phase	21
2.7 Ocr Applications	22
2.7.1 Handwriting Recognition	22
2.7.2 Receipt Imaging	22
2.7.4 Legal Industry	22
2.7.4 Banking	23
2.7.5 Healthcare	23
2.7.6 Captcha	23
2.8 Optical Character Recognition Reading By Tesseract Open Source Tool	24
2.9 Ocr Engine To Extract Food Items From Receipts	26
2.10 Text Extraction On Bills And Invoices	28
2.11 Summary Table	31
2.12 Deep Learning Techniques Compare With Traditional Ocr Method	ds 31
Methodology	33
3.1 Identifying The Category Of A Receipt	33
3.1.1 Convolutional Neural Network	33
3.1.2 Microsoft Azure Custom Vision	34

3.

v

	3.2 Extract The Amount From A Receipt	36
	3.2.1 Recurrent Neural Networks	36
	3.2.2 Long Short-Term Networks	36
	3.2.3 Microsoft Azure Computer Vision – Cognitive Service	39
	3.2.4 Identifying The Amount Using Regular Expression	40
	3.3 Identifying The Duplicate Receipts	42
	3.3.1 Text Similarity	42
	3.3.2 Jaccard Similarity	42
	3.3.3 Comparing The Texts Of The Receipts	43
	3.3.4 Comparison Between Date And Time, Vendor, Amount And	
	Category	43
4.	Solution Architecture And Implementation	45
	4.1 Load, Extract, Transform (Etl)	45
	4.2 Database Preparation	51
	4.3 Mobile App Development4.3.1 Developed Mobile App Interfaces	51 52
5.	Data & Analysis	55
	5.1 Custom Vision Training	55
	5.2 Identifying The Amount Using Regex	56
	5.3 Duplicate Receipts Identification	58
6.	General Discussion & Conclusion	60
	6.1 General Discussion On The Case Study	60
	6.2 Conclusion	61
	6.3 Future Work	62
Refe	prences	63

vi

LIST OF FIGURES

Figure 2.1: Architecture steps of Tesseract OCR	24
Figure 2.2: Tesseract Optical Character Recognition Result Analysis	25
Figure 2.3: Walmart receipts before and after image background removal	26
Figure 2.4: Final text retrieved from Walmart receipt	27
Figure 2.5: Example output image after the canny edge detection	28
Figure 2.6: Line segmentation process	29
Figure 2.7: Word segmentation process	30
Figure 2.8: Character segmentation process	30
Table 2.2: OCR Applications and the accuracy	31
Figure 3.1: Azure Custom Vision Architecture [39]	35
Figure 3.2: An unrolled recurrent neural network	37
Figure 3.3: The repeating module in a standard RNN	38
Figure 3.4: For interacting layers in LSTM repeating module	39
Figure 3.5: Sample receipt and the scanned value from Azure computer vi	sion40
Figure 3.6: LSTM Architecture	41
Figure 3.6: Duplicate Receipt Identifier Architecture	44
Figure 4.1: Tagging of the receipt in Azure custom vision	46
Figure 4.2: Tagged images set in Azure Custom Vision	47
Figure 4.3: Checking the performance after training	48
Figure 4.4: Selection interface of the training type	49
Figure 4.5: Testing the prediction after the training of the model	50
Figure 4.6: Sample receipt obtained from Keells	52
Figure 4.7: Output result after scanning the image	53
Figure 4.8: Identified duplicate receipts are shown in list	54
Figure 5.1: The duplicate prediction output by the developed system in	
percentage	59

LIST OF TABLES

Table 2.1: Some important pre-processing operations	16
Table 2.2: OCR Applications and the accuracy	31
Table 5.1: Microsoft Custom Vision training output results	55

LIST OF ABBREVIATIONS

Abbreviation	Description
OCR	Optical Character Recognition
CAGR	Compound Annual Growth Rate
САРТСНА	Completely Automatic Public Turing Test to Tell Computers and Humans Apart
ANPR	Automatic Number Plate Recognition
GISMO	Geographic Information Systems and Mapping Operations
ANSI	American National Standards Institute
DIA	Document Image Analysis
DPI	Dots Per Inch
SVM	Support Vector Machine
LSTM	Long Short-Term Memory
RNN	Recurrent Neural Network
GRU	Gated Recurrent Unit
REGEX	Regular Expression
CNN	Convolutional Neural Network
ETL	Extract, Transform and Load
CV	Custom Vision