
JVM COMPILER BACKEND FOR BALLERINA

INTERMEDIATE REPRESENTATION

Thangarajah Kishanthan

179329D

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

JVM COMPILER BACKEND FOR BALLERINA

INTERMEDIATE REPRESENTATION

Thangarajah Kishanthan

179329D

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

 i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

(T. Kishanthan)

The above candidate has carried out research for the Masters thesis under my supervision.

Signature: Date:

(Dr. Indika Perera)

 ii

ABSTRACT

Ballerina is an open source, strongly typed language for writing microservices and network

applications with main focus on solving enterprise integration requirements. The ballerina

compiler converts the ballerina source to set of ballerina byte code which is then executed by the

ballerina virtual machine (BVM). The BVM does not perform well for most of the CPU bound

operations due to its current design. This project focus on compiling ballerina source to JVM byte

code and will be executed by the JVM directly, which will solve the performance bottleneck at

BVM. This project also proposes a new compiler architecture, in which, the ballerina source code

is transformed to an intermediate representation which is a low level representation of the

ballerina program and it is used for generating the target JVM byte code. The performance of

JVM based compiler backend implementation against the current BVM was compared for certain

algorithms and programs. From the evaluation of the test results, it is found that the JVM target

outperforms the ballerina runtime by factor of 100 in certain scenarios. With this promising

results, the proposed new compiler architecture based on ballerina intermediate representation

and the JVM compiler backend can potentially be used as the replacement for current ballerina

compiler and runtime.

 iii

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my supervisor Dr. Indika Perera, for his

invaluable support throughout by advising and guiding me through the correct directions.

His expertise and continuous guidance are one of the key reasons for the success of this

research.

I should also thank Dr. Sanjiva Weerawarana (Founder and Chairman of WSO2) and Mr.

Sameera Jayasoma (Senior Director at WSO2), who encouraged me to complete this

research project. I am mostly thankful for my wife, my parents for their immense support

and patience at all the time. At last but not least, I'm thankful to all my colleagues at

WSO2, who helped me a lot in various ways throughout this research.

 iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

1. INTRODUCTION 1

1.1 Ballerina 1

1.2 Ballerina Compiler 3

1.3 Problem 4

1.4 Objectives 5

2. LITERATURE REVIEW 6

2.1 Ballerina Compiler 6

2.1.1 Frontend Phase 8

2.1.2 Optimizer Phase 10

2.1.3 Backend Phase 10

2.2 Intermediate Representation 11

2.3 Ballerina Intermediate Representation 14

2.3.1 BIR Instructions 18

2.4 JVM Class File 20

2.5 JVM Runtime Execution Model 21

2.6 JVM Instruction Set 24

3. METHODOLOGY 26

3.1 JVM Compiler Backend For Ballerina 26

3.2 AST to BIR Generation 27

3.3 BIR to JVM Target Generation 28

4. IMPLEMENTATION 29

4.1 Modeling Ballerina Types & Values 29

 v

4.1.1 Simple Basic Types 29

4.1.2 Structured & Behavioral Types 30

4.2 Modeling Ballerina Project 31

4.2.1 Modeling package 32

4.2.2 Modeling the class with the description 33

4.2.3 Generation of method(s) description and signatures 34

4.2.4 Generation of method body 35

4.2.5 Processing of method return value 36

4.2.6 Processing of method arguments 37

4.2.7 Processing of method basic blocks 38

4.2.8 Processing of basic block instructions 40

4.2.9 Constant Load Instruction 41

4.2.10 Move Instruction 42

4.2.11 Binary Operation Instructions 43

4.2.12 Add Instruction 43

4.2.13 Subtract Instruction 45

4.2.14 Multiply & Divide Instructions 46

4.2.15 Equal Instruction 46

4.2.16 Condition Based Instructions 47

4.2.17 AND Instruction 49

4.2.18 OR Instruction 50

4.2.19 Array Load Instruction 51

4.2.20 Array Store Instruction 51

4.2.21 Loops 52

4.2.22 Length Instruction 53

4.2.23 Processing of basic block termination instructions 54

4.2.24 Generation of class file content into binary a file (.class) 57

4.3 Updating Ballerina Build Command 57

5. RESULTS AND EVALUATION 59

5.1 Fibonacci Series 60

5.2 Merge Sort 61

5.3 Quick Sort 62

5.4 Matrix Multiplication 63

 vi

5.5 String Regular Expression Match 64

5.6 Evaluation of the results 65

6. CONCLUSION 68

6.1 Limitations 68

6.2 Future Work 69

6.2.1 Reference types support 69

6.2.2 Debugging support 69

6.2.3 Error and stack trace modeling 69

6.2.4 Concurrency modeling 70

6.2.5 Update BIR model with all language constructs 70

7. REFERENCES 71

 vii

LIST OF FIGURES

Figure 1.1 Textual view of a ballerina program 2

Figure 1.2 Graphical view of a ballerina program 2

Figure 2.1 Ballerina Compiler Architecture 7

Figure 2.2 Ballerina Compiler Frontend 8

Figure 2.3 Ballerina Compiler Backend 11

Figure 2.4 Example BIR in CFG 16

Figure 2.5 Java Class Structure 21

Figure 2.6 JVM Stack Frame 22

Figure 3.1 Proposed JVM Compiler Backend For Ballerina 26

Figure 4.1 Directory Structure of ballerina/http Module 32

Figure 4.2 Java Package Structure of ballerina/http Module 32

Figure 4.3 Java Method Signature Mapping 35

Figure 4.4 Java Method Signature Example 35

Figure 4.5 Example BIR 36

Figure 4.6 BIR Variable To JVM Index Mapping 37

Figure 4.7 Java Bytecode Generated 40

Figure 5.1 Fibonacci Test 60

Figure 5.2 Mergesort Test 61

Figure 5.3 Quicksort Test 62

Figure 5.4 Matrix multiplication Test 63

Figure 5.5 String Regular Expression Match Test 64

Figure 5.6 JProfiller based Profiled view of BVM 66

 viii

LIST OF TABLES

Table 2.1 Example LLVM CFG 14

Table 2.2 Example BIR 15

Table 2.3 BIR Constructs 16

Table 2.4 BIR Instructions 18

Table 4.1 Ballerina Basic Value Type Mapping 29

Table 4.2 Ballerina Structured & Behavioral Type Matching 30

Table 4.3 Example Ballerina Source To Java Class Mapping 33

Table 4.4 Basic Block Generation 38

Table 4.5 Constant Load Instruction Generation 41

Table 4.6 Constant Load Instruction Mapping 42

Table 4.7 Move Instruction Mapping 43

Table 4.8 Types of Move Instruction Mappings 43

Table 4.9 Add Instruction Generation 44

Table 4.10 Add Instruction Mapping 44

Table 4.11 String Concatenation Mapping 45

Table 4.12 Subtract Instruction Mapping 45

Table 4.13 Multiply & Divide Load Instruction Mapping 46

Table 4.14 Equal Instruction Generation 46

Table 4.15 Equal Instruction Mapping 47

Table 4.16 Condition Based Instruction Mapping 47

Table 4.17 Binary AND Instruction Generation 49

Table 4.18 Binary AND Instruction Mapping 50

Table 4.19 Binary OR Instruction Mapping 50

Table 4.20 Array Load Instruction Mapping 51

Table 4.21 Array Store Instruction Mapping 51

Table 4.22 Mapping of Loops 52

Table 4.23 Length Instruction Generation 53

Table 4.24 Length Instruction Mapping 54

Table 4.25 Basicblock Termination Types 54

Table 4.26 Call Instruction Generation 55

Table 4.27 Call Instruction Mapping 57

Table 5.1 Test System Configuration 59

 ix

LIST OF ABBREVIATIONS

Abbreviation Description

BVM Ballerina Virtual Machine

AST Abstract Syntax Tree

IR Intermediate Representation

BIR Ballerina Intermediate Representation

JVM Java Virtual Machine

LLVM Low Level Virtual Machine

CFG Control Flow Graph

 1

1. INTRODUCTION

The Introduction section is organized as follows. First, some basic concepts related to

ballerina language, ballerina compiler and how the compiler is currently implemented are

presented and then the problems in the existing compiler architecture are identified. At

the end, it explains the motivation for this research project and concludes the section with

objectives.

1.1 Ballerina

Ballerina [19] is a compiled and strongly typed programming language. It incorporates

both textual and graphical syntaxes to write networked applications and microservices

that exposes APIs. The main motivation for developing a new language is that it aims to

fill the gap currently exists between integration systems and programming languages

since it may require to write lot of boilerplate code with existing general purpose

programming language to integrate systems and endpoints. On the other hand, ballerina

provides first class support for well defined integration related constructs such as service,

endpoints, and message types (json, xml, etc) which can used to write code with few

lines.

Additionally, the graphical syntax of ballerina uses sequence diagrams to implement and

visualize the microservices and APIs. Figure 1.1 shows the textual view and Figure 1.2

shows the graphical view based on sequence diagrams that is generated for the same

ballerina program.

 2

Figure 1.1 Textual view of a ballerina program

The same ballerina program given in Figure 1.1 can be visualized using the ballerina IDE

plugin in Figure 1.2.

Figure 1.2 Graphical view of a ballerina program

 3

1.2 Ballerina Compiler

Ballerina compiler is responsible for compiling the ballerina source to executable code.

The compiler first transform the source to a tree representation known as the Abstract

Syntax Tree (AST) [1]. This is a common step followed by any compiler to parse and

transform source to a tree representation. This conversion to AST eases the operations

and validation on it such as syntax validation and semantics validation. Once its

validated, the AST is further analyzed to improve and remove any unwanted syntactic

sugar coating, known as the desugar and code analysis phase. And finally, the AST will

be converted to the ballerina bytecode, which is the executable form of the program.

A Ballerina program consists of one or more packages. A package consists of one or

more Ballerina source files (.bal) and the package is the unit of compilation. The

Ballerina compiler translates the source form of a package into its binary form. The

binary form consists of set by bytecode instructions which will be interpreted and

executed by the Ballerina runtime known as the Ballerina Virtual Machine (BVM). The

current implementation of Ballerina compiler and runtime is written purely in Java. The

current implementation which is based on Java serves as the reference implementation of

the Ballerina specification [20].

Since Ballerina aims to solve the integration and microservice related problem, there can

be various scenarios and use cases that will be written using Ballerina as a language.

When considering application integration and writing microservices, there can be lot

CPU and I/O bound operations that will be used by the programs written in Ballerina. For

example, when we write a message transformation integration pattern [2], there will be

lot of CPU bound operations that will be needed to do transforming the message content

to various formats. Therefore performance of Ballerina runtime will play a key role for

the success of the language and its adaptation among integration developers and

companies.

 4

1.3 Problem

Currently, compiling ballerina source files produces a binary file known as the ballerina

bytecode. This compiled binary file is platform independent and it is interpreted and

executed by the BVM runtime. The BVM is currently written in Java language. The

performance of current BVM implementation is more than 100 times slower than of Java

for most of the cases which have CPU bound operations. Since BVM is written as an

interpreter, it has a thick layer which runs on top of the JVM. This introduces the

significant performance drop compared to the Java. To solve this issue, the current BVM

can be made as a very thin layer therefore it does not introduce any performance

bottleneck. However there is a limit on how far we can proceed on this as BVM has to do

the interpreting and execute. One other solution is to move away from BVM and compile

ballerina source code to other compiled forms that can be executed by already available

runtimes or compiling directly to machine native code.

Therefore the next stage in the Ballerina compiler and runtime evolution is to generate

code that are directly understood by the underlying system and executed. This requires

the ballerina source to be converted into a representation that is closely related to a

machine code representation. However instead of directly generating machine code, the

source can be first converted into an intermediate representation that can be further used

for generating the target machine code.

In ballerina, the intermediate representation that will be generated for the source file is

called Ballerina Intermediate Representation (BIR). Once a BIR is generated, it can be

used for generating the target executable machine code. Since BIR will act as an

intermediate representation which is a low level representation of the Abstract Syntax

Tree (AST), it is independent from platform or operating system. Therefore any form of

target code can possibly be generated from the BIR. For example, the BIR can be

compiled to WebAssembly based bytecode [3] which can be executed by any web

browsers. Likewise, the BIR can be compiled down to native code which can be directly

executed.

 5

1.4 Objectives

When considering the performance aspect, compiling the BIR to native code seems to be

correct choice. However generating native code will incur lot of work such as

implementing a memory management module (garbage collector), implementing a http

library and other modules around it which is an important component needed for writing

Ballerina based microservices and APIs. Considering these aspects, following are the

identified objectives of this project.

 Generate compiled code for ballerina source which is directly executed by the

underlying system which will remove the performance bottleneck of BVM.

 Convert Ballerina abstract syntax tree (AST) to some form of intermediate

representation (IR), before the target executable code is generated. This will be

called ballerina intermediate representation (BIR).

o A portable, platform independent intermediate representation will make

the code generation process easy with low level IR.

o The BIR can be a common form for generating different target executable

code (JVM, Native, WebAssembly, etc).

 Implement JVM compiler backend for BIR which will replace BVM and execute

the ballerina program directly on JVM.

o Existing java based frameworks and libraries can be directly used with

JVM runtime.

o Memory management is handled with Garbage Collector of JVM.

 Analyze the performance of JVM compiler backend against the existing BVM

based runtime.

o Compare performance of CPU bound operations and algorithms on both

BVM based runtime and JVM backend.

o Also analyze the existing performance issues and bottleneck with the

BVM based runtime and propose possible improvements.

 6

2. LITERATURE REVIEW

The Literature Review section is organized as follows. First, it analyze the existing

compiler architecture of ballerina and the proposed new architecture. Then it analyzes the

Ballerina Intermediate Representation and its requirements. Then it focus on how JVM is

currently modeled, the structure of Java class binary format and how the JVM execute a

Java class binary file which consists of bytecode instructions which are needed when

modeling the BIR instructions to JVM instructions.

2.1 Ballerina Compiler

A program compiler is the tool that read, understand and transform a program source to

another format called the bytecode. The bytecode is an intermediate representation of the

source code and it will be most of the time, platform independent where the generated

bytecode can be run on any other platforms (operating system) without the need to

recompile the program again.

The ballerina compiler also is designed for the purpose of generating platform

independent bytecode. Initial designs of the compiler was very simple where it followed a

simple two phase of compilations. The compiler first reads and builds the abstract syntax

tree (AST) representation and them analyze the AST for semantic correctness.. To build

an AST representation, a compiler would need a parser that parses the given source code.

Using the ANTLR grammar library [5], ballerina team wrote the grammar for the parser,

which was then used to generate the source code parser. This parser was basically used

with generating the AST tree. Then the compiler make sure that the language follows the

correct semantics by analysis the generated AST.

Later with multiple features and language constructs being added, the above design of the

compiler was not good enough. The current implementation of ballerina compiler is

written in Java. As explained above, the current implementation of the compiler has a

 7

frontend (which does all the syntax and semantic validation and then generate the

ballerina compiled byte code) and a backend which is the ballerina runtime

implementation (BVM - Ballerina Virtual Machine) which is also written in Java. The

choice of Java was to do a reference implementation of the Ballerina specification and the

compiler and prove that the specification will work.

As the vision of the ballerina language to have fully fledged support for writing

programs, the compiler design has to be further improved. The next step of compiler

architecture evolution is to improve startup time with consuming less memory usage

compared to the current Java based reference implementation. As with any modern

language compilers, the ballerina compiler will also contain pipeline architecture with

three separate compilation phases. The latest design of the ballerina compiler contains

multiple phases where each of the phase is designed for a dedicated task in compilation

the source as illustrated in Figure 2.1.

 Figure 2.1 Ballerina Compiler Architecture [21]

Each of the phase lowers the source representation of the ballerina program to a more

abstract representation with basic constructs therefore it becomes easy for the next phase

inline to lower it further. Each phase makes sure that no information is lost from source

when generating the target executable code. The separation of phases in compiler

 8

architecture is inspired from the LLVM compiler architecture [6] [9]. Let’s look at these

compiler phases in detail.

2.1.1 Frontend Phase

The front-end phase verify the syntax and semantics of the source and validate it. In this

phase, the source will be first converted into a tree representation known as the Abstract

Syntax Tree (AST) in order to ease the operations and validation on it. The validations in

the front-end phase mainly focus on verifying first the syntax and then the semantics of

the program. Various components such as type checker, semantic analyzer, symbol

creator, etc at front end phase work together with validating the program for correctness

as below.

Figure 2.2 Ballerina Compiler Frontend

The high level passes using the above mentioned components, that compiler frontend

undergo when compiling a ballerina source file, are as follows.

1. Lexical analysis and parsing

2. Semantic analysis

3. Code analysis

4. BIR generation 

Each of the phase does one or more tasks in order to compile the source code correctly or

fail when there is an error. Each phases and their tasks are examples as below.

 9

Lexical analysis and parsing phase basically checks for the correct syntax with the source

code and fails the compilation in the case of systemic errors found. It also builds the the

AST tree that is used in the next step for analysis.

In order to analyse and parse a source code, a compiler needs to have a grammar defined

[22]. A grammar is the base for form the language constructs according to the syntax and

rules defined. Ballerina language grammar was written using the commonly and widely

used ANTLR tool and the tool was used to generate the parser and the lexical analyser

according the grammar defined. The parser will take the source code as input and

basically parse (fire events) with the use of ANTLR event listeners which would then

generate the AST eventually.

Semantic analysis is the semantic error analysis phase where the complete source code is

analyzed for correct semantics. It mainly checks the symbols (variables, functions,

structures. etc) and whether their defined in the correct scopes (block scope, functions

scope, package scope, etc) and types (int, string. etc) and their correctness according the

language definitions.

Code analysis phase basically checks correctness of the code such as unused imports,

unreachable code segments, not returning functions. Etc. Additionally this also performs

removal of any syntactic sugar that is supported at language level and remove them from

the generated AST to generate a common structure that is used for code generation phase

next.

The AST undergoes multiple passes with these components and gets enriched with

information such as types, expressions, symbol definitions, etc along the way. After all

the passes, the AST will be a validated tree representation of the source. The AST is more

closer to the source, which will be harder for any machine to understand as it will contain

too much information such as syntactic sugar [7]. And it will be harder to generate any

low level machine code from the AST due to its nature. Therefore the AST now has to be

converted into a more low level intermediate representation, which should be closer to

 10

the machine readable format. This is where the BIR generation comes into the picture.

The BIR is considered closer to a machine readable format (such as a LLVM IR [8]). The

conversion of ballerina AST to BIR will be the last pass in the front-end phase. The BIR

contains only the basic set of language constructs such as while loops, variable

declarations, if-else statements, function calls, etc. This makes it easy for generating any

target executable as most of these basic constructs will be very similar in any of the target

executable.

2.1.2 Optimizer Phase

The BIR version of the ballerina source will be fed into the optimizer phase of the

compiler. In this phase, the optimizer will make multiple passes over the BIR and

possibly optimizing it further by removing or replacing some instructions with more

efficient instructions and avoiding time consuming paths, etc. This phase is most likely

an analyzing phase as the BIR has to be refined and optimized further. The BIR is

modeled as a control-flow-graph (CFG). Therefore using control flow algorithms and

data flow analysis, the BIR can be further processed and optimized.

2.1.3 Backend Phase

This is a final phase of the compiler which converts the optimized BIR that comes from

the optimizer phase to a low level target executable code. This phase will process and

traverse through the BIR instructions and generate the target backend instruction set. The

target executable generation can vary on the requirement.

 11

Figure 2.3 Ballerina Compiler Backend [21]

If the requirement is to generate the native executable on a target platform, then the

backend phase has to use correct set of tools and logic to generate the native code.

Likewise, there can be more than one target backend for ballerina compiler as given in

the above. As described from the above diagram, we can create different targets for the

BIR. The reference implementation which is based on the BVM will generate the “.balx”

(ballerina byte code). The LLVM based target will generate native executable based on

the OS. The JVM based compiler backend will generate the java bytecode (.class files)

that can be executed by JVM.

2.2 Intermediate Representation

When a programming language evolves, it becomes more complex with syntax, and

semantic rules. Therefore, all most all the modern compilers convert the source program

into an intermediate representation (IR) [11] which contains the basic programming

constructs, before compiling does to an executable format. This makes the target code

generation easy for the compilers as the intermediate representation are generally low

level, which are closer to machine understandable format than the AST of the program

 12

source, which is more closer to the source. An IR of a program is generally platform and

hardware independent. Therefore it becomes easy for generating the target code by

reading and processing this IR. For example, JVM bytecode [10] can be considered as an

IR for the Java program and it is more low level and close to machine readable format.

The JVM bytecode is also machine independent and it can be used with any platform and

hardware. This IR is understood by the JVM and executed at the target machine.

An IR is also independent of the source language. Therefore AST’s from different types

of languages can use the same IR as the intermediate state in the compiling phase. For

example, the LLVM IR [9] is a uniform IR and any language can be converted to this IR

which can be further compiled down to the native code. Similarly, the JVM bytecode also

independent of the source therefore any programming languages can use JVM bytecode

as their IR, which can be executed by the JVM runtime. The advantages of having a an

IR which is independent of source programs (front-end) and target compiled executable

(back-end) is that various different languages can be converted to the same IR and from

the IR, various target executable can be generated. For example, for the same front-end,

we can generate multiple backend based on the requirements.

An intermediate representation typically consists of basic language constructs only, such

as, variable declarations, assignments, conditional branching, etc. And they are usually

generated as a structured model. This is known as the control flow graph, which describes

how the program control flow along various paths based on various conditions.

Performing analysis and optimization on graph based model can be done using various

techniques and algorithms such as loops detection, loop reduction, invariant code

detection, code weight reduction, etc. Also the variables and values in an IR is

represented either with stacks or registers. For example, the JVM bytecode IR and

WebAssembly IR [3] uses stack based representation. LLVM IR is an example for

register based IR. The main difference between a stack based IR and register based IR is

that, when we want to execute an instruction, we will have to load the values (operands)

on to the stack first, perform the operations and store the result back to another memory

location. However with register based approach, the operations can be directly carried out

 13

on the registers which is usually the CPU registers, however we will need to know the

register index locations. Both these implementation has their own advantages as

explained in this paper [12].

As explained earlier, the IR is modeled as control flow graph (CFG), where the nodes are

called basic blocks and the edges of the graph are how flow is traversed from one basic

block to other basic blocks. A basic block is usually constructed by the compiler, which

contains set of instructions that a grouped together as a single entity and it makes sure

that all the instructions in the basic blocks executed completely. The execution of a basic

block should complete full and once completing, it will traverse to the next basic block or

terminate the execution if it was a method return instructions. The basic block execution

could be interrupted only in the event of a system failure or hardware faults. Table 2.1

describes an example CFG for LLVM IR with some basic blocks. It also describes the

conditional branching among basic blocks.

 14

Table 2.1 Example LLVM CFG

Example Source Example IR as a CFG

int b = 12;

if (a) {

 b++;

}

return b;

In this example, there are three basic blocks created at the IR level. Each of them has one

or more instructions grouped together. Some of the basic blocks have branching and

traverse instructions as the last instruction, which points to other basic blocks that

continues the flow.

2.3 Ballerina Intermediate Representation

The ballerina intermediate representation is designed as a control flow graph using

register based memory model for variable storage. The model of BIR is inspired from

LLVM IR and SIL [22] based models. The functions in BIR represents the functions

from the ballerina source and it's made up of one or more execution blocks known as the

basic blocks. Each basic block consists one or more instruction which are the smallest

unit of execution. Table 2.2 describes an example of a BIR that gets generated for

ballerina source.

 15

Table 2.2 Example BIR

Ballerina Source Example BIR

function foo(int a) returns int {

 int b = 12;

 if (a > 0) {

 b++;

 }

 return b;

}

function foo(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // local

 int %3; // temp

 int %4; // temp

 int %5; // temp

 boolean %6; // temp

 int %7; // temp

 int %8; // temp

 int %9; // temp

 int %10; // temp

 bb0 {

 %3 = const_load 12;

 %2 = %3;

 %4 = %1;

 %5 = const_load 0;

 %6 = greater_than %4 %5;

 branch %6 [true:bb1, false:bb2];

 }

 bb1 {

 %7 = %2;

 %8 = const_load 1;

 %9 = add %7 %8;

 %2 = %9;

 goto bb2;

 }

 bb2 {

 %10 = %2;

 %0 = %10;

 goto bb3;

 }

 bb3 {

 return;

 }

}

 16

Figure 2.4 Example BIR in CFG

We can see that BIR is very similar to LLVM IR that was explained previously. Since

BIR is a CFG, data flow and control flow analysis can be done on it to further optimize

the graph. Each basic block contains set of instructions that are grouped such that they are

executed together before the execution branches to another block. Termination of a basic

block is usually a branching to another basic block or returning from the current function.

At high level, BIR model will have the constructs described in Table 2.3.

Table 2.3 BIR Constructs

BIR Construct Description

Package A package has a collection of functions with an organization

 17

name and a package identifier.

Function A function has a set of basic blocks and s set of local variables

with the visibility (public, private) flag along with the function

identifier.

BasicBlock A basic block has a set of instruction and a terminator along

with a basic block identifier.

Name Name is basically the identifier used by all the constructs in the

BIR model

InstructionKind The various types of instructions that are supported by the BIR.

For example, Move, Call, Branch, Add, Equal, Greater_Than,

etc.

VariableKind Various types of variables supported by the BIR such as local,

function argument, function return, and temporary (function

local) variables.

VariableDeclaration This represents the definition of a variable within a function. It

contains the kind of the variable, and a type along with an

identifier.

VariableReference This represents a reference to other variables within the

function. It contains the kind of the variable and type along the

pointer to the variable it refers.

Types The different types that are supported in BIR model currently.

The types are, int, string, boolean, nil, array, etc.

Operands The variable references that is used with each instruction as

operands for execution.

Instructions The smallest unit of execution in BIR. Each instruction has a

 18

kind and one or more operands associated with it. Some

instruction also will have a reference to the basic block that it

may need for traversing.

2.3.1 BIR Instructions

The instruction set of BIR describes how the program should get executed. Using these

instruction set, the target executable code can be generated. The instruction set are

basically set of low level instruction that are of machine readable format. Ttable 2.4

describes each instruction and their purpose.

Table 2.4 BIR Instructions

Instruction Description

GOTO Jumping to another basic block given as the operand

CALL Invoking a method

BRANCH Branching based on condition true or false to other basic

block

RETURN Return from current method

MOVE Store the value to a variable at the given index location to

the index specified

CONSTANT_LOAD Load the constant value to the given index.

ADD Add two integer values in the given indexes and store the

result in the index specified

SUB Subtract two integer values in the given indexes and store

 19

the result in the index specified

MUL Multiply two integer values in the given indexes and store

the result in the index specified

DIV Divide two integer values in the given indexes and store the

result in the index specified

EQUAL Compare two values for equality and store the result as a

boolean value

NOT_EQUAL Compare two values for not equality and store the result as a

boolean value

GREATER_THAN Compare value at first index location is greater than of value

at second index and store the result as a boolean value

GREATER_EQUAL Compare value at first index location is greater than or equal

of value at second index and store the result as a boolean

value

LESS_THAN Compare value at first index location is less than of value at

second index and store the result as a boolean value

LESS_EQUAL Compare value at first index location is less than or equal of

value at second index and store the result as a boolean value

NEW_ARRAY Create a new array with given type

ARRAY_ACCESS Access the value store at index in the given array

ARRAY_STORE Store a value at a given index location in the array

AND Boolean AND conditional check and store the result as a

boolean

 20

OR Boolean OR conditional check and store the result as a

boolean

All the above instructions and constructs are important to understand as it will be heavily

used by the JVM compiler backend to properly map the BIR instructions to JVM

bytecode instructions and JVM constructs.

2.4 JVM Class File

The Java class file is a binary representation with set of bytecodes and other meta

information that are used by the JVM to execute the file. This is known as the compile

code of a JVM based language and since it is executed by the JVM, it is hardware and

operating system independent. This makes the class file portable across any system that

the JVM can run. A java class file contains the format as below.

 21

Figure 2.5 Java Class Structure

When generating a java class file manually, the format should adhere to the above which

is mandated by the JVM runtime specification. There are various helper tools available

such as ASM [23] that provides ways to generate and manipulate Java bytecode

generation [14]. The next thing to understand is that how JVM bytecode are executed by

the JVM.

2.5 JVM Runtime Execution Model

The JVM runtime follows a stack based execution model [15]. Each JVM level thread at

runtime is given a stack of frames. The frames are the execution unit which gets created

 22

for each method execution and stored in the stack. The major components found in a

stack frame, which are used when a method is executed, is described in Figure 2.6.

Figure 2.6 JVM Stack Frame

A frame consists of a local variable array and an operand stack. Additionally, it also

holds a pointer to the constant pool from the class file. For each method invocation, a

new frame is created by the JVM and when the method execution is completed, the stack

frame will be destroyed. The maximum size of the local variable array and the operand

stack will be calculated at compile time by the Java compiler. However, if the source

language is not java, then the size of the local variable array and the operand stack has to

be calculated by the source language compiler which produces the target JVM bytecode.

At any point, there will be only one stack frame executed by the JVM, which is known as

the current stack frame. If the execution of the current frame is passed to another method

 23

before completion, then the current stack frame will be put onto the JVM stack which

holds all the frames. When a new method is invoked from current method, then a new

frame gets created and it becomes the current active frame in execution. Likewise, the

frames gets created and destroyed during the execution of methods.

The local variable array of each frame is used to store the values that are used within the

frame execution scope. The array is ordered according to the index which starts from

zero. The size of each element in the array is the size of java integer. Therefore JVM

types such as int, boolean, byte, char, float can be stored at a single location in the array.

However for types such as long and double, two consecutive array locations will be

needed as their size exceeds the integer size. For these types long and double, they are

accessed using the lower index value of the two consecutive index. For other types, since

they will occupy only one array location, they are access using the same index location

that they were assigned. The arguments of a method, or the values of the argument are

typically stored in the initial location of this local variable array. For example, if the

method access two arguments of type long and boolean, then the array index “0” will be

used to get the value of the first argument of type “long” and array index “2” will be used

to get the second argument which is of type boolean. We can note that we have skip the

index by one, to get the second argument here because of the first argument type being

“long”. This information is needed when implementing the JVM compiler backend as

possible the Ballerina “int” type will be represented using JVM “long” type according to

the specification [17]. Another point to note that, if the method invocation is part of an

object instance invocation, then the first index location of this array will typically contain

the reference to the object instance itself.

The operand stack of a stack frame is used for loading the operand values of instruction

set. The values can be constant values or values of variables that are stored in the local

variable array. When instructions are executed by the JVM, the required operands or

rather the values for the instruction will be loaded to this operand stack and the

instruction will use them to perform the execution. Once operating on the operands, the

result will be pushed back onto the stack. For example, the integer multiply instruction

 24

“imul” pops two values at the top of the stack, perform the multiplication and will push

the result to the top of the stack. Therefore before this instruction is executed, the two

values has to be pushed onto that stack. If resultant the value of an instruction needs to be

used, then it has to be stored back to the local variable array.

2.6 JVM Instruction Set

The JVM instructions [17] are called bytecode as they are of size one byte. Since one

byte is used to represent all the bytecodes, there can be maximum of 255 instructions at

JVM level. Each instruction contains an opcode and optionally, set of operands. These

operands are used by the opcode operation to load or store values from/to local variable

array form/to operand stack. However most of the instructions at JVM level has no

operands and they directly operate on values loaded onto the stack. For readability aspect,

the instruction set are give mnemonics based representation. For example, “iload”

instruction loads an integer value on to the stack. The mnemonic letter “i” describes that

this instruction operate on type integer. Likewise, there are meaningful letters based on

types, are given to most of the instruction on understanding its operations. If the type

mnemonic is not given, then those instructions operate as common instruction on any

type.

The instruction set of JVM can be divided based on their operation types. The most

common operation are the load and store instructions which load values from local

variable array and store the values from operand stack back to the local array. Some load

instructions load values from local variables and some load values as constants.

Arithmetic related instructions such as “iadd”, “isub”, “idiv”, “iand” etc operate on

typically two operand values and push the result to the top of the stack. The comparison

instructions such as “lcmp”, “fcmp”, “dcmp”, etc compare the values on to top of the

stack for specific operation type, such as less than, greater than and pushes the result as a

boolean flag to the top of the stack. Type conversion instructions such as “i2l”, “f2l”, etc

operate on either narrowing the type and broadening the type. The value will be

 25

converted to the target type which can result in information being lost, if it is a narrowing

conversion or information is not lost if it is the case of widening conversion. Object

creation and manipulation related instructions such as “new”, “newarray” operate on

creating class instances of object or arrays.

Branching and conditional related operations such as “ifeq”, “ifne”, etc compares the

value on top of stack for a specific value, such as 0 and branches to the target instruction

code. Similarly, comparison operations such as “if_icmplt”, “if_icmpgt”, “if_acmpeq” etc

compares the two values on top of the stack, for condition such as less than, greater than,

and branch to the target instruction pointed by the instruction pointer operand. Method

invocation related instructions are special type of instruction which the JVM does another

method invocation. For instructions such as “invokevirtual”, “invokespecial”, the JVM

does an invocation in the instance level methods. The “invokestatic” instruction invokes

the static method in a class based on the given name and method signature. The method

return instructions such as “lreturn”, “areturn” will return from the execution of a method

with the return value being on the top of stack.

These instruction and how they operate are important information for JVM compiler

backend target as the correct instruction or collection of instructions has to be used when

mapping the same with JVM compiler backend for ballerina.

 26

3. METHODOLOGY

The Ballerina Intermediate Representation is considered low level compared to the

ballerina source. As explained in the compiler architecture, there can be multiple backend

for the same BIR representation. However considering the advantages that JVM runtime

will offer, such as, inbuilt garbage collection, support for various high performing

libraries and frameworks such as NettyIO based HTTP framework, Just-In-Time

compilation of the Java bytecode. etc, mapping BIR to Java Intermediate Representation

would be the ideal approach to follow. This will be known as the JVM based compiler

backend for BIR.

3.1 JVM Compiler Backend For Ballerina

The JVM compiler backend would be responsible for generating the JVM bytecode for

ballerina source. This JVM backend can be completely written in ballerina itself therefore

it becomes easy when effort to write the ballerina compiler in ballerina itself. There will

be many components that will be in the JVM backend. Figure 3.1 describes these

components and how they will work together as a compiler backend.

Figure 3.1 Proposed JVM Compiler Backend For Ballerina

 27

The BIR will be read by the BIR reader which will parse the BIR graph and generate the

model representation of it. The BIR model will be then fed into the JVM code generator

which will map the BIR constructs (packages, variables, basic blocks, instructions) to the

JVM bytecode representation. When doing the mapping, the code generator tool will use

the ballerina runtime library that will hold the runtime mapping of all types and values.

There will be three major phase in compiling the ballerina source to Java bytecode. First

the source has to be converted into an AST. The AST should have all the information that

the next phase would need. The next phase would convert the given AST to a BIR. This

is where the AST will get lowered to even low level of instruction set. The BIR should

capture all the necessary information for the next phase to use. The BIR will then be

converted to the target java byte code. This is the phase where the java runtime

implementation should be linked with the BIR model therefore the correct execution code

is generated for the BIR.

3.2 AST to BIR Generation

Ballerina compiler transforms the source into AST which is a tree based representation of

the source. However BIR is considered more low level than of AST and it will contain

low level details about the program. As explained previously, the BIR contains of

functions, variables, operations in the form of BIR instruction which are grouped together

by basic blocks. This phase could be considered as an extended phases of the compiler

frontend. Since currently the compiler frontend is written in java, this phase of AST to

BIR generation also is written in java. Using the AST tree node structure, the AST model

will be mapped to the BIR model.

For each of the functions in AST, the required variables (local, arguments, return) will be

calculated and defined in the BIR and then the function body of each function will be

processed and the relevant instructions and basic blocks will be generated. And finally,

the generated BIR will be written as a binary file which will mark the end of this phase.

 28

3.3 BIR to JVM Target Generation

BIR is an intermediate form of the ballerina source however it is more closer to the low

level machine code. It is platform/runtime independent and contains all the required data

to generate a target executable backend.

As explained in the previous section, The BIR will be written to its binary form after the

AST to BIR generation phase. The binary file will consists the BIR model for a given

ballerina source file. This binary file can now be read and the further converted to the

target executable code. The reading and converting of BIR is written completely in

ballerina itself with aim to compile everything to a target executable code. This is needed

for the bootstrapping process of converting ballerina compiler and runtime which can be

written in ballerina itself. When we read the BIR binary content and then populate the

BIR model in ballerina, the same model or the Java model that was used in the AST to

BIR generation phase needs to be created at this phase as well. However the most

important task with JVM target is how to model the ballerina type system. Once the type

system is modeled, then the ballerina project and the constructs such as modules, sub-

modules, imported modules, functions, basic blocks, basic block instructions has to be

modeled and mapped to Java level constructs. One these constructs are modeled, the

build command has to be updated on how an executable java archive and classes needs to

be generated. The next section describes about the implementation details on how each of

the ballerina and BIR constructs are mapped to java and how it was implemented.

 29

4. IMPLEMENTATION

The implementation section explains about how BIR constructs were modeled in JVM

level and how each instruction from BIR was mapped to JVM level instructions in

generating the bytecode.

4.1 Modeling Ballerina Types & Values

The most important task in generating the target java based bytecode using JVM

compiler target is how to model the ballerina type system at JVM level. This includes

both types and values from ballerina type system and how it should be mapped to JVM

types and values. The various types in ballerina type system and how they were mapped

to JVM type system is described in the following section in detail.

4.1.1 Simple Basic Types

The types `int`, `float`, `string`, `boolean`, `byte` and `nil` are called simple basic types.

Mapping these types to Java is given in Table 4.1.

Table 4.1 Ballerina Basic Value Type Mapping

Ballerina Basic Type Java Type

int long

float double

string java.lang.String

boolean boolean

byte byte

nil null

 30

4.1.2 Structured & Behavioral Types

The types `map`, `arrays`, `records` are called structural types and `objects` is a

behavioral type. Table 4.2 presents the proposed approach to take when modeling

structured & behavioral type with JVM target. This modeling will be done as the future

addition to this project.

Table 4.2 Ballerina Structured & Behavioral Type Matching

Structured & Behavioral

Types

Java Type Model

map BallerinaMap (which could extend from HashMap to

support ballerin level inbuilt functions)

arrays For each basic types, we can have a array representation

(int[] values -> BIntArray(long[] values)). And for value

based arrays, we can have a general BValueArray

representation (Foo[] values -> BValueArray(BValue[]

values)).

records Can extend from BMap. However as an optimization on

closed records, we can code generate the Java class

representation of the record, which could extend form

BValue, where each filed becoming class instance

variables.

objects

Can be represented using Java class and it where object

fields becoming java class instance variables.

object functions Each function can be modeled as a separate class which

has access to it enclosing object instance. A function class

representation can implement from an interface

 31

(BFunction) that has a single method called invoke(). The

ballerina function arguments can be class level variables

and the return value also can be class level variables.

4.2 Modeling Ballerina Project

Once the types and values are modeled, next task is to model the ballerina projects and its

structure at JVM level. A JVM package consists of one or more JVM class files. A JVM

class file needs a class name and a constructor method, at minimum, in order for it to be

used by other class and invoked. Once we have the class name and the initializing

method, the rest of the work is to generate the other class level methods and variables.

However the most important difference between BIR model and JVM model is that BIR

is a register based approach for variables load and store in method local registers, where

as JVM is a stack based machine where variable are load and store in method local stack

known as the operand stack. Therefore the important step in mapping BIR instructions is

how do we map the variable and their index which is of register based approach to

variables and index which is of stack based approach.

When mapping the BIR model to JVM class files, the below steps were followed.

1. Modeling package

2. Modeling the class with the description

3. Generation of method(s) description and signatures

4. Generation of method(s) body

5. Generation of class file content into binary a file (.class)

Following section provides detail on each of the majors steps in modeling the BIR to java

packages.

 32

4.2.1 Modeling package

Ballerina package system follows a very similar approach on java packages. A module

consists of one or more ballerina source files which can be under various sub directories

in a module. For example, the ballerina/http module consists a directory structure as

given in Figure 4.1.

Figure 4.1 Directory Structure of ballerina/http Module

In Figure 4.1, we can see that there are different subdirectories under http where each

contain the related .bal source files. The approach we can follow in converting the

module structure to a java packages is, treating the root organization name (ballerina/http

in this case) as the root package at java and treat the rest of the sub directories as sub

packages in java level.

Figure 4.2 Java Package Structure of ballerina/http Module

|____ballerina

| |____http

| | |____websocket

| | |____auth

| | |____http2

| | |____resiliency

| | |____redirect

|_|_|____caching

|____src

| |____main

| | |____java

| | | |____ballerina

| | | | |____http

| | | | | |____websocket

| | | | | |____auth

| | | | | |____http2

| | | | | |____resiliency

| | | | | |____redirect

|_|_|_|_|_|____caching

 33

After defining the package structure, we can follow the approach of creating separate

class files for each of the ballerina source file (.bal). The ballerina source file name can

be used for the class file name. Therefore when we convert the ballerina/http module in to

a java project, the generated packages structure will look like described in Figure 4.2

4.2.2 Modeling the class with the description

The ballerina source file name was used as the class name and also as the binary class file

name as well. This phase of the implementation uses an approach to create a default

constructor for the class which only initializes the class instance, whereas a future

implementation could create a constructor based on some further processing of the

ballerina source file and create a constructor or multiple constructor with initializing class

level variables and their default values, etc. For example, if the ballerina source file name

is “httpRequest.bal”, then a class file with the name “httpRequest.class” will be created

with a default constructor. Each functions is a ballerina source can be mapped to Java

class level methods. Table 4.3 shows how a ballerina source file is mapped to BIR and

then how it will be mapped to a Java class file.

Table 4.3 Example Ballerina Source To Java Class Mapping

Example in Ballerina Example in BIR

function foo (int a) returns int {

 int b = a + 10;

 return b;

}

function foo(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // local

 int %3; // temp

 int %4; // temp

 int %5; // temp

 int %6; // temp

 bb0 {

 %3 = %1;

 %4 = const_load 10;

 %5 = add %3 %4;

 %2 = %5;

 %6 = %2;

 34

 %0 = %6;

 goto bb1;

 }

 bb1 {

 return;

 }

}

Example in Ballerina (test.bal) Example in generated Java class

function foo (int a) returns int {

 int b = a + 10;

 return b;

}

public class test {

 public test() {

 }

 static long foo(long var0) {

 long var6 = 10L;

 long var8 = var0 + var6;

 return var8;

 }

}

4.2.3 Generation of method(s) description and signatures

A Java method signature contains the following details

1. Access flags of the method

2. Name of the method

3. Description of the method

4. Method signature

5. Exceptions that the method would throw.

Ballerina functions has two access modifiers, module private and public. As we are

mapping ballerina modules to java package, the ballerina package level access modifier

can be mapped. And the public function can be public methods in the java class. Since

there can be only instance of the class for a ballerina file, the approach is to generate

static methods for each function in a ballerina source file. Figure 3.2 shows how a

 35

ballerina function with the given signature gets mapped and generated to java level

method with given method signature.

public function sort(int[] arr, int low, int high) returns int[] {

 // function body

}

public static long[] sort(long[] var0, long var1, long var3) {

 // method body

}

Figure 4.3 Java Method Signature Mapping

Using the Java bytecode representation, the function described in Figure 4.3 will have a

Java level method generated given in Figure 4.4.

Figure 4.4 Java Method Signature Example

In here, the signature “J” is used by Java bytecode to represent `long`. Likewise, the Java

method signature can be generated using the ballerina type and value mapping and model

which is defined.

4.2.4 Generation of method body

This is the most important step as it involves generating the method body. This step can

be further broken down as below.

1. Processing of method return value

2. Processing of method arguments

3. Processing of method basic blocks

4. Processing of basic block instructions

public static long[] sort(long[], long, long);

 descriptor: ([JJJ)[J;

 flags: ACC_PUBLIC, ACC_STATIC

 36

5. Processing of basic block termination

4.2.5 Processing of method return value

Let’s take the BIR example as given in Figure 4.5. This function takes a integer argument

and returns integer. The BIR model represents the return index as the first variable in its

list of method local variable. However for Java bytecode, the return index is only needed

at the end of method processing and the value to be returned should be loaded to the stack

as the top element. Therefore when mapping the BIR return var index to Java bytecode,

we have to calculate the index at the beginning of the BIR function body processing as it

is the first element. And at the end of the function processing, this index of the return

variable should be used to load the actual value of the return variable onto the stack.

function foo(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // local

 int %3; // temp

 int %4; // temp

 int %5; // temp

 int %6; // temp

 bb0 {

 %3 = %1;

 %4 = const_load 10;

 %5 = add %3 %4;

 %2 = %5;

 %6 = %2;

 %0 = %6;

 goto bb1;

 }

 bb1 {

 return;

 }

}

Figure 4.5 Example BIR

 37

4.2.6 Processing of method arguments

Once we have processed the return value, the rest of the local variable in the method

body represents the method arguments and the method local variables used. When

mapping integer or float type arguments to java long or double, we have to use two

consecutive index [17] values as per the JVM bytecode specification. For the rest of the

types, we can use a single index value to map with argument index value.

Mapping BIR variable declaration to JVM index value is is represented using the

ballerina object given in Figure 3.4, which models a mapping relationship with BIR

variable declaration to JVM index.

type BIRVarToJVMIndexMap object {

 private int localVarIndex;

 private map<int> jvmLocalVarIndexMap;

 function add(bir:VariableDcl varDcl) {

 string varRefName = getVarRefName(varDcl);

 jvmLocalVarIndexMap[varRefName] = localVarIndex;

 match varDcl.typeValue {

 bir:BTypeInt => {

 localVarIndex = localVarIndex + 2;

 }

 any => {

 localVarIndex = localVarIndex + 1;

 }

 }

 }

 function getIndex(bir:VariableDcl varDcl) returns int? {

 string varRefName = getVarRefName(varDcl);

 if (!(jvmLocalVarIndexMap.hasKey(varRefName))) {

 return -1;

 }

 return jvmLocalVarIndexMap[varRefName];

 }

};

Figure 4.6 BIR Variable To JVM Index Mapping

 38

This mapping object internally keep a ballerina map of integer values. Whenever a new

variable declaration is added to the map, it checks whether the type of its `int` and

increment the current variable index by two, else, for any other type, it increments by

one. Once the variable is added to the map along with its calculated index, it can be later

required to get the index value. Most importantly, there is a new instance of this map for

each of the function is the BIR model as each method in the JVM will have its separate

invocation stack with index values.

4.2.7 Processing of method basic blocks

A basic block in BIR consists a group of executable statements. The end of a basic block

is either a branch or goto statement to other basic blocks or return/termination statement.

Therefore as a general model to handle goto in JVM side, we can create separate JVM

labels for each basic block therefore the branching can be handled for one basic block to

another.

Table 4.4 describes an example ballerina program which has conditional branching using

the if-else statement.

Table 4.4 Basic Block Generation

Ballerina source BIR

function foo(int a) returns int {

 int b = 5;

 if (a < 4) {

 b = 7;

 } else {

 b = 9;

 }

 return b;

}

function foo(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // local

 int %3; // temp

 int %4; // temp

 int %5; // temp

 boolean %6; // temp

 int %7; // temp

 int %8; // temp

 int %9; // temp

 bb0 {

 39

 %3 = const_load 5;

 %2 = %3;

 %4 = %1;

 %5 = const_load 4;

 %6 = less_than %4 %5;

 branch %6 [true:bb1, false:bb2];

 }

 bb1 {

 %7 = const_load 7;

 %2 = %7;

 goto bb3;

 }

 bb2 {

 %8 = const_load 9;

 %2 = %8;

 goto bb3;

 }

 bb3 {

 %9 = %2;

 %0 = %9;

 goto bb4;

 }

 bb4 {

 return;

 }

}

There are five basic blocks created for this function. Even though this BIR model is not

optimized (as there are lot of unwanted statements which could have been removed), it

has all the required statements for generating the target executable code. Therefore when

modeling these basic blocks in JVM, we can use JVM labels for each of the basic block

using the basic block id with enclosing function name as the label id. The generated JVM

bytecode for above program will be like below and the highlighted section (goto

instruction) are the labels that gets created for basic blocks.

 public static long foo(long);

 0: ldc2_w #11 // long 5l

 3: lstore 4

 5: lload 4

 7: lstore_2

 8: lload_0

 9: lstore 6

 11: ldc2_w #13 // long 4l

 40

 14: lstore 8

 16: lload 6

 18: lload 8

 20: lcmp

 21: iflt 28

 24: iconst_0

 25: goto 29

 28: iconst_1

 29: istore 10

 31: iload 10

 33: ifgt 39

 36: goto 50

 39: ldc2_w #15 // long 7l

 42: lstore 11

 44: lload 11

 46: lstore_2

 47: goto 61

 50: ldc2_w #17 // long 9l

 53: lstore 13

 55: lload 13

 57: lstore_2

 58: goto 61

 61: lload_2

 62: lstore 15

 64: lload 15

 66: lstore 17

 68: goto 71

 71: lload 17

 73: invokestatic #24 // Method java/lang/Long.valueOf:(J)Ljava/lang/Long;

 76: areturn

Figure 4.7 Java Bytecode Generated

4.2.8 Processing of basic block instructions

As explained above, each basic has a group of statements or rather set of instructions,

where, each of them has to be property code generated to the target executable. The set of

instructions supported by BIR is already mentioned and for this project effort following

instructions were explored to support the test scenarios.

 41

4.2.9 Constant Load Instruction

Constant load deals with how to define new literal values (eg : int a = 12;). Therefore

when there is a new variable definition with a literal value on the right hand side, then a

constant load instruction will be generated. Let’s looks at an example as below.

Table 4.5 Constant Load Instruction Generation

Ballerina source BIR

function foo (int a) returns int {

 int b = 10;

 return b;

}

function foo(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // local

 int %3; // temp

 int %4; // temp

 bb0 {

 %3 = const_load 10;

 %2 = %3;

 %4 = %2;

 %0 = %4;

 goto bb1;

 }

 bb1 {

 return;

 }

}

We can see that for the variable definition in ballerina source (int b = 10) there is a

constant load instruction at BIR (%3 = const_load 10).

However when we try to generate the above in Java byte code, we have to map the

constant_load instruction to a similar one in JVM. As mentioned previously, BIR is a

register based machine where variables are store and loaded from method local registers.

Since JVM is based on stack based architecture, we would need to generated the index

and store the constant values. For example, LSTORE instruction in JVM requires the

index on where to store value from the current operand stack.

 42

Therefore when we consider a single constant_load instruction for BIR as below, when

we map to JVM instruction, we need two instruction due to nature of stack based

operations on JVM.

This instruction “%3 = const_load 10” has a load and a store operations. Therefore on

JVM we have first load to literal value 10 onto the stack, and then store that from stack to

the local variable array. The loading part will use the value from Constant Load

instructions and storing part will get the index calculated for the variable declaration (int

a) and store it. Therefore the final generation would be as below.

Table 4.6 Constant Load Instruction Mapping

Ballerina BIR JVM

int b = 10; %3 = const_load 10; ldc2_w #10 // long 10l

lstore 4

Likewise, for different types, we can use the similar approach on loading and storing the

literal values based on their load and store instructions mapping on JVM. For example

literal String values in Java are considered as general object references and they are

modeled as ALOAD and ASTORE instructions.

4.2.10 Move Instruction

A move instruction in BIR is an assignment statement where the value of reference

variable on right hand side of the assignment is assigned as the value of the reference

variable on left hand side. Therefore it can be modeled as a load and store values based

on the index of rhs and lhs variables. For example below ballerina code has a variable

definition and then followed by a variable assignment. In BIR it is modeled as a

cons_load instruction followed by a move instruction. And on JVM side, we will have

load and a store instruction that maps the move instruction from BIR.

 43

Table 4.7 Move Instruction Mapping

Ballerina BIR JVM

int b = 10;

int c = b;

%3 = const_load 10;

%2 = %3;

ldc2_w #10 // long 10l

lstore 4

lload 4

lstore 6

Similarly for other types supported, we can generate the JVM load and store instructions

as below.

 Table 4.8 Types of Move Instruction Mappings

Ballerina Type JVM Instruction Type

int LLOAD, LSTORE

boolean ILOAD, ISTORE

string, arrays ALOAD, ASTORE

4.2.11 Binary Operation Instructions

Binary operations are one of commonly used operation in a ballerina source file. There

are various binary operations that are supported in ballerina and BIR. We can look at

each of them on how to map them to JVM instructions.

4.2.12 Add Instruction

An add instruction basically works on adding two operands which are mostly of the same

type and produce the result. For example, and add instruction for integer type will add do

a arithmetic addition on the integer values of the two operands and provide the result.

 44

Whereas the add instruction on two string values will concatenate the two string and

produce the end result. Therefore based on the type of the variable the add instruction has

to be generated at JVM level.

Table 4.9 Add Instruction Generation

Ballerina BIR

function foo(int a, int b) returns int {

 int c = a + b;

 return c;

}

function foo(int,int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // arg

 int %3; // local

 int %4; // temp

 int %5; // temp

 int %6; // temp

 int %7; // temp

 bb0 {

 %4 = %1;

 %5 = %2;

 %6 = add %4 %5;

 %3 = %6;

 %7 = %3;

 %0 = %7;

 goto bb1;

 }

 bb1 {

 return;

 }

}

In Table 4.9, the BIR instruction “%6 = add %4 %5” has two operands and a store value.

It takes the operands %4 and %5 and add them and store the value to another variable.

However when we are modeling the same with JVM, we need to first load both operands

to stack, perform and add and then store the result at the target index. Therefore it will

contain four (04) JVM instructions as below.

Table 4.10 Add Instruction Mapping

Ballerina BIR JVM

int c = a + b; %6 = add %4 %5; lload 6

lload 8

ladd

 45

lstore 10

For string type with add instruction, it has to be string concatenation at JVM level.

Therefore we have to generate JVM instruction set as below where the “invokevirtual”

method is the invocation of “String.concat” system method at JVM.

Table 4.11 String Concatenation Mapping

BIR JVM

%6 = add %4 %5; aload 6

aload 8

invokevirtual #24

astore 10

Similarly, based on the type from BIR, we can generate the correct set of “Add”

instructions at JVM level.

4.2.13 Subtract Instruction

This is similar to the add instruction above and we have to generate the JVM instruction

that handles the subtraction as below.

 Table 4.12 Subtract Instruction Mapping

Ballerina BIR JVM

int c = a - b; %6 = sub %4 %5; lload 6

lload 8

lsub

lstore 10

Even though we have add symbol supported for string types, which effectively does

string concatenation, there is no such support with subtract operation.

 46

4.2.14 Multiply & Divide Instructions

Table 4.13 explains the JVM bytecode generation for multiply and divide related

instructions.

Table 4.13 Multiply & Divide Load Instruction Mapping

Ballerina BIR JVM

int c = a * b; %6 = mul %4 %5;

lload 6

lload 8

lmul

lstore 10

int c = a / b; %6 = div %4 %5; lload 6

lload 8

ldiv

lstore 10

4.2.15 Equal Instruction

Then equal operation checks for value equality and produce a boolean result which can

be used in conditional branching using if statements. A simple example and the generated

BIR would be as below.

Table 4.14 Equal Instruction Generation

Ballerina BIR

if (a == b) {

 return 23;

}

return 14;

%5 = equal %3 %4;

branch %9 [true:bb1, false:bb2];

1. Create two labels (lable1, lable2) that handles the true and false conditions of the

Equal operation.

2. Load the value of first operand onto the stack.

 47

3. Load the boolean value of second operand onto the stack.

4. Compare both and if not equal (i.e the false case), then goto label1.

5. Or else, go to label2, which will be the true case.

6. When visiting label1, it will store integer value 0 (false) as the result of the AND

operation.

7. When visiting label2, it will store integer value 1 (true) as the result of the AND

operation.

Table 4.15 Equal Instruction Mapping

BIR JVM

%9 = equal %5 %8;

branch %9 [true:bb1, false:bb2];
 LLOAD

 LLOAD

 LCMP

 IFNE L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

4.2.16 Condition Based Instructions

The condition based instruction that BIR currently supports are Less Than, Less Than or

Equal, Greater Than, Greater Than or Equal. The difference among these operations is

the conditional check on values only. Other instruction will be same as with equal

instruction. Table 4.16 explains the bytecode instructions and their different types for

each of these operations.

 48

Table 4.16 Condition Based Instruction Mapping

Type BIR JVM

less_than %9 = less_than %5 %8;

branch %9 [true:bb1, false:bb2];
 LLOAD

 LLOAD

 LCMP

 IFLT L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

less_than_equal %9 = less_equal %5 %8;

branch %9 [true:bb1, false:bb2];
 LLOAD

 LLOAD

 LCMP

 IFLE L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

greater_than %9 = greater_than %5 %8;

branch %9 [true:bb1, false:bb2];
 LLOAD

 LLOAD

 LCMP

 IFGT L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

greater_equal %9 = greater_equal %5 %8;

branch %9 [true:bb1, false:bb2];
 LLOAD

 LLOAD

 LCMP

 IFGE L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

 49

4.2.17 AND Instruction

The AND and OR operations will generate few more than instructions to handle the

conditions and branching related logic at BIR level as below.

Table 4.17 Binary AND Instruction Generation

Ballerina BIR

if (a == 1 && b == 3) {

 return 23;

}

return 14;

%4 = const_load 1;

%5 = equal %3 %4;

%7 = const_load 3;

%8 = equal %6 %7;

%9 = and %5 %8;

branch %9 [true:bb1, false:bb2];

For both RHS and LHS expressions with the AND symbol, separate instructions set will

be created at BIR side as above. In AND, both operands (RHS, LHS) are of boolean type.

Now when we map this to the JVM bytecode level, we have to create labels and

jump/goto instructions based on the conditions. The logic to generate JVM bytecode set

would be as below.

1. Create two labels (lable1, lable2) that handles the true and false conditions of the

AND operation.

2. Load the boolean value (can be 1 or 0) of first operand onto the stack

3. Load integer value 1 onto the stack.

4. Compare both and if not equal (i.e the false case), then goto label1.

5. Similarly, load the boolean value of second operand onto the stack.

6. Load integer value 1 onto the stack.

7. Compare both and if not equal (i.e the false case), then goto label1.

8. Or else, go to label2, which will be the true case.

9. When visiting label1, it will store integer value 0 (false) as the result of the AND

operation.

10. When visiting label2, it will store integer value 1 (true) as the result of the AND

operation.

 50

Table 4.18 Binary AND Instruction Mapping

BIR JVM

%9 = and %5 %8;

branch %9 [true:bb1, false:bb2];
 ILOAD

 ICONST_1

 IF_ICMPNE L1

 ILOAD

 ICONST_1

 IF_ICMPNE L1

 ICONST_1

 GOTO L2

L1

 ICONST_0

L2

 ISTORE

4.2.18 OR Instruction

For OR operation, the difference would the boolean condition check on both RHS and

LHS as it is required at least one of them evaluating to true. The relevant JVM instruction

set that will generated is given in Table 4.19.

Table 4.19 Binary OR Instruction Mapping

BIR JVM

%9 = or %5 %8;

branch %9 [true:bb1, false:bb2];
 ILOAD

 ICONST_1

 IF_ICMPEQ L1

 ILOAD

 ICONST_1

 IF_ICMPEQ L1

 ICONST_0

 GOTO L2

L1

 ICONST_1

L2

 ISTORE

 51

4.2.19 Array Load Instruction

Arrays in JVM is considered as objects therefore loading array into the stack will use the

same instruction as loading other reference object instances. And then accessing values

from arrays will use its relevant type related instruction. For example, when we are

accessing values from integer type array in ballerina, the same can be modeled as loading

values from long type array in JVM.

Table 4.20 Array Load Instruction Mapping

Ballerina BIR JVM

int[] a = [1, 2, 3];

int b = a[2];

%5 = const_load 2;

%3 = array_access %4[%5]

aload

lload

l2i

laload

lstore

4.2.20 Array Store Instruction

When a value is stored in an array on a specified index, the JVM array store bytecode for

the relevant type can be generated. Below example is for string values in a long array. For

reference arrays, the instruction AASTORE can be used.

Table 4.21 Array Store Instruction Mapping

Ballerina BIR JVM

int[] a = [1, 2, 3];

a[2] = 45;

%2 = const_load 45;

%4 = const_load 3;

%3[%4] = %2

aload

ldc2_w #13 //long 3

l2i

ldc2_w #11 //long 45

lastore

 52

4.2.21 Loops

The looping construct in BIR currently support while loops, however when the BIR

instruction is generated, we can see that, the looping is generated as set of branching and

"goto" instructions with basic blocks that handles the looping construct. This is explained

using the below example.

Table 4.22 Mapping of Loops

Ballerina BIR

function foo(int[] array) returns int {

 int i = 0;

 int sum = 0;

 while (i < lengthof array) {

 sum += array[i];

 i++;

 }

 return sum;

}

bb0 {

 %3 = const_load 0;

 %2 = %3;

 %5 = const_load 0;

 %4 = %5;

 goto bb1;

}

bb1 {

 %6 = %2;

 %8 = %1;

 %7 = length %8;

 %9 = less_than %6 %7;

 branch %9 [true:bb2, false:bb3];

}

bb2 {

 %10 = %4;

 %12 = %1;

 %13 = %2;

 %11 = array_access %12[%13]

 %14 = add %10 %11;

 %4 = %14;

 %15 = %2;

 %16 = const_load 1;

 %17 = add %15 %16;

 %2 = %17;

 goto bb1;

}

bb3 {

 %18 = %4;

 %0 = %18;

 goto bb4;

}

 53

bb4 {

 return;

}

With basic blocks and termination operations on branching and traversing basic blocks,

the while loops are modeled as above in BIR. The basic block termination that handles

the looping is highlighted above where if the condition on basicblock1 fails, it skips the

loop and go to the basicblock3 that return, otherwise, the execution will go the

basicblock2 which executes the while loop body. We can see from the basicblock2 last

instruction, it again goes to basicblock1, which starts the next iteration in the loop.

Therefore since we have already modeled basicblock goto instruction, the JVM bytecode

generation will work seamlessly without any need for additional instruction needed.

4.2.22 Length Instruction

We can explain how length expression is modeled the below example loops which

contains array access and array length operations with an “if” conditional statement.

Table 4.23 Length Instruction Generation

Ballerina BIR

function foo(int[] a, int b) {

 int c = 0;

 if (b < lengthof a) {

 c = 11;

 }

}

%6 = length %7;

%8 = less_than %5 %6;

branch %8 [true:bb1, false:bb2];

Generated JVM bytecode is given in Table 4.24.

 54

Table 4.24 Length Instruction Mapping

BIR JVM

%6 = length %7;

%8 = less_than %5 %6;

branch %8 [true:bb1, false:bb2];

lload 7

aload 11

arraylength

i2l

lcmp

iflt // true label

iconst_0

goto // false label

The important point here is that the highlighted instructions where the “arraylength”

instruction in JVM produces a JVM integer value however as we are comparing the value

with a ballerina integer (which is a JVM long type), we have to do a integer to long

conversion (using the “i2l” instruction).

4.2.23 Processing of basic block termination instructions

A basic block can terminate using one of the instruction such as GOTO, Branch,

Return, MethodCall. In this, GOTO and Branch works in similar manner however with

small difference on “branch” has to evaluate the true or false condition and then goto a

specific basicblock, where as the GOTO directly goes to another basicblock specified.

Table 4.25 Basicblock Termination Types

Type BIR JVM

GOTO goto bb3; goto L3

Branch branch %8 [true:bb1,

false:bb2];

iload //value of boolean expr

ifgt L1

goto L2

 55

The “Return” instruction deals with returning from a method execution with or without a

value. Therefore when mapping this to the JVM, we have first load the expected return

value onto the stack and then call the JVM return instruction.

The loading instruction will be based on the type of value. For example, if it’s long, then

it will be LLOAD at JVM level and for reference types such as string, arrays, it will be

ALOAD at JVM level. Once the value is loaded, then we have to call the ARETURN

instruction at JVM level.

The “Call” termination instruction is used when there is a method call to another method.

It is explained using the below example.

Table 4.26 Call Instruction Generation

Ballerina BIR

function foo() returns int {

 int b = bar(5);

 return b;

}

function bar(int a) returns int {

 return a + 7;

}

function foo() -> int {

 int %0; // return

 int %1; // local

 int %2; // temp

 int %3; // temp

 int %4; // temp

 bb0 {

 %2 = const_load 5;

 %3 = bar(%2) -> bb1;

 }

 bb1 {

 %1 = %3;

 %4 = %1;

 %0 = %4;

 goto bb2;

 }

 bb2 {

 return;

 }

}

function bar(int) -> int {

 int %0; // return

 int %1; // arg

 int %2; // temp

 int %3; // temp

 56

 int %4; // temp

 bb0 {

 %2 = %1;

 %3 = const_load 7;

 %4 = add %2 %3;

 %0 = %4;

 goto bb1;

 }

 bb1 {

 return;

 }

}

In this BIR, we can see that there is a method call (%3 = bar(%2) -> bb1) from one

method to another. It is modeled as, invoke method bar with an argument at index %2

and then store the return on index %3 and then goto basicblock1. Therefore when this

instruction is modeled at JVM, we also have to invoke the method, get the return value of

it and then store it. However since we have modelled ballerina methods as static methods,

we have to do a static method invocations with correct arguments and types. Following is

the approach on finding the target methods signature and how we can load the required

arguments.

The INVOKESTATIC instruction at JVM level requires the information on className,

method name, and method signature as operands. For example, when invoking the bar

method, we would need to generate the JVM instruction given below.

invokestatic #13 // Method bar:(J)J;

In this example, the class would be the same class as the calling method, however the

target methods signature (name and description) needs to be calculated. It can be done

using the information available in the “Call” instruction. The “Call” instruction in BIR

captures the target method name and its argument, return types, etc. Therefore when

mapping them, we can use the conditional check on the types and generated the string

with the correct signature values. For example, if the argument type is ballerina `int`, we

 57

can append the descriptor string with “J” character. Likewise, if the type is Ballerina

`strings`, we can append the descriptor with “Ljava/lang/String;”.

Based on this approach, the generated JVM instructions is given in Table 4.27.

Table 4.27 Call Instruction Mapping

Ballerina BIR JVM

int b = bar(5); %2 = const_load 5;

%3 = bar(%2) -> bb1;
lload

invokestatic // Method bar:(J)J

If the argument is of type string or array, then we have to do “ALOAD” to load the

reference value onto the stack.

4.2.24 Generation of class file content into binary a file (.class)

This is the final step after processing a BIR. Once the above mentioned instruction set are

processed, a JVM class file with the set of JVM instructions will be generated which will

still reside in the memory. Now the next step is to convert class file content into a binary

file. As we are using the ASM library underneath to generate the JVM class file content,

ASM provides a way give out a byte array for the class file content using the class writer

instance. Once we get the java level byte array, we can use Java File API to write the

content into a file with “.class” extension. With multiple classes, they can be gropued and

written to a java archive with .jar extension using the JarOutputStream API from java.

4.3 Updating Ballerina Build Command

Once the implementation is done, next is to compile Ballerina programs to Java class

files. The ballerina programs are compiled using the build command. However by

default, the build command generate the ballerina compiled binary (.balx). Therefore we

 58

have use a flag in order to compile to Java class files. For this purpose, a new flag was

introduced with the build command as follow.

$ ballerina build --jvm-target <ballerina-source-file>

Example :

$ ballerina build --jvm-target example.bal

When issuing the above command, a class file will be generated at the same location with

the name of the given ballerina source file name.

 59

5. RESULTS AND EVALUATION

The performance of current ballerina runtime against the JVM compiler backend can be

compared using some CPU bound operations. Some of the algorithms such as fibonacci

series, merge sort, matrix multiplications, string regular expression pattern matching, etc

can be used as they mostly contain CPU bound operations. For evaluation purpose, few

programs and algorithms which are use in this section were first written in Ballerina.

Then, using the JVM based compiler backend implementation, those Ballerina programs

were compiled directly into Java class files. The same program/algorithm logic is also

written in pure Java and it was used as the baseline to compare the performance of both

Ballerina and generated Java class files. Therefore there will be three runtimes that will

be used with each test scenarios and there are BVM, JVM Target and Java.

For each of the test, the system with all three runtimes was let to warm up for 300

seconds with a moderate load. This is to make sure that the test scenarios are given

fairness when the programs are running on BVM as well as directly on JVM. And each of

the iteration was run for minimum of 100 times and then the average value of these 100

runs were calculated for each test iteration. This is to rule out any sudden performance

spikes and degradation that can arise with systems. The test cases used for this study is

available online [18]. The data sets used for the test scenarios are explained in each of the

test case specific description. The results of each test scenario is also available online

[25]. The system that was for these test case had the system configuration given in Table

5.1.

Table 5.1 Test System Configuration

Model Name MacBook Pro

Processor Name Intel Core i7

Processor Speed 2.9 GHz

Number of Processors 1

Total Number of Cores 4

Memory 16 GB

 60

5.1 Fibonacci Series

Figure 5.1 Fibonacci Test

The fibonacci series used in here [18] contains a recursive approach for calculating the

value. Starting from fibonacci factor 01, this test was run up to the factor 40 and the time

was measured for each factor to complete the execution. Before the test was run, the

system was warmed up with adequate time. The time measured for each completions was

taken as an average by running the execution for 100 times and dividing the total time by

100. This is to take the time value as an average rather than running the test just one time

for each fibonacci factor. This will rule out any outlier values that may get measured

during the test run.

 61

The observation here is that the time tends to increase exponentially for BVM lot sooner

than of JVM target or pure Java based programs. The time that BVM took to complete

the fibonacci factor 40 is almost 100 times that time value that JVM target has took. Also,

the JVM target time values were very close to the pure Java based program.

5.2 Merge Sort

The merge sort algorithm used here [18] uses a recursive approach to sort a given integer

array. The algorithm first slice the integer array into two halves and then sort each half

recursively. Then the sorted halves are merged together into a single array. This programs

was warmed up with adequate time before the time values were calculated. The test input

array size starts from 1000 and it was increased up to 1000000 with a predefined interval.

The above graph is drawn using log scale for the x axis, which is the array size, to show

the results in a more meaningful manner with array size interval.

Figure 5.2 Mergesort Test

 62

The observation here is that, BVM is growing exponentially lot sooner than JVM target.

The JVM target is performing very close to the pure Java based implementation of the

mergesort.

5.3 Quick Sort

The quicksort is written using the well known quick sort algorithm which uses a similar

approach on using a recursive invocation to sort the given integer array. The array size

was increased from 2000 to 10000 with the interval being constant value at 1000.

Figure 5.3 Quicksort Test

 63

A similar observation is found in this test case also. With size of the array, the sorting

time tends to grow exponentially for BVM. However the JVM compiler backend was

performing very close to Java based implementation of the quicksort.

5.4 Matrix Multiplication

Figure 5.4 Matrix Multiplication Test

The matrix multiplication test uses two dimensional integer array multiplication logic

where two arrays of same size was multiplied. The size of the two dimensional array (n x

n) was started from 2 and the maximum array dimension was increased up to 350. The

same dataset was used for all three types of runtimes (BVM, JVM Target and Java) and

the time to complete the multiplication was measured.

 64

5.5 String Regular Expression Match

Figure 5.5 String Regular Expression Matching Test

This scenario uses a text file which has some text content such as paragraphs. A string

regular expression pattern was used to match with the input text content. The text content

of the sample text file was fed into the program and then the number of occurrences of

the pattern was calculated and the time to complete was measured by increasing the text

content size using a constant number.

There is a different observation for this scenario compared to others. The time is not

growing exponentially, however it is increasing linearly for all three runtimes. The time

gap between the runtimes also increasing linearly.

 65

5.6 Evaluation of the results

The main reason for ballerina runtime (BVM) performing low is that BVM is written on

top of JVM as an interpreter. The ballerina bytecode is interpreted at runtime by the

BVM and each of the bytecode instructions is executed one by one by the BVM. The

core logic of the BVM is a while loop that does the execution of each ballerina bytecode

instruction. Hence the BVM can be considered as a thick layer that runs on top of JVM

which will incur low performance when compared to pure java bytecode execution.

However there is a slightly different observation was made for string pattern matching

related scenario where the time was not growing exponentially, however it was

increasing linearly for all three runtimes. This is due to BVM underneath uses the same

string pattern matching logic of Java and it calls the same methods from Java. The time

gap between the BVM and JVM on this scenarios was mainly due to the thick layer of

BVM runtime logic that interprets and the execute the ballerina bytecode instructions.

The other reason of BVM low performance is how the function execution is modeled by

the BVM. Function invocations are the common instruction that can be found at most of

the time ina ballerina program. Each function execution in BVM is started by the “call”

bytecode instruction. For a function call, there is a ballerina level stack frame gets

created, which is similar to the JVM stack frame that gets created of each method

invocation. A ballerina stack frame contains the execution context information that will

be used to store method arguments, local and intermediate variable values and results.

The stack frame that gets created is scheduled for execution by the ballerina function

execution scheduler. These runtime constructs, such as stack frame, execution contexts

are basically java objects that gets created at runtime. Therefore there will be java object

instance creation and memory consumption cost involved for each functions.

Apart from this another observation is that ballerina runtime (BVM) is performing badly

when we have loops or recursion. Basically, when there is CPU intensive operations,

BVM becomes slow as the interpretation and execution tends to slow down and adds up

time for completion. For example, for a recursion scenario, The runtime takes lot of time

 66

to initialize execution context for each method invocation. This becomes a bottleneck and

time grows exponentially when we have loops. However on the String based operations,

both JVM and BVM performing similarly is that there are no loops involved and we are

directly dealing with String objects and operations such as regex_match directly on the

instances.

Also when we have loops or recursion, number of instruction to execute by the BVM also

grows which will also have an impact on the execution time. Therefore at bottom line, the

current BVM runtime is not an optimized implementation and also it does not optimize

the compile code like how Java compiler does. I can include these finding also with the

study.

Below is a profiled snapshot of BVM when it was running the fibonacci series. We can

see that WorkerExecutionContext (which is the runtime context created for each method

invocation) takes 37 % of the time, out of which 15% of the time is being spent on just

initializing. This becomes bottleneck when we are running in loops or recursion.

Figure 5.6 JProfiller based Profiled view of BVM

Therefore based on the above analysis, the current BVM based bytecode interpretation

approach is not scalable when it comes to performance oriented and CPU bound

scenarios. The BVM performance is low in those scenarios. This will become a

 67

bottleneck and showstopper for future of BVM based runtime approach for ballerina.

Therefore the runtime has to be improved to have acceptable performance compared to

the pure java based approach.

These performance limitation faced by the BVM can be overcome with the JVM

compiler backend which generates the java bytecode directly for the ballerina source.

When the java bytecode is generated and the ballerina source is compiled down as class

file, the BVM will no longer be needed. The generated classes can now be directly

invoked by the JVM. Also using JVM has some added advantages such as the bytecode

gets optimized further by the JIT [16] optimization of the JVM.

 68

6. CONCLUSION

This project presents an approach to compile ballerina source to Java bytecode directly. The

initial performance results of JVM compiler backend seems promising and it can be considered as

the possible alternative for the current BVM based ballerina runtime. The performance aspect will

play a major role when choosing a technology, therefore improving the runtime performance of

ballerina programs will become the key factor for the success and adaptation of ballerina. The

ballerina program is aiming to solve integrations and microservices related problems that interacts

with networked applications. Therefore, having a high performance runtime will make it a better

choice among the programmers and developers who are looking to use ballerina language rich set

of capabilities.

6.1 Limitations

The java bytecode generation is solely depend on the model that BIR produces. The jvm

compiler backend does not directly depend on the ballerina source program and its

semantics. Therefore, the BIR has to capture and model all the language level aspects and

the ballerina runtime semantics which then can be used by any type of compiler backend

implementation. By the time, that this project was implemented, the BIR model did not

capture all the aspects of the ballerina language. So, the required constructs has to be

added to the BIR model first and then generating bytecode for jvm was carried out. As

the BIR model is still new and evolving, some of the constructs such as arrays and array

operations has to be designed first with respect BIR constructs and added.

One of the other limitation with BIR model is that, it does not currently capture line

number information and variable names. Therefore, when generating the jvm bytecode,

the source file mapping and line number information mapping was not used. This support

will be needed when adding the stack trace and debugging support for the jvm based

compiler backend.

 69

6.2 Future Work

As future expansion of this project, we can consider the list of things explained in here.

Since this project focused on few language constructs of ballerina, as the next step, we

can bring in other language constructs support with compiling to JVM target.

6.2.1 Reference types support

The reference types supported by ballerina type system such as records, maps, objects,

XML, JSON, etc has to be modeled at JVM level. This modeling will probably involve

generating new classes for these reference types along with some type descriptor level

methods which should handle the type assignability and conversions related

requirements.

6.2.2 Debugging support

The ballerina source file line number and variable naming information has to mapped to

the generated JVM class files for debugging support. The java level debug can be used

underneath to debug the ballerina source file since compiled java class files can be easily

debug using java debugging support available at IDE’s.

6.2.3 Error and stack trace modeling

The line number information mapping will also help with stack tracing in the event of

error. Additionally, the error construct has to be mapped properly at JVM level as some

exception class therefore operations such as panic and trap ballerina constructs are

supported at JVM level.

 70

6.2.4 Concurrency modeling

The worker model of ballerina concurrency construct has to be modeled at JVM level.

This will be complete new area as the worker model is slightly different form a typical

java threading model with work yielding and resuming support with the own scheduler

implementation that could be needed at JVM level.

6.2.5 Update BIR model with all language constructs

The BIR model needs to capture all the ballerina language level semantics without any

loss of information from ballerina source files.

Additionally there are other areas such as modeling the ballerina native functions

invocation with JVM level, which can be considered as a similar approach that JVM used

to invoke its native functions that are written in C++ language mostly. This will make

ballerina to invoke java level code within ballerina programs that are known and

understood by the compiler and the correct linking gets generated at runtime.

Optimizing the generated BIR instructions and also optimizing the generated java

bytecode also can be considered for future work as this will optimize the instructions set

with fewer instructions which would give added performance gain. This task will require

code flow analysis to properly do an optimization.

 71

7. REFERENCES

[1] J. Jones, “Abstract syntax tree implementation idioms,” in Proceedings of the

10th Conference on Pattern Languages of Programs (PLoP2003), 2003.

[2] G. Hohpe and B. “Woolf. Enterprise integration patterns”. In 9th Conference on

Pattern Language of Programs, pages 1–9, 2002.

[3] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael

Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the

web up to speed with WebAssembly”. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2017.

[4] N. Maurer and M. Wolfthal, “Netty in Action”. Manning Publications, 2016.

[5] Terence Parr and Russell Quong. “ANTLR: A predicated-LL(k) parser

generator.” Journal of Software Practice and Experience, 25(7), 1995.

[6] C. Lattner, “Introduction to the LLVM Compiler Infrastructure,” in Itanium

Conference and Expo, April 2006.

[7] J. Pombrio and S. Krishnamurthi. “Resugaring: Lifting evaluation sequences

through syntactic sugar”. In Programming Languages Design and

Implementation, 2014.

[8] C. Lattner. “LLVM and Clang: Next Generation Compiler Technology”. In The

BSD Conference, May 2008.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program

analysis and transformation,” in Proc. CGO, 2004,

[10] Gosling, J. “Java Intermediate Bytecodes”. in SIGPLAN Workshop on

Intermediate Representations (IR95). 1995.

[11] D. Chisnall. “The Challenge of Cross-language Interoperability.” Commun. ACM,

2013.

[12] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. “Virtual machine showdown: Stack

versus registers.” ACM Transactions on Architecture and Code Optimization,

2008.

[13] M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, I. Foster, “Swift: a

language for distributed parallel scripting,” Parallel Computing, 2011.

[14] W. Binder, J. Hulaas, and P. Moret. “Advanced java bytecode instrumentation.”

In Proc. of the International Symposium on Principles and Practice of

Programming in Java, 2007

 72

[15] B. Venners, “Inside the Java Virtual Machine, 2nd Edition”, McGraw Hill, 1999

[16] A.-R. Ald-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stichnoth,

“Fast, Effective Code Generation in a Just-in-Time Java Compiler,” Proceedings,

SIGPLAN ’98 Conference on Programming Language Design and

Implementation, 1998.

[17] “The Java® Virtual Machine Specification” [Online]. Available :

https://docs.oracle.com/javase/specs/jvms/se8/html/index.html [Accessed: 16-

March-2019].

[18] JVM Compiler Backend Benchmark [Online]. Available :

https://github.com/Kishanthan/ballerina/tree/bir_jvm_benchmark/benchmarks/bir-

jvm-benchmark/src/main/java/org/ballerinalang [Accessed: 16-March-2019].

[19] Ballerina Programming Language [Online]. Available : https://ballerina.io/

[Accessed: 16-March-2019]

[20] Ballerina Language Specification [Online]. Available :

https://ballerina.io/res/Ballerina-Language-Specification-v0.990-2019-01-16.pdf

[Accessed: 16-March-2019]

[21] Ballerina Compiler Architecture [Online]. Available :

https://github.com/ballerina-platform/ballerina-

lang/blob/master/docs/compiler/compiler-architecture.md [Accessed: 16-March-

2019]

[22] Gary L. Schaps, “Compiler construction with antlr and java,” Dr. Dobb’s Journal,

1999

[23] Joe Groff and Chris Lattner. “Swift’s High-Level IR: A Case Study of

Complementing LLVM IR

with Language-Specific Optimization.” 2015 LLVM Developers’ Meeting, 2015.

[24] E. Bruneton. Asm 3.0, a java bytecode engineering library [Online]. Available :

https://asm.ow2.io/asm4-guide.pdf [Accessed: 16-March-2019]

[25] JVM Compiler Backend Benchmark Test Results [Online]. Available :

https://goo.gl/96W93J [Accessed: 16-March-2019]

https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://github.com/Kishanthan/ballerina/tree/bir_jvm_benchmark/benchmarks/bir-jvm-benchmark/src/main/java/org/ballerinalang
https://github.com/Kishanthan/ballerina/tree/bir_jvm_benchmark/benchmarks/bir-jvm-benchmark/src/main/java/org/ballerinalang
https://ballerina.io/
https://ballerina.io/res/Ballerina-Language-Specification-v0.990-2019-01-16.pdf
https://github.com/ballerina-platform/ballerina-lang/blob/master/docs/compiler/compiler-architecture.md
https://github.com/ballerina-platform/ballerina-lang/blob/master/docs/compiler/compiler-architecture.md
https://asm.ow2.io/asm4-guide.pdf
https://goo.gl/96W93J

