

A STUDY ON THE USE OF MPLS- TE IN IP CORE NETWORKS

A thesis presented by, ANANDAMURUGA GAJENDRAN Admission Number: 05/8369

Supervised by ENG. A.T.L.K. SAMARASINGHE

In partial fulfillment of the requirement for the degree of MASTER OF SCIENCE IN TELECOMMUNICATIONS

At the DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING UNIVERSITY OF MORATUW A SRI LANKA

2009

93925

Abstract

Keywords: Core network, NGN, MPLS, MPLS-TE, QoS, DSCP, differentiated services, SLA, SNMP, ICT

Today's demand for various applications like voice, data and real time video etc., are increasing in the consumer market and stakeholders mostly expect all services from a service provider. The tremendous growth in ICT adds more users and also traffic adds another dimension. NGN is expected to be the emerging IP network to transport converged services and MPLS and MPLS- TE plays an important role in this context. These new applications have increased demand for guaranteed bandwidth in the limited backbone capacity in the provider's network and the challenge is to provide differentiated class of services with required QoS and also to produce SLA performance reports to the end users when requested. Due to numerous benefits such as guaranteed end to end QoS, link protection and efficient use of core bandwidth MPLS- TE is being recognized and becoming popular among service providers. TE enables service to their users in terms of throughput and delay.

In this research MPLS- TE approach is used to implement end to end QoS for prioritized services and a SLA program is developed using SNMP to produce end to end reports on critical performance metrics like delay, round trip time, jitter and application aware services to customers. The study also investigates the process of steering traffic across the MPLS/IP core backbone to facilitate efficient use of available bandwidth between a pair of backbone routers to ensure the required service levels. Hence in a multilink environment where many links are available for routing we can avoid the shortest paths being congested. Since network can have different types of packets; packets were generated and marked based on DSCP for QoS which were routed in different TE tunnels in a lab environment. The lab results showed that, using, TE tunriels constrained routing can provide explicit paths to required destinations regardless of the paths calculated by the routing protocols thus

bandwidth efficiency can be achieved in the core while ensuring end to end QoS for critical applications for a given IP SLA. Also, results obtained by the SLA program from a live operational network were acceptable in providing SLA performance reports.

DECLARATION

I do hereby declare that the work reported in this research project was exclusively carried out by mc under the supervision of Eng. A.T.L.K. Samarasinghe. The work included in the thesis has not been submitted for any other academic qualification at any institution.

Signature: **UOM Verified Signature**

Date: 20002009

x

Certified by: Supervisor Eng. A.T.L.K. Samarasinghe Theses & Dissertations www.lib.mrt.ac.lk

Signature: **UOM Verified Signature**

Date: 20 - 62 - 09

A. T. L. K. Samarasinghe Head Department of Electronic & **Telecommunication Engineering** University of Moratuwa, Sri Lanka

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF TABLES	х
ACRONYMS	xi
ACKNOWLEDGEMENT	xiii
ABSTRACT	xiv
1.0 Introduction	
1.1 Background and motivation for the thesis	1
1.2 Goal of the thesis	2
1.3 Structure of the thesis	3
2.0 MPLS 2.1 Introduction University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	4
2.2 Brief History of MPLS communications	5
2.3 Benefits of using MPLS communication	9
2.4 Architecture of MPLS Protocol stack	10
2.5 MPLS Network over view	11
2.6 Traditional Routing and Packet Switching	13
2.7 MPLS Operation	13
2.7.1 Label Switch Routers (LSRs) or Label Edge Routers (LERs)	16
2.7.2 Forward Equivalent Class (FEC)	16
2.7.3 Labels and Label Bindings	16

2.7.4 Label creation and Distribution

2.7.5 Label Switched Paths (LSPs)

3.0 MPLS Traffic Engineering (TE) and Techniques

3.1 Overview	21
3.2 How TE Operates Operation	23
3.2.1 MPLS TE Signaling Protocols	25
3.2.2 Resource Reservation protocol (RSVP) Extensions	25
3.2.3 Traffic Selection	26

2

4.0 MPLS and Quality of Service

4.1 Overview	27
4.2 Differentiated Services	27
4.3 Per-Hop Behaviors (PHBs) and Codepoints	30
4.4 IP Service Level Agreements (SLA)	31

5.0 Simulation and Results.

mutation and Kes	Electronic Theses & Dissertations	
	www.lib.mrt.ac.lk	37
5.2 Setting up M	PLS topology and assigning traffic via TE tunnels	38
5.3 QoS Marking	g using Differentiated Services Code Point (DSCP)	51
5.4 IP Service Le	evel Agreements (SLAs) customer reports	55

6.0 Conclusion & Discussion of Results			
6.1 Future works	61		

APPENDIX A	62
APPENDIX B	73
REFERENCES	90
BIBLIOGRAPHY	92

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

د

LIST OF FIGURES

Figure 2.1	:	Label Switching Timeline	5
Figure 2.2	:	IETF Standards	6
Figure 2.3	:	Typical MPLS block diagram	7
Figure 2.4	:	Typical MPLS Protocol Stack	10
Figure 2.5	:	LDP Header	10
Figure 2.6	;	MPLS Network Overview	11
Figure 2.7	:	MPLS Operation	12
Figure 2.8	:	Packet Flow in MPLS	13
Figure 2.9	:	MPLS Header	16
Figure 2.10	:	Label Request and Label Mapping	31
Figure 3.1	:	IP forwarding network	30
Figure 3.2	:	MPLS TE Tunnels	23
Figure 4.1		IP version 4 Type of Service (TOS) field	27
Figure 4.5	C. F.	End to End IPSLA mrt.ac.lk	31
Figure 4.6	:	MIB tree for vendor CISCO (1.3.6.1.4.1.9.X.X.X.X.X) where "X" represents values specific to a product.	34
Figure 4.7	:	SLA program logic to generate performance reports	35
Figure 5.1	:	Initial Topology creations in GNS3, all routers are CISCO 3640 with IOS version 12.3(26)	38
Figure 5.2	:	MPLS network Topology implemented in Lab, all routers are CISCO 2800 and core serial links are connected via a Frame Relay Switch	39
Figure 5.3a	:	Topology Information in Router PE1	39
Figure 5.3b	:	Topology Information in Router PE2	40
Figure 5.3c	:	Topology Information in Router PE3	40
Figure 5.3d	:	Topology Information in Router C1	40

Figure 5.3e	:	Topology Information in Router C2	40
Figure 5.3f	:	Topology Information in Router C3	41
Figure 5.4	:	IP routing table showing customer subnets and next hop addresses	41
Figure 5.5a	:	Trace through PE1 to PE3 takes the shortest path always for 192.168.3.52 and 192.168.7.1 destination network.	42
Figure 5.5b	:	Trace through PE1 to PE3 for 192.168.7.1 takes the alternative path	42
Figure 5.6	:	Total bandwidth reservation by both tunnels at fast Ethernet $0/0$ is 80Kbps at PE1	42
Figure 5.7a		T0 reserved with 48Kbbps and priority 7	43
Figure 5.7b		T1 reserved with 32Kbps and priority 2 and explicit route shows the longest path hops via C2 C1 C3	44
Figure 5.8a		Bandwidth allocation in PE1 at Fast Ethernet 0/0 interface of router PE1. BW (2) and BW (7) are the priorities of the tunnels	45
Figure 5.8b		Bandwidth allocation by both tunnels T0 and T1 at Fast Ethernet $0/0$ interface of router PE1	45
Figure 5.9		IP routing table after tunnels are been setup and PE3 (10.12.0.8) has two paths Tunnel T0 and T1	46
Figure 5.10a		"Iperf" tool is sending 12Kbps UDP traffic to destination 182.168.7.1	46
Figure 5.10b		"Iperf" tool is sending 30Kbps UDP traffic to destination 192.168.3.52 for 120 seconds	46
Figure 5.11a		Tunnel 0 interface bandwidth 29Kbps.	47
Figure 5.11b		Tunnel 1 interface bandwidth 11Kbps.	48
Figure 5.12		Triggered flooding at C2 during T1 shutdown at PE1. The highlighted portion shows T1 bandwidth 32Kbps been released during tunnel shutdown and this information is flooded to all TE enabled three links at router C2.	49
Figure 5.14		Packet drops at C2 serial interface 0/0/0, Queue type is FIFO	52
Figure 5.15		Packet drops are avoided at C2 serial interface $0/0/0$ after QoS at PE1 router	53
Figure 5.16		UDP packet generation using "iperf" tool	53
Figure 5.17		marked packets are queued into their appropriate queues and excess	54

low priority are dropped at class-default

Figure 5.18	Class based queue at PE1 output interface	54
Figure 5.19	Packets are matched at the input interface PE1 and marked accordingly to DSCP markings	55
Figure 5.20a	Round trip time (RTT) response using "icmpecho" protocol.	50
Figure 5.20b	Availability of link from source to destination. Average availability	51
Figure 5.20c	HTTP transaction time to a web-server	52
Figure 5.20d	Source to Destination positive source to destination Jitter.	53

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 4.2	:	DSCP and IP Precedence mappings	28
Table 4.3		DSCP AF and EF values	29
Table 4.4		General drop order based on classes	30
Table 5.13		Classifying of packets based on DSCP marking	52

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

۶

ACRONYMS

MPLS	:	Multiprotocol Label Switching
GMPLS	:	Generalized MPLS
TE	:	Traffic Engineering
ICT	:	Information and Communication Technology
NGN	:	Next Generation Network
SLA	:	Service Level Agreement
ISP	:	Internet Service Provider
IP	:	Internet Protocol
UDP	:	User Datagram Protocol
TCP	:	Transmission Control Protocol
PDU	:	Protocol Data Unit
LIB	:	Label information base
LSP	:	Label Switched Path
LSR	:	Label Switch Router
LER	:	Label Edge Router
LSP	:	Label Switched Path
LDP	:	Label Distribution Protocol
CR-LDP	:	Constraint-based LDP
FEC	(mar	Forward Equivalent Class Point of Presence
PoP	Contraction of the second	Point of Presence
CoS		Class of Service Theses & Dissertations
QoS	Ś	Quality of Service Lac. k
PIM	:	Protocol Independent Multicast
DSCP	:	Differentiated Services Code Point
OSPF	:	Open Shortest Path First
ISIS	:	Intermediate System-to-Intermediate System
BGP	:	Border Gateway protocol
RIP	:	Routing Information Protocol
IGP	:	Interior Gateway Protocol
LSA	:	Link State Advertisement
TOS	:	Type of Service
PHB	:	Per Hop Behavior
ECN	:	Explicit Congestion Notification
CSCP	:	Class Sector Code Points
AF	:	Assured Forwarding
EF	:	Expedited Forwarding
WRED	:	Weighted Random Early Detection
WRR	:	Weighted Round Robin
CBR	:	Constraint Based Routing
0		

- Maria

1

xi

CSPF	:	Constrained Shortest Path Calculation
ATM	:	Asynchronous Transfer Mode
VPN	:	Virtual Private Network
VLSI	:	Very Large Scale Integration
ASIC	:	Application Specific Integrated Circuits
PE	:	Provider Edge
С	:	Core
RSVP	:	Resource Reservation Protocol
CIR	:	Committed Information Rate
OPEX	:	Operational Expenditure
CAPEX	:	Capital Expenditure
CSR	:	Cell Switch Router
SONET	:	Synchronous Optical Network
SDH	:	Synchronous Digital Hierarchy
DWDM	:	Dense Wavelength Division Multiplexing
LAN	:	Local Area Network
WAN	:	Wide Area Network
TTL	:	Time to Live
CPE	:	Customer Premises Equipment
ERP	:	Enterprise Resource Management
CRM	:	Customer Relationship Management
MRP	:	Material Requirements Planning
SNMP 📂	:	Simple Network Management Protocol
MIB	31	Management Information Base
OID	5	Object Identifiers
VoIP 🐸	5 :	Voice over IP
MTTR	:	Mean-Time-To-Repair
FIFO	:	First In First Out

ACKNOWLEDGEMENTS

I would like to make this a great opportunity to thank everyone who helped me in numerous ways to complete this research project successfully.

First of all, I wish to express my sincere gratitude to my supervisor Eng. A.T.L.K. Samarasinghe Head of the Department, of the Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka for his kind, untiring supervision and guidance during the project work. Secondly, I would like to thank Dr. Priyantha Thilakumara and Dr.Ajith Pasqual, course coordinators of M. Sc. in Telecommunications 2005/2006, for the guidance given during the course and Dr. Sankassa Senevirathna for his encouragement.

Also I would like to thank Eng. Subhash Edirisinghe, Eng, Sudeera Mudugamuwa, Eng. Himidiri Wedande and Eng. Nethadum Harshana of Millennium Information Technologies (MIT) for providing me with the lab environment and equipments.

Finally also thankful to all of my friends, for their support and encouragement extended towards the successful completion of this research project and to my family and my wife for their constant love and unending support.