CUSTOMER PROFILING TO IMPROVE SERVICE AND MANAGEMENT OF MOBILITY ON DEMAND (MOD) SYSTEMS

Kumarage Tharindu Sandaruwan Kumarage

(188009A)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

July 2019

CUSTOMER PROFILING TO IMPROVE SERVICE AND MANAGEMENT OF MOBILITY ON DEMAND (MOD) SYSTEMS

Kumarage Tharindu Sandaruwan Kumarage

(188009A)

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

July 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Name of the Supervisor: Dr. Charith Chithraranjan

Signature of the Supervisor:

Date:

Name of the Supervisor: Dr. Amal Shehan Perera

Signature of the Supervisor:

Date:

ACKNOWLEDGMENTS

First and foremost, I would like to extend my deepest gratitude to my MSc supervisors, Dr. Charith Chithraranjan and Dr. Amal Shehan Perera, for the invaluable guidance, understanding, and patience offered to me during the MSc project. Their presence as mentors was paramount for me to gain a wider breadth of research experience. Moreover, I would like to thank all the members of DataSEARCH, the knowledge I have managed to gather through their insightful feedback is immense and working with the DataSEARCH team has been truly inspirational.

I would also like to convey my special gratitude to my progress review panel, Prof. Sanath Jayasena, and Dr. Suba Fernando. Their valuable insights and supervision received at the progress reviews helped me to improve the quality of my research work extensively.

I would like to thank the entire staff of the Department of Computer Science and Engineering, both academic and non-academic for all their help during the course of this work and for providing me with any resources necessary to conduct my research.

This work was funded by Digital Mobility Solutions (Pvt) Ltd. a.k.a PickMe.

I would also like to thank PickMe for providing the unique and resourceful opportunity to collaborate with their system throughout this project for the evaluation of the proposed methodology. In addition, I am highly thankful for the support given by Mr. Asanka Perera of PickMe data science team, in laying the technical foundation to familiarize with the data of their system and continuous feedback on system changes. Without your dedicated involvement in the process of generating the required data, it would have been impossible to complete the project on time.

Finally, I am indebted to my family and friends for all their immense support offered in numerous ways during the period of my MSc.

ABSTRACT

A system which caters the mobility requirements/travel needs in real time with user demand is known as Mobility on Demand system (MoDS). Global companies like Uber, Lyft, and local company like PickMe can be considered as examples for a Mobility on Demand systems. With the prevailing rapid growth of these MoDS, there is an explosion in system data where massive amounts of information related to customer rides are gathered on a daily basis. Due to this enormous volume of data, there is a potential for exploiting data mining and machine learning technologies to make the service smart and improve the management functionalities of the system.

Even though there is a vast amount of data at hand, the lack of systematic modelling techniques in MoDS is delaying the businesses from achieving smart systems with improved and personalized services. However, when considering similar E-commerce systems, user profiling and segmentation can be identified as the foundation towards smart improved service and management. Hence it is crucial to form the necessary framework towards user profiling and segmentation in MoDS. Research work found in our work is two-fold. First, we introduce a systematic aggregated and anonymous analysis schemes towards user profiling and segmentation in MoDS. Starting from the feature extraction specific to the MoDS, a detailed methodology for building the profile vectors is defined by this work in the following sections.

Then consequently, we extended the methodology towards enabling recommender systems in MoDS in order to improve the service. Moreover, under the recommender system methodology, a novel deep Collaborative Filtering method is introduced, and evaluation results show that the new model is capable of outperforming the current state-of-the-art techniques for Collaborative Filtering. The outcome under the recommender system for MoD is a hybrid system which incorporates all the profile vectors built in the customer profiling phase. Evaluation of the overall recommender system with historical data shows a significant improvement in recommendations related to MoD services.

Keywords: Mobility on Demand systems (MoDS), Recommender Systems (RS), Collaborative Filtering (CF)

LIST OF FIGURES

Figure 1.1: Know your customer	2
Figure 1.2: Customer segmentation	3
Figure 3.1: Activity map cell division	16
Figure 3.2: Cumulative variance explained by PCA components	20
Figure 3.3: Latent model extraction by employing an Autoencoder	21
Figure 3.4 : Gender classification training dataset classes	23
Figure 3.5: AIC and BIC against GMM cluster components	25
Figure 3.6: Recommender system methodology	27
Figure 3.7: User promotion usage matrix	28
Figure 3.8: Structure of Autoencoder (AE)	29
Figure 3.9: Structure of Variational Autoencoder (VAE)	30
Figure 3.10: Structure of Adversarial Autoencoder (AAE)	30
Figure 3.11: User-promotion interaction prediction	32
Figure 3.12: Hybrid latent code learning model	35
Figure 4.1: Age group classification accuracy	41
Figure 4.2: Gender classification accuracy	42
Figure 4.3: Number of component selection for GMM	43

LIST OF TABLES

Table 3.1: System interaction profile features	14
Table 3.2: Predefined activities	17
Table 3.3: POI categories for activity types	18
Table 3.4: Features selected by Recursive Feature Elimination (RFE)	22
Table 3.5: Label propagation in age classes	23
Table 4.1: Aggregated datasets for evaluation	38
Table 4.2: POI data for activity types	39
Table 4.3: Age Classification Classes	40
Table 4.4: OPTICS clustering hyperparameters	43
Table 4.5: Unsupervised clustering results	44
Table 4.6: GMM cluster analysis	45
Table 4.7: OPTICS cluster analysis	46
Table 4.8: Experimented dataset description	48
Table 4.9: RMSE score for user-promotion interaction prediction model	48
Table 4.10: Mean Average Precision score for recommender systems	51

LIST OF ABBREVIATIONS

Abbreviation	Description
MoDS	Mobility on Demand System
RS	Recommender System
BDA	Big Data Analytics
RFM	Recency Frequency Monetary
POI	Point of Interest
CF	Collaborative Filtering
MF	Matrix Factorization
AE	Autoencoder
AAE	Adversarial Autoencoder
VAE	Variational Autoencoder

TABLE OF CONTENTS

Declaration of the Candidate and Supervisor			
Acknowledgement			
Abstract			
List of Figures			
List of Tables			
List of Abbreviations			
1 Introduction			
1.1 Problem Formation			
1.2 Research Objectives			
1.3 Project Contributions	4		
1.4 Project Scope and Limitations	4		
1.5 Organization	4		
2 Literature Survey			
2.1 Customer Profiling and Segmentation	5		
2.1.1 Clustering Models for Customer-base	6		
2.1.2 Demographic Features based Customer Classification	7		
2.1.3 Travel Data based Customer Classification			
2.2 Recommender Systems	8		
2.2.1 Deep Collaborative Filtering Models			
2.2.2 Adversarial Learning into Collaborative Filtering			
2.3 Summary			
3 Methodology			
3.1 User Profiling	13		
3.1.1 Overview	13		
3.1.2 System Interaction Profile	14		
3.1.3 Activity Profile	15		
3.1.4 Demographic Profile	19		
3.2 User Segmentation	24		
3.2.1 Unsupervised Clustering	24		

3.2.2	Segmentation	26
3.3 Pe	rsonalized services in mods	26
3.3.1	Problem Formation	27
3.3.2	Collaborative Filtering (CF) Recommender System	28
3.3.2	2.1 Recommender System Overview	28
3.3.2	2.2 Adversarial Autoencoder (AAE)	30
3.3.2	2.3 User-Promotion Interaction prediction	31
3.3.2	2.4 Dealing with Data Sparsity	33
3.3.3	Activity-based Recommender System	33
3.3.4	Demographic-based Recommender System	34
3.3.5	Hybrid Recommender System	35
3.4 Sum	nmary	35
4 Evalua	tion	37
4.1 Exp	eriment System and the Dataset	37
4.2 Exp	eriment Formation	38
4.2.1	Overview	38
4.2.2	Dataset Setup	38
4.3 Eval	luation and Results Analysis	40
4.3.1	Evaluation of the User Profiling	40
4.3.2	Evaluation of the User Segmentation	42
4.3.2	2.1 Unsupervised Clustering	42
4.3.2	2.2 Cluster Analysis (Segmentation)	44
4.3.3	Evaluation of the Recommender System	47
4.3.3	3.1 Prediction Model Evaluation	47
4.3.3	3.2 Hybrid Recommender System Evaluation	49
4.4 Sum	nmary	52
5 Conclu	ision	53
5.1 Futu	ire Works	54
References		55