

FORMULATING AN INSTALLATION GUIDELINE FOR PHOTO VOL TIC DC SOLAR HOME SYSTEMS IN SRI LANKA

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by RAJESHKUMAR.V.S.W.THOMAS RANASINGHE

Supervised by: Professor J.R.Lucas

Department of Electrical Engineering University of Moratuwa, Sri Lanka

2009

93026

Abstract

Although grid electrification drastically increased during the past two decades up to about almost 75% of the total households in Sri Lanka, it is noted that attempting to electrify the rest of the approximately 25% of the households is very expensive. This is due to the fact that these households are situated in very remote areas which do not permit the normal low voltage (230V Phase to Neutral / 415V Phase to Phase) transmission since the losses would make it unusable to the end user point.

Thus, in order to avoid this losses medium voltage line should be drawn at a very expensive cost which is not justified by the measly amount of end users. The cost benefit analysis would not be feasible. Thus, the rest of these 25% of un-electrified households stands the risk of not having accessibility to grid power even in another 20 to 30 years. Therefore, for such rural house holds the solution for the moment is alternative energy sources. Up to about decade or so back the solution that they had was kerosene fuel to light up their lamps, thereafter they obtained the accessibility to solar photovoltaic (PV) electricity through private sector vendors and government intervention. This solution was widely accepted by this community since the end result was the next best thing to grid power. Further it was safe in usage than kerosene fuel and even grid power. The government and world bank also subsidized the purchase of such systems from vendors. However, the supply of solar PV home systems (SHS) became very competitive, amongst the vendors who supplied them. As a result quality of these systems as well as their installation was compromised by the vendors. As result the poor rural folks who purchased these systems went through severe hardships due to malfunctioning systems. Considering that the investment for these systems would be the largest or the second largest investment in their lives it was unacceptable for them,

Therefore, author of this dissertation had set out to develop a solar PV installation guideline and has managed to develop same in order to be utilized and to be educated

by , the end users or their financing institutions. So that vendors has to deliver proper system with proper after sales procedure in order to be paid for their product or service. Thereby develop some ethical standard of professionalism to this area of engineering! Electrical installations.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

I endorse the declaration by the candidate.

UOM Verified Signature

Professor. J.R.Lucas

Acknowledgement

Many thanks are due to my supervisor, Professor. Rohan Lucas, for his great insights, perspectives and specially the patients he exercised with my short comings and the guidance he gave thereafter. My sincere thanks go to present Head of Electrical Engineering department Dr.J.P.Karunadasa who helped me to achieve my goal in engineering studies thought my life time and the former Head of Electrical Engineering department Professor. H.Y.R.Perera. Wish to thank all faculty members at Electrical Engineering Department along with the excellent panel of visiting lectures, especially Dr. Lanka Udawattha, Dr.Thilak Siyabalapitiya, Dr.Narendra de Silva, for their guidance and support throughout the study course.

Further, I am greatly appreciative to my batch mates who were great inspiration to me and who encouraged me and who worked as a team to get through this tough task of reading for a MSc. May be I could not have made it without your support.

Last not but the least I would like to thank my loving family, wife Samanali and lovely little daughter Sahanya who was patient with my commitment to my studies reading for MSc, a lot of good family times were missed for the future of a dear husband and a loving father.

Contents

			Page
Declaration			i
Abstract			ii
Acknowledg	gement		iii
List of Figu	res		vii
List of Tabl	es		viii
List of Abbi	reviatio	ons	ix
Chapter 1	Intro	oduction	01
-	1.1	Problem Statement	02
	1.2	Behaviour of the Problem	02
	1.3	Objective of the Desertion & Dissertations	03
	1.4	Significance of the Research	03
	1.5	Scope and Limitations	03
Chapter 2	Meth	nodology	05
	2.1	Literature Review	05
	2.2	Data Gathering and Data Analysis	05
Chapter 3	Spec	ification for SHS Components and Performance	07
	3.1 R	Reliability	09
	3.2 PV Generator (PV Module)		09
	3.3 Support Structure		13
	3.4 Battery		16
	3.5 T	The Charge Controller	22
	3.6 T	The Lighting (Loads Mainly Lighting)	26
	3.7 T	The Wiring	29

	3.8 Safety	31
	3.9 Energy Performance	32
	3.10 Reliability and Sizing	33
	3.11 Energy Efficiency	33
	3.12 User Friendliness	34
	3.13 Installation and Maintenance	36
	3.14 Flexibility	37
Chapter 4	Specification for SHS Components and Performance	39
	4.1 PV Generator (PV Module)	40
	4.2 Support Structure	42
	4.3 Battery	45
	4.4 The Charge Controller	48
	4.5 The Loads (mainly lighting)	51
	4.6 The Wiring niversity of Moratuwa, Sri Lanka.	54
	4.7 Safety Electronic Theses & Dissertations	56
	4.8 Reliability and Sizing	56
	4.9 Energy Efficiency	56
	4.10 User Friendliness	57
	4.11 Installation and Maintenance	57
	4.12 Flexibility	58
	4.13 Summery of Vital/Salient Features of SHS Not to Be	58
	Violated	
	4.14 Reference	64
Chapter 5	Conclusions	65
	5.1 Remarks and Discussion	65
	5.2 Recommendations for Future Research	66
References		67
Annexure 1	Solar Home System Survey Data Sheet	68

Annexure 2	Summery of Solar Home System Survey Data	69
Annexure 3	Solar Home System Survey Photographs	73

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure	Title	Page
Figure 3.2.1: Typic	cal Crystalline Solar PV Module with 36 Cells	10
Figure 3.3.1: Pictu	res Depicting Module Support Structures	15
Figure 3.3.2: A Ty	pical Pole Mounted Solar PV Module.	16
Figure 3.4.1: Pictu	re of a Tubular Deep Cycle Solar Battery Available	17
Figure 3.5.1: Typic	cal Pictures of a Charge Controlle	23
Figure 3.6.1: Pictu	res of Typical Light Loads Available in SHS in Sri Lanka	26
Figure 4.1.1: Typic	cal Crystalline Solar PV Module with 36 cells	40
Figure 4.2.1: Pictu	res Depicting Module Support Structures	42
Figure 4.2.2: A typ	vical Pole Mounted Solar PV Module	44
Figure 4.3.1: Pictu	re of a Tubular Deep Cycle Solar Battery Available	45
Figure 4.4.1: Typic	cal pictures of charge regulators for atuwa, Sri Lanka.	48
Figure 4.5.1: Pictu	res of typical light loads available in SHS in Sri Lanka	51

List of Tables

Table	Title	Page
Table 2.1	1: List of Solar PV Home System Vendors Who was Visited and	06
	Number of Visits	
Table 3.2	1: Module Type Against Their Efficiencies	10
Table 3.2	2: Number of Users Found in the Sample Universe of SHS with	11
	Types of Modules	
Table 3.3	1: Number of Users Found in the Sample Universe of SHS with	13
	Different Types of Modules Support Assemblies	
Table 3.4	.1: Selection of Batteries for a SHS Based on PV Module Capacity	18
Table 3.4	.2: Number of Users Found in the Sample Universe of SHS with	20
	Different Types of Batteries	
Table 3.7	.1: Number of Users Found in the Sample Universe of SHS with	29
	Different Types of Wire Gauges for Installation	
Table 4.1	.1: Module Type Against their Efficiencies	41
Table 4.3	.1: Selection of Batteries for a SHS Based on PV Module Capacity	47
Table 4.6	.1: Recommended Wire Cross-Sections for Each Section of SHS	54
Table 4.1	3.1: Recommended Wire Cross-Sections for Each Section of SHS	62

List of Abbreviations

Α	Ampere
AC	Alternating Current
Ah	Battery Ampere-Hour
AL	Aluminium
BS/EN	British Standards / European Norm
C _n	Nominal Capacity
Cu	Useful Capacity
CFL	Compact Fluorescent Light
DC	Direct Current
DOD	Depth of Discharge
GI	Galvanized Iron University of Moratuwa, Sri Lanka.
g/cl	(O) Electronic Theses & Dissertations
INGO	International Non Government Organizations
IP 32	Protection against Solid Objects Greater Than 2.5mm Diameter and
	Protected Against Dripping Water When Tilted Up To 15°
LED	Light Emitting Diodes
LLP	Loss of Load Probability
MS	Mild Steel
NGO	Non Government Organizations
PDD	Depth of Discharge in the Daily Cycle
PD _{max}	Depth of Discharge
PR	Performance Ratio
PV	Photovoltaic
PV GAP	Global Approval Program for Photovoltaic
PVRS 5A	Lead-acid batteries for solar photovoltaic energy systems (modified automotive batteries).

RMS	Root Mean Squire
SHS	Solar PV Home System
SLI	Starting, Lighting & Ignition
SOC	State of Charge
V	Voltage
VRLA	Valve Regulated Lead Acid
Wp	Peak Watts- The Measurement of Electricity Produced By A Solar
	Generator at Noon on a Sunny Day, Under Predetermined Standard

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk ţ