'SEPTAGE DISPOSAL INTO SEWERAGE SYSTEMS

සුංකාලය මෙරෙනුව විස්ව විදහාලය හි ලංකාව ඉමාරටුව.

BY A A L MARK

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA NOVEMBER 1996

LB (DON 18 1997

SEPTAGE DISPOSAL INTO SEWERAGE SYSTEMS

පුත්නකාලය ඉට**ාරවුව විශ්**ව විදහාලය **ශ් ලංකාම** ඉ**ලිංරටුව.**

,

.

Adrian Anton Loganathan Mark Department of Civil Engineering University Of Moratuwa Sri Lanka

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

67574

4m Thesis coll.

<u>624 "96</u>" 628.3

This thesis was prepared and submitted in partial fulfilment of the Master's Degree in (MEOG) Environmental Engineering and Management to the Civil Engineering Department of the Faculty of Engineering, University of Moratuwa, Sri Lanka.

November 1996

DECLARATION

This thesis has not been previously presented in whole or part to any university or institute for a higher degree.

Y

University of I

Right Merly

Electronic These Adrian Anton Loganathan Mark www.lib.mr.ac.liNovember, 1996

ACKNOWLEDGEMENT

This research was conducted under the supervision of Mr S Pathinathar, Senior lecturer, University of Moratuwa to whom I am most grateful for his support and guidance during every phase of my research. I also wish to express my gratitude to the course co-ordinator, Prof (Mrs) N Ratnayaka for her generous support whenever needed.

This study could never have been completed satisfactorily without the help of many other people and I would like to take this opportunity to thank all of them, most sincerely.

I wish to thank Mr Justin Silva for giving me his fullest co-operation during the laboratory phase of my research.

I would like to gratefully acknowledge the financial assistance given towards the successful completion of this study by the Natural Resources and Environmental Policy Project of the United States Agency for International Development (NAREPP - USAID) Sri Lanka and greatly appreciate the encouragement given by its staff.

Further, I would like to express my thanks to my employer The Colombo Municipal Council (CMC), the staff and the workers of the Drainage Department, especially Mr S Thiagarajah, Superintending Engineer and Mr N S Jayasundara, Deputy Municipal Engineer and the workers of Madampitiya Pumping Station, who gave their support in many ways during the field studies. I also wish to thank the staff of the CMC City Analyst Laboratory for the assistance they provided in carrying out laboratory experiments.

University of Moratuwa, Sri Lanka.

I like to place on record my appreciation to the University of Moratuwa for providing the opportunity to carry out this research and enabling me to use the facilities of the libraries of the University of Moratuwa, and the Colombo Medical Faculty to consult references.

I wish to thank Dr Ravi Pereira, Archt Leonard Dissanayake and Mr M Thiruchelvam for help in editing and final preparation of this document.

Finally, I owe a deep debt of gratitude to my wife Bahirathy for the constant encouragement and assistance given throughout the study.

i

ABSTRACT

The methods for the disposal of septage vary from place to place. If the chosen method is not appropriate and planned then it has potential to cause severe damage to both the receiving body and the surrounding environment. A typical example is Colombo City and its sewer system. Here, unsewered areas of the City and its suburbs produce high quantities of septage which is often disposed of by vacuum trucks which empty their contents into nearby manholes of the sewer network.

In many developed countries septage is treated at very high cost. The main objective of this study is to develop an appropriate method for disposal of septage in a city like Colombo where a sewerage network is already available for part of the city.

A field survey was carried out to find out the necessity and the frequency of emptying septic tanks as well as any other on-site sewage systems available in unsewered area. Further, the type of on-site sewage system available and its suitability to the location were also investigated. For this purpose eight locations where emptying took place very frequently were selected. In addition to this, the type of vacuum trucks in service, behaviour pattern of the workers involved, the level of service the rate payers receive from the authorities etc., were also studied.

These studies revealed that the quantity of septage which need to be emptied could be reduced by a considerable amount by adopting suitable on-site sewage disposal techniques with good construction practices. This, in turn, will reduce by a significant amount unnecessary expenditure incurred by the authorities. The level of service provided presently by the Municipality was found to be inadequate. A higher level of service can be achieved by motivating the workers, increasing the number of vacuum trucks and making improvements to the current management practices.

In addition to the above a pilot plant to receive the septage from the vacuum trucks was constructed at a terminal pumping station. The elements making up the pilot plant consisted of a screen, a sedimentation tank and a baffle wall. The disposed septage went through these basic elements and reached the main sewage stream at the pumping station. This preliminary treatment prevented problematic constituents getting into the sewerage system and causing heavy siltation and frequent blockages in the sewer network.

Another pilot plant was also constructed at the terminal pumping station to treat the odour which is produced from the septage disposal tank and the sewage pumping station. This 'Bio-Filter' type system used coconut fibre as a filter (growth) media. Laboratory analyses showed that this system was 60% efficient in removing H_2S at a 800 mm filter height (thickness) and at a retention time of 60 seconds.

ii

TABLE OF CONTENTS

k.

Acknowledgement	i
Abstract	ii
Table of Contents	iii
List of Acronyms	iv
List of Tables	v
List of Figures	vii
List of Plates	viii
1.0 Introduction	01
1.1 The Problem	01
1.2 Approach	03
1.2.1 Selection of Treatment Method	04
1.2.2 Odour Problem and Bio-Filter	04
1.2.3 Practical Problem in Implementation	. 05
1.3 Objectives of The Study	05
2.0 Literature Review	06
2.1 Available On-site Sewage Disposal Facilities	06
2.1.1 Septic Tanks	06
2.1.2 Two Compartment Septic Tank	06
2.1.3 Three Compartment Septic Tank	07
2.1.4 Twin Pit Soak System of Moratuwa, Sri Lanka.	08
2.2 Up-Flow Filters	12
2.3 Small Scale Treatment Plants	15
2.4 Septage Disposal in Other Countries	• 17
2.5 Odour Control	. 18
2.5.1 Basic Information	18
2.5.2 Methods of Odour Control	20
2.6 Biological Deodorization	22
2.7 The Role of Micro-organism in The Filter-Bed	23
2.8 Comparision of Treatment Methodologies	25
3.0 Materials and Methods	26
3.1 Study in Unsewered Areas	26
3.1.1 Data Collection	.26
3.1.2 Survey Results	28
3.1.3 Observations	28
3.1.4 Practical Suitability of Anaerobic Filters	29
3.1.5 Additional Studies	29
3.2 Study in Sewered Areas	30
3.2.1 Proposal for Disposal Method	30

3.3 Model Plant to Remove Problem Constituents in Septage 3.3.1 Odour Control Plant	30 31
3.4 Measurements and Observations	36
J.4 Measurements and Observations	50
4.0 Results and Discussions	37
4.1 Location for Septage Disposal	37
4.2 Odour treatment Plant	37
4.3 Septage Reduction	37
4.4 Location-Septage Disposal	40
4.5 Pre-Treatment Plant	42
4.5.1 Model Plant Study	42
4.5.2 Observations	43
4.6 Odour Treatment Plant	46
4.6.1 Chemical Analysis	46
4.6.2 Flow Rate	46
4.6.3 Laboratory Test	49
4.6.4 Efficiency of the Bio-Filter in Removing H_2S	52
5.0 Conclusions and Recommendations	54
5.1 Conclusion	54
5.2 Recommendations	55
6.0 References	
7.0 Bibliography University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	58
Annexe	
Annexe1- Survey of On-site Sewage Disposal Facilities	60 in
Annexe2- Adresses of On-site Sewage Disposal Facilities Available CMC Areas	e in 68

LIST OF ACRONYMS

CMC	Colombo Municipal Council
CAB	Common Amenities Board
CEA	Central Environment Authority
EPA	Environmental Protection Agency
FRP	Fibre Glazed Reinforced Plastic
М/О	Micro Organism
NHDA	National Housing Development Authority
P.S	Pumping Station
SLLR&DC	Sri Lanka Land Reclamation and Development Corporation
S/T	Septic Tank
UDA	Urban Development Authority
WWTP	Waste Water Treatment Plant Dissertations

LIST OF TABLES

•

۶

Table 2.1	Extent of Coverage of Sewerage System (Greater Colombo Area)	12
Table 2.2	Odour Thresholds of Compounds Associated with Untreated Wastewater	20
Table 2.3	Recommended Design Criteria for a Biofilter	23
Table 2.4	Comparison of Odour Treatment Methods	25
Table 3.1	Summary of On-site Sewage Disposal Survey	28
Table 4.1	Performance of Filter Media with the Height (Thickness)	49
Table 4.2	Efficiency of the Bio Filter in Removing H_2S	50

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Figure 2.1	Septic Tank with Soakage Pit	09
Figure 2.2	Drainage Trenches for Septic Tank Effluent	10
Figure 2.3	Twin Pit offset Latrine	11
Figure 2.4	Up-Flow Anaerobic Filter	14
Figure 2.5	Structure of Tandoku Tank	15
Figure 2.6	Structure of Gappei Tank	16
Figure 3.1	Schematic Diagram of the Odour Treatment Plant	31
Figure 3.2	Venturi Meter	35
Figure 4.1	Comparison of Septage Disposal with Rainfall	38
Figure 4.2	Previous Septage Disposal Locations	41
Figure 4.3	Septage Disposal Tank University of Moratuwa, Sri Lanka.	44
Figure4.4	Septage Disposal Activity at ac lk	45
Figure 4.5	Bio-Filter Operation First Attempt	48
Figure 4.6	Bio-Filter Operation Second Attempt	48
Figure 4.7	Bio-Filter Performance Graph	52

LIST OF PLATES

-

А.

-

\$-

-

.

Plate 1.1	Septage Disposal into a Manhole	02
Plate 3.1	Odour Treatment Plant	32
Plate 3.2	Bio-Filter Under Preparation	33
Plate 4.1	pH Level of the Bio-Filter is Estimated by pH Paper	47
Plate 4.2	Collection of Gas Sample from the Odour Treatment Plant	51
Plate 4.3	Laboratory Test for H ₂ S Using Separatory Funnel	51
Plate 4.4	Accumulated Silt in a Vacuum Truck After Three Weeks Operation	53
Plate 4.5	Peliyagoda Tanker Trailor Disposing Septage into the Model Plant	53

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

viii