SOCIAL MEDIA SENTIMENT ANALYSIS BASED ON AFFECTIVE-BEHAVIOURAL-COGINITIVE MODEL OF ATTITUDES

Dewamuni Adikaramge Chamodi Madhushani

(179333J)

Degree of Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

May 2020

SOCIAL MEDIA SENTIMENT ANALYSIS BASED ON AFFECTIVE-BEHAVIOURAL-COGINITIVE MODEL OF ATTITUDES

Dewamuni Adikaramge Chamodi Madhushani

(179333J)

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Computer Science Specializing in Data Science, Analytics and Engineering

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

May 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of Higher Learning and to the best of my knowledge and belief this does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Name: D. A. C. Madhushani

Signature: Date:....

The above candidate has carried out research for the Masters dissertation under my supervision.

Name of the Supervisor: Dr. Surangika Ranathunga

Signature: Date:....

ABSTRACT

Sentiment Analysis is the study of classifying a given text based on its sentiment (positive/ negative polarity) of the expression. Sentiment analysis is being widely used to analyse the public opinion towards a given entity. Today in Web 2.0, social media is a popular platform to express one's opinions and beliefs. Therefore, researchers are keen on investigating how social media sentiment analysis can be improved to benefit interested entities. Most of the sentiment analysis research has been conducted on identifying the polarity (i.e.: positive, negative or neutral) and emotions (i.e.: happiness, sadness, disgust, anger, fear and surprise).

Comparatively, less focus has been given to study how expressions can be classified based on psychological aspects of attitude. The objective of the proposed research is to move beyond the mere polarity, and to investigate whether we can get an in-depth understanding of the expressed attitude. For this, we have used the ABC (Affective, Behavioural and Cognitive) model of attitude introduced in consumer psychology.

In this research a new dataset was compiled by extracting Tweets on a specific topic and manually annotating them based on the attitude by domain experts. This research discusses how existing tools and technologies of Sentiment Analysis can be applied for this problem domain. Various preprocessing and feature extraction techniques were evaluated against a set of machine learning algorithms including Ensemble and Deep Learning models. Additionally, this research aims to contribute to reduce the gap between machine learning and consumer psychology and thereby proving the possibility of applying machine learning across different domains.

DEDICATION

I dedicate this Masters dissertation to my beloved parents, Mrs. Rupika Wijesekara and Mr. Shantha Adikaram. I hope that this achievement will be one step closer to completing the dream that you had for me all those many years ago when you chose to give me the best education you could.

ACKNOWLDGEMENT

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Dr. Surangika Ranathunga for providing abundant guidance, support and encouragement throughout this research. Special thanks to Ms. Irosha Amarabandu, Research Officer, Department of Psychiatry, Faculty of Medical Sciences, University of Sri Jayewardenepura for giving her invaluable support to conduct this research. Also, I would like to thank my colleagues for sharing knowledge, support and constant encouragement. I express my gratitude to University of Moratuwa for providing me with necessary resources and knowledge to make this project a success.

Last but not least, I express my love and gratitude to my beloved family for their continuous and unparalleled love, support and understanding.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
DEDICATION	
ACKNOWLDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	
LIST OF EQUATIONS	xi
LIST OF ABBREVIATIONS	xii
1. INTRODUCTION	1
1.1 Sentiment Analysis	1
1.2 Types of attitudes	2
1.2.1 Tricomponent Attitude Model (ABC model of attitude)	3
1.3 Problem Statement and Motivation	4
1.4 Objectives	6
1.5 Research Scope	7
1.6 Thesis Organization	7
2. LITERATURE REVIEW	8
2.1 Pre-processing	9
2.1.1 Handling Numbers	9
2.1.2 Handling Punctuations	9
2.1.3 Lowercasing	10
2.1.4 Replace Slang and Abbreviations	10
2.1.5 Spelling Correction	10
2.1.6 Handling Negations	11
2.1.7 Replace URLs, Hashtags and User Mentions	11
2.1.8 Handling Emoticons	12
2.1.9 Tokenization	12
2.1.10 Part of Speech Tagging	12
2.1.11 Stop words removal	12
2.1.12 Stemming and Lemmatization	13
2.2 Feature Extraction	14
2.2.1 Bag of words	14

2.2.2 Word N-grams	14
2.2.3 Word Embedding	14
2.2.4 Word Clusters	15
2.2.5 Part-of-speech Features	15
2.2.6 Emoticons	15
2.2.7 TF-IDF	15
2.2.8 Statistical and Meta Information on a Message	15
2.3 Feature Selection	16
2.3.1 Frequency cut off	16
2.3.2 HMM LSI and LDA	16
2.3.3 Pointwise Mutual Information	17
2.3.4 Chi-square	17
2.4 Sentiment Classification	18
2.4.1 Lexicon Based Approach (LB)	18
2.4.1.1 Dictionary Based Approach	19
2.4.1.2 Corpus Based Approach	19
2.4.2 Machine Learning Approach (ML)	20
2.4.2.1 Supervised Learning	20
2.4.2.2 Unsupervised Learning	23
2.4.3 Ensemble Learning (EL)	23
2.5 Evaluation	25
2.6 Types of Sentiment Classification	26
2.7 Applications of ABC Model of Attitudes	29
3. RESEARCH METHODOLOGY	31
3.1 Solution Architecture	31
3.2 Data Collection	31
3.2.1 Data Extraction	33
3.2.2 Data Annotation	35
3.3 Exploratory Data Analysis (EDA)	37
3.4 Implementation of Preprocessing	42
3.5 Implementation of Feature Extraction	49
3.6 Implementation of Feature Selection	51
3.7 Implementation of Classification	51
3.7.1 Multinomial Naive Bayes (MNB)	52
3.7.2 Logistic Regression	52

	3.7.3 Support Vector Machines (SVM)	53
	3.7.4 Random Forest	53
	3.7.5 Ensemble Classifiers	54
	3.7.6 Simple Neural Network	55
	3.7.7 Convolutional Neural Network (CNN)	55
	3.7.8 Recurrent Neural Network (RNN)	57
3.	8 Handling Imbalanced Class Problem	58
	3.8.1 Re-sampling	58
	3.8.2 Class Weights	59
	3.8.3 Hyper Parameter Optimization	59
3.	9 Evaluation Metrics	60
4.	SYSTEM EVALUATION	61
4.	1 Inter-Rater Agreement	61
4.	2 Baseline Experiment	63
4.	3 Effect of Preprocessing Techniques	64
4.	4 Effect of Resampling	67
4.	5 Effect of Feature Selection	68
4.	6 Evaluation of Models	69
	4.6.1 Word Embeddings	75
	4.6.2. Deep Learning Models	77
4.	7 Error Analysis	79
4.	8 Summary	80
5.	CONCLUSION	83
5.	1 Future Improvements	84
REF	ERENCES	85

LIST OF FIGURES

Figure 1.1: What affects the customers buying behaviours and choices
Figure 1.2: Affective advertising
Figure 1.3: Behavioural advertising
Figure 1.4: Cognitive advertising
Figure 2.1: Steps of SA Model
Figure 2.2: Classification of SA techniques
Figure 2.3: Plutchik's Wheel of Emotions
Figure 3.1: Code Snippet to Include Emojis in Text
Figure 3.2: Sample of annotated dataset
Figure 3.3: Distribution of Classes
Figure 3.4: Length Distribution of Tweets
Figure 3.5: Top 50 Most frequent terms before preprocessing
Figure 3.6: Top 50 Most frequent terms after preprocessing
Figure 3.7: Top 50 most occurring words in Affective class
Figure 3.8: Top 50 most occurring words in Behavioural class
Figure 3.9: Top 50 most occurring words in Cognitive class
Figure 3.10: Process flow- Preprocessing
Figure 3.11: CNN architecture
Figure 3.12: RNN-LSTM architecture
Figure 4.1: Feature Importance Graph (Logistic Regression with TF-IDF features) 70

LIST OF TABLES

Table 1.1: Example of classification of attitudes based on ABC model 4
Table 2.1: Confusion Matrix
Table 3.1: Categorization and Distribution of Classes 37
Table 3.2: Example- Handling Twitter tags
Table 3.3: Example- Handling Emojis 44
Table 3.4: Example- Lowercasing
Table 3.5: Evaluation of Different Spell Correctors
Table 3.6: Example- Handling Numbers 47
Table 3.7: Example- Handling Punctuations 47
Table 3.8: Example- Handling Negation
Table 3.9: Selected Supervised Learning Classifiers
Table 4.1: Inter Rater Agreement
Table 4.2: Results of Baseline Experiment
Table 4.3: Effect of Preprocessing Techniques 65
Table 4.4: Results of Preprocessing Step Vs Baseline Model
Table 4.5: Effect of resampling techniques 68
Table 4.6: Effect of Feature Selection 68
Table 4.7: Results of SVM Model 69
Table 4.8: Results of Logistic Regression Model
Table 4.9: Baseline and Optimized Hyper Parameter values- Logistic Regression 71
Table 4.10: Effect of Parameter Tuning on Logistic Regression with TF-IDF
Features
Table 4.11: Effect of Balanced Class weights on Logistic Regression with TF-IDF
Features
Table 4.12: Confusion Matrix Logistic Regression with TF-IDF Features
(class_weights= None)72
Table 4.13: Confusion Matrix Logistic Regression with TF-IDF Features
(class_weights= 'balanced)72
Table 4.14: Results of Multinomial Naive Bayes, Random Forest, Stacking, Random
Subspace and Simple Neural Network

Table 4.15: Results of Using Word Embedding features with SVM and Logistic	
Regression Classifiers	75
Table 4.16: Results of FastText Text Classification (Multinomial Logistic	
Regression)	76
Table 4.17: Results of Deep Learning Model CNN and RNN-LSTM using Word	
Embedding features	77
Table 4.18: Classification report Logistic Regression Vs CNN	78
Table 4.19: Error Analysis	79
Table 4.20 Summary of Best Results	80
Table 4.21: Hyper-parameters of Best Performing Models	82

LIST OF EQUATIONS

Equation 2.1: Pointwise Mutual Information	17
Equation 2.2: Chi-Square	17
Equation 2.3: Pobability Calculation of Maximum Entropy	21
Equation 2.4: Accuracy	25
Equation 2.5: Precision	25
Equation 2.6: Recall	25
Equation 2.7: F1 Score	25
Equation 4.1: Cohen's Kappa Score	62

LIST OF ABBREVIATIONS

ABC	Affective Behavioural Cognitive
BOW	Bag of Words
CBOW	Continuous Bag of Words
CNN	Convolution Neural Networks
EDA	Exploratory Data Analysis
FS	Feature Selection
HMM	Hidden Markov Model
LDA	Latent Dirichlet Allocation
LSI	Latent Semantic Indexing
LSTM	Long Short-Term Memory
ML	Machine Learning
NLP	Natural Language Processing
POS	Part of Speech
RNN	Recurrent Neural Networks
ROS	Random Over-sampling
SA	Sentiment Analysis
SC	Sentiment Classification
SMOTE	Synthetic Minority Oversampling
SVM	Support Vector Machines
TF-IDF	Term Frequency-Inverse Document Frequency
TPE	Tree of Parzen Estimators