OPTIMIZING THE. USE OF BREAKER SWITCHED CAPACITORS IN CEB SYSTEM

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

By

D.D.U. Dompege

Supervised by
Dr. J.P. Karunadasa
K.P. Kusumshanthi

Department of Electrical Engineering
University of Moratuwa, Sri Lanka

2009

93948

Abstract

Ceylon Electricity Board (CEB) as many other utilities uses breaker switched capacitor banks for voltage support and reactive power compensation in grid substations. At present it has a 320Mvar installed capacity and 70Mvar more to be come in next few years. The main intentions of the use of capacitor banks is to give voltage support at the substation level, reduction of losses in power transformers and transmission lines, and to release the capacity constraints in transformers and lines.

CEB uses power factor regulation for switching these capacitor banks. The general view of the system control center (SCC) who operates the network is that this concept does not allow economical utilization of capacitor banks and sometimes they need to manually switch on them overriding the auto controller and vise versa. Underutilizing an economical reactive power source is a factor to consider. Therefore, the objective of this research is to study the technical feasibility of connecting maximum available capacitor banks in each sub station and by doing so, to propose a better switching policy than the existing one.

The research was planned as a case study, selecting a typical grid sub station in CEB and then, the results are expected to be extrapolated to a general concept, to suit the whole CEB network. First, actual substation data was collected, logged and analyzed. The possibilities of connecting more capacitor banks, under such real time system characteristics were studied in a computer simulation model. PSCAD is the simulation software used for the network simulations. The impacts due to additional banks on the system conditions, technical constraints, non violation of general standards and economics were studied using the results from the simulations. The results were compared with actual data measurement by forcing the simulated conditions for the maximum utilization, in the real system.

The analysis revealed that the present switching concept does not fully fit for CEB network. The possibilities of further utilization of already installed capacitor banks, was identified. Instead of present switching criteria, reactive power based control and voltage based control schemes were evaluated. Although the present criterion has a comparatively high utilization factor, it also seems that banks are not utilized at mostly required periods. As per the observations, reactive power controlled capacitor bank switching criteria is more useful compared to loss reduction in the system. When comparing the voltage control based switching, the switching pattern is similar to the pattern with reactive power control based switching in the day time. -During night time it gets closure to the requirement that SCC actually needs. However, complex algorithms are necessary to coordinate the two control loops, AVR and capacitor bank controller when-using such voltage control schemes. When two independent controls try to control same parameter, it leads to an unnecessary switching or simply, hunting the tap changer and capacitor banks.

Finally, as the conclusion of the research, multi functional switching scheme based on voltage and reactive power was proposed for the switching policy of the capacitor banks in the CEB network.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

D.B.U. Dompege
$22^{\text {nd }}$ July, 2009

UOM Verified Signature

We endorse the declaration by the candidate.

UOM Verified Signature

Dr. J. P. Karunadasa

UOM Verified Signature

K.P. Kusumshanthi

Acknowledgement

This report is a result of a study carried out in partial fulfillment of the requirements for the Degrec of Master of Science. The generous support, guidance, and instructions received from my supervisors, Iecturers, technical experts and my colleagues in numerous ways, is the key for the success of this effort.

I would first like to express my sincere gratitude and appreciation to Dr. J.P.Karunadasa, Head of the Electrical Enginecring Department and a Senior Lecturer of the University of Moratuwa, for his guidance and supervision and instructing to make this study practical and meaningful. All other academic staff members who taught me in the first year of the study, the course coordinator, lecturers and the others are remembered with full of gratitude for their support extended to me.

I am also most grateful to Mr. K.P. Kusumshanthi, a Senior Engineer in the operations and maintenance division of the Ceylon Electricity Board, for his support and guidance and instructions from the inception. Many other individuals and my colleagues in Ceylon Electricity Board, who supported and encouraged me in numerous ways are also remembered and appreciated with sincere gratitude.

Finally, 1 would like to thank my wife for releasing from the family commitments and two children for bearing all difficulties due to lack of attention to them and managing themselves during this period.

May be I could not have made it without your valuable support.

Table of Contents

Declaration i
Abstract ii
Acknowledgement iii
Table of Content iv
List of Figures vi
List of Tables vii
Chapter 1-Introduction
1.1 Background 1
1.2 Objectives 2
1.3 Scope of work 3
Chapter 2-Capacitor Banks in Substations
2.1 Shunt Capacitors 4
2.2 Different types of Capacitor banks 4
2.3 Controlling philosophy 6
2.3.1 Temperature control 6
2.3.2 Time control 6
2.3.3 Current control 6
2.3.4 Power factor control 6
2.3.5 Var control 7
2.3.6 Voltage control 7
2.4 CEB's Present Configuration 7
Chapter 3 - Problems Due to Capacitor banks in Substations
3.1 Switching inrush 10
3.2 Harmonic resonance 15
3.3 Voltage distortion 16
Chapter 4 - A Case study for Panadura Sub station
4.1 Substation details 17
4.2 Measurements and Collections of substation data 17
4.3 Measuring devices and data loggers 18
4.4 Behaviour of the power factor in the system 19
4.5 Switching pattern of capacitor banks in the Substation 22
4.6 Uncompensated reactive power 24
4.7 Behaviour of transformer Tap position 31
4.8 Summery of the system study 34
Chapter 5-Possibilities of maximizing the use of capacitors
5.1 System modeling and simulation 35
5.2 The Basics in Substation model 36
5.3 Running the simulations 37
5.4 Voltage rise due to capacitor banks 40
5.5 Voltage control by OLTC \& AVR 44
5.6 Current through the OLTC 45
5.7 Effect of resonance due to maximum capacitor banks 46
5.8 Effects on voltage distortion caused by harmonics 48 under maximum capacitor banks
Chapter 6-A Solution for switching
6.1 Important factors in new switching criteria 54
6.2 Proposal for switching criteria based on Var control 55
6.3 Proposal for switching critcria based on Var control 58
6.4 Optimum switching solution 62
Chapter 7-Conclusion and recommendations
7.1 Analysis and results 63
7.2 Conclusion 64
7.3 Recommendations for future studies 64
References 65
Appendix 1(a) Details of Capacitor banks in CLEB system
Appendix 1(b) Substation arrangement - Panadura Grid sub station
Appendix 1(c) CEB transmission network
Appendix 2(a) Data format for measured data in Panadura Grid substation with no capacitor banks connected
Appendix 2(b) Comparison of measured tap with no capacitor banks and all capacitor banks
Appendix 3(a) Format for results on network simulation- PSCAD file for 21^{44} January 2009
Appendix 3(b) Format for summery of simulation results for $21^{\text {si }}, 22^{\text {nd }}$, and $24^{\text {lid }}$
Appendix 4 Data format for measured data in Panadura Grid substation with all capacitor banks connected
Appendix 5(a) Format for frequency-Impedance simulation data PSCAD files for different loads
Appendix 5(b) Formal for frequency-lmpedance simulation data PSCAD files for different transformer/capacitor bank configurations
Appendix 6 Data format for harmonic measurement -Panaduara grid sub station
Appendix 7(a) Format for results - Reactive power control switching points for $21^{\text {st }}$ January 2009
Appendix 7(b) Format for summary of results-Comparison of simulation data - Present, Optimum \& reactive power control schemes for $21^{\text {si }} 22^{\text {nd }} 24^{\text {th }}$ January 2009
Appendix 8(a) Format for results - Voltage control switching points for 21^{41} January 2009
Appendix 8(b) Format for summary of results- Comparison of simulation data - Present, \& voltage control schemes for $21^{\text {s/ }} 22^{\text {nd }} 24^{\text {tl }}$ January 2009

List of figures and table

Figure	2.1	Typical arrangement of Capacitor banks in a ufility sustems	（1）4	
Figure	2．2	Typical pad mounted Capacitor hank	5	
Figure	2.3	Typical stacked rack Capacitor bank	05	
Figure	2.4	Typical pole tip mounted Capacitor bank	06	
ligure	2.5	5Mvar stacked rack tupe capacitor bank－Panadura Grid sub）station	08	
Higure	3.1	Model for a single bank switching	11	
Figutic	3.2	Invash carren in normal bank switching－Panatura GSS Simulation results	12	
Figute	3.3	Volage transient－Normal bank switching－Panadura GSS Simulation results	12	
Higur	3.4	Invush currem in filter bank switching－Panalura GSS－Simulation results	13	
Figue	3.5	Foltage transients in filter bank switching－Petnadura GSS－Simulation results	13	
Higure	3.6	Invush curron in back to back switching－Panadura GSS－Simulation results	14	
figite	3.7	Follage transients in back to back switching－Panadura GSS－Simulation results	14	
Figure	3.8	Volage transients across CB during bank opening－Panadura GSS－Simulation result	15	
figure	3.9	Frequency sean obtained from PSCAD model for panadura GSS	16	
Higure	3.10	Voltage distortions at 16° o $I_{\text {III }}$ at maximum arerage load and with all hanks in ON position	16	
figure	4.1	Data recording equipment	18	
	4．1（a）	Ben analuzer connected for 33kV measurements	18	
	4．1（b）	Analuzer connected for l32kV measurements	18	
	4．1（c）	Sensing equipment	18	
Hour	4.2	Sensing equipment（Contd）	19	
Houre	$4.3(1)$	Pattern of the power factor measured at 33ked 132 kV levels orer fotal measurement period	19	
Figure	4．3（b）	Pattern of the power factor measured at 33kv de l32kV levels on $21{ }^{4}$ Jamuary 2009	20	
Figure	$4.4(a)$	Comparison of l32kV woltage and power factor over total measurement period	20	
नigure	4．4（b）	Comparison of l32kV woltage and power factor on $21{ }^{3}$ Jamuar 20009	21	
Msume	4.5	Comparison of real and reactive power with power factord．Sri Lankz	22	
ligure	4.6 （ato	（d）Unilization of cap banks under master slave mode	25	
F＇大ume	4.6 （0 10	g）Utilization of cap banks under master stare mode	26	
1 Hume	4.7 （1） 10	（d）Unilization of cap bank s under independent mode	27	
Higure	4.7 （c） 10	（g）Ufilization of cap banks under independent mode	28	
$1 \cdot \mathrm{~m} \\| \mathrm{m}$	4.8 （1）	Reactive power flow under present swith hing eriteria in mastor slave mode 21．01．09	29	
Migme	4.8 （b）	Redetive power flow under present swithing criteria in master slave mode 22．01．09	29	
／igur	4.8 （c）	Reactive power flow under present switching criteria in master slave mode 23．01．09	30	
Hour	4.8 （d）	Reative power flow under present switching criteria in master slave mode 24．01．09	30	
Migur	$4.8(\mathrm{c})$	Reactive power flow under present switching criteria in master slave mode 25．01．09	30	
1 gmax	4.8 （f）	Reactive power flow under present switching criteria in master slave mode 26．01．09	31	
Mome	4.8 （g）	Reactive power flow under present switching criteria in master slave mode 27．01．09	31	
Migure	4.9 （a）	Pattern of tap position with no capacitor banks 21st to $22^{\text {mad }}$	33	
グgur	4.9 （b）	Pattern of tap position with no capacitor banks 23rd to $24^{\text {th }}$	33	
Figur	4.9 （c）	Pattern of tap position with no capacitor banks 25th to $27^{\text {th }}$	34	
Monte	5.1	Transformer \＆Grounding transformer module	36	
Figutio	5.2	Tap changer c ontrol modute	36	
Figue	5.3	Load \＆load current measuring module	37	
Figure	5.4	Capacitor bank \＆Inrush Detuning reactor modute	37	
Figure	5.5	Complete model for Panadura Grid Suthstation	38	
Higure	5.6	HV bus voltage variations under different cap bank configurations Simatated data for $2 I^{1 t}, 22^{\text {mid }}$ d 24 th Jan 2009	43	
Figur	5.7	Ill hus roltage values with all 4 banks in ON position－Actual measurments	44	
Figure	5.8	Tap position variation to give constant LV voltage－Simulation results．	44	
Higure	5.9	Tap position variations to give constant L＇voltage－Actual measurements	45	
Figure	5.10	Current variations through OLTC Simulation results	4.5	
ligma＇	5.11	Module for measurement of resonance frequency	47	
ligure	5.12	Prequency plot for different load conditions with all banks connected	5	
Henme	5.13	Frequency plot for different loads under different bank configurations	47	
R	5.14	1 Inis measurement for a known set of data	49	
Rigure	5.15	Individual distortion levels	49	
ligure	5.16	Voltage distortion measurements rotal harmonie distortion levels）	50	
Pigure：	5.17	Follage distortion measurements（Individual hamonic distortion levels）	51	
Prgue	5.18	Complete PSCAD model for voltage distortion analysis	52	

Figure 6.l Switching pattern under present criberia 53
Figure 6.2 Typical var control concept 55
Figure 6.3 Comparison of switched banks under present, optimum and var control schemes 56
Figure' 6.4 Proposal for dead hands for AVR and capacitor controller 59
Fïgure 6.5 comparison of switched banks under present and voltage control schemes $21^{5 t} 22^{\text {mit }}$ \& $24^{\text {m }}$ 60Figure 6.6 comparison of switched banks under voltage control scheme de var control with olmanual off $21^{3 i}$ \& $22^{2 n t}$ Jan
Figure 6.7 comparison of switched banks under voltage control schemes \& var control with 62
mantal off $24^{\text {th }}$
Table: $4.1 \quad$ Extract firom the data measurement 24
Table: 4.2 Output file from PSCAD simulation showing differences in measurements 32
Table: 51 Multiple run out put file for six recording inputs for different tap positions 39
Table: 5.2 Increasel Decrease in bus voltage due to maximum capacitor connections 41
Table: 5.3 Voltage variation for max contimuous IIV side voltage d Minimum substation Ioad for 41
different tap positions
Table: 5. 4 Typical frequency resonance output file 46
Table: 6.1 No of switching operations under proposed scheme 57
Table: 6.2 An extract from simulation results to compare capaciby release 58

1. Introduction

1.1 Background

The nature of all elcetrical loads connected to power system is such that they are inherently inductive which consume reactive power and therefore the system has to generate reactive energy. Although the reactive power does not produce any usable output, each network operator has to live with it. Therefore power utilitics around the globe have to invest on required reactive energy which in turn does not give compensation. Not only the generators have to produce this ineffective energy, the same shall be transmitted to the end user as well. The ultimate result of these is to introduce losses, capacity constraints in transmission and distribution networks and voltage drops. That is why most of the power utilities around the world are trying to generate its reactive power requirements as close as possible to the load centres. In general, many utilities describe this as the concept of reactive power compensation in the technical vocabulary.

Apart from generating reactive power from the costly gencrators, compensation can be donc with varicty of sources. Using static var compensators, synchronous condensers, breakcr switched capacitor banks are common among these. Breaker switched or fixed capacitor banks, especially those at distribution level are still most effective whereas the cost is concerned. They are comparatively economical and installation is also easy. Retrofitting and later additions according to match load characteristics are comparatively flexible.

The application of capacitor banks and its controlling philosophy is different from location to location. For an end consumer it is used as a power factor corrector that helps to reduce his demand and avoid penalties from the energy supplier. For a distribution company, the capacitors installed at intermediate locations on distribution line reduce line losses hence increases line capacities and improve the bus voltage. For a transmission company, the intention is not only to reduce loses or increase line capacities but also to give voltage support which is an inherent system problem under heavily loaded conditions and to further differ investment costs on improving lincs and substation capacities. At generation buses, capacitor banks also can be used for voltage support though it is rarc. Depending on the location and requirement, the controlling philosophy of the capacitor banks will differ. Generally, as mentioned earlier, the distribution capacitor banks are controlled for local requirements. In many cases the control consists of switches that are opened and closed in a seasonal basis or some other local requirement

Ceylon Electricity Board, also adopting to this general practice of using breaker switched capacitor banks, at present has an installed capacity of about 320Mvar of Breaker switched Capacitor (BSC) banks located at various substations in the system. BSCs' of further 70Mvar is to be added by ycar 2010 at different ncw locations. Almost all the capacitor banks in CEB network are connected to the 33 kV load bus in the relevant grid except Pannipitiya in which capacitors arc connected to the 33 kV tertiary winding of the $220 / 132 / 33 \mathrm{kV}$ inter bus transformer. In all locations, the control philosophy of the switching of the BSC units is based on the power factor regulation at 33 kV transformer incoming feeder.

The capacitor banks installed at Grid sub station level in CEB arc controlled according to the power factor regulation. This philosophy of switching the capacitor banks in grid substations does not either ease the distribution feeder capacity or reduce the feeder losses. If those were expected then the capacitors could have been closer to the loads. However, lagging Var
injection or in other words leading Var consumption at 33 kV bus level improves the voltage stability and releases the power transformers at the substation. If the utility expects latter two cases, the switching of the capacitor banks shall be based on reactive power or voltage. In case of voltage, the banks should be switched considering the voltage measurements at the point of interconncction. If release the capacity constraint or minimize losses are concerned, then the capacitors shall fully utilized to minimize drawing var from remote generation. If the utility controls them in indirect way like power factor, then it should check whether the requirements are best met with or the available resources are fully utilized [1].

When analyzing the load profile, the data shows that the system load has an early morning peak, a mid daytime peak and a night time peak. Power factor during morning and night peak gets improved since the rise of load during those periods is mainly lighting loads. The daytime load is mainly commereial and industrial therefore the power factor badly decreases. Voltage at day time mainly decreases due to reactive power and at night peak, due to IZ drop further to reactive power. Voltage improves in mid night till early morning but considerable reactive base load exists. Power factor improves after around 17.00 hrs leaving capacitor banks gradually switching off. Frequent occasions of manual re-closing of banks shut off by the capacitor controllers are also observed and utilization sometimes drops to 50% even before the night peak starts.

CEB's switching criteria of those capacitor banks has not been evaluated in the past. The system has grown up and whether the present switching criteria is cconomical or not for CEB, is in question. CEB neither has performed such a study nor they have checked the possibilities of maximizing the use of their capacitor banks. It is worth to discuss several factors in this case. When controlled with power factor regulation, there are situations where some of the capacitor banks on the distribution system are kept unused, while having an acute problem of heavy reactive power requirement in transmission system. This happens mostly when power across the company's transmission system does not coincide with load conditions in locations where the capacitor banks are fixed. In some situations, the power factor may be within acceptable limits but the voltages are below the nominal or onload tap changer is forced on higher taps to take care of the voltage. The substation level capacitor bank can directly scrve to give voltage support or var support, without depending on power factor regulation which is an indircct measure of voltage or var requirement.

Addition of reactive power at substation level has to be done without violating the system regulations. The voltage rise due to reactive power injection has to be considered. Such a voltages rise at the bus bar at which the capacitors arc connected should not violate its' continuous maximum rating. The On-load tap changer (OLTC) current switching capacities have to be considered during negative var transferring conditions. limpacts on voltage distortion and harmonic resonance conditions have to be monitored and they should not beyond the specified limits.

1.2 Objectives

Taking all thesc into Consideration, the main objcctive of the research study is to look in to the possibilities of exploiting the maximum utilization of BSC banks already installed in the system without violating the permitted regulations and other technical limitations. In this regard following points will be studied in this study.

- To check the applicability of present switching criteria
- To check the possibility of connecting maximum capacitor banks installed without violating technical constraints
- To check the possibility of optimizing the present switching parametcrs, if present switching criteria is acceptable.
- To design and propose a suitable switching critcria for the capacitors by means of network simulation and practical implementation.

1.3 Scope of work

- Evaluation of extent of present utilization of capacitor banks by précised data collcction using data loggers and using the daily data sheets by selecting a typical substation.
- Studying the technical constraints of,
a. Voltage risc at 33 kV bus bar due to addition of capacitor banks
b. Effects of resonance when adding capacitor banks to bus bars with load harmonics
c. Effects to voltage distortion caused by load harmonics, when adding more capacitor banks
d. Capability of On Load Tap Changer to handle switching current during back feeding the excess leading reactive power to the system through power transformers
by network modelling and simulating under the relevant operating conditions.
- Considering above technical constraints, identify the possibilities of maximum utilization of the capacitor banks by maintaining them in switched "ON" condition as much as possible during the periods when transmission system needs reactive power.

Chapter 2

2. Capacitor Banks in Substations

2.1 Shunt Capacitors

Usc of capacitor banks in utility substations as a source of reactive power is not new to electricity transmission and distribution. They are comparatively inexpensive, easy and quick to install, and can be deployed at any location. Therefore, this is one of the most economical way of generating the reactive power requirement and maintaining the voltage stability in power systems in comparison to the other similar devices such as static var compensators, STATCOM deviccs etc.

Capacitor Banks consist of individual capacitor units where such a unit is a combination of shunt or series set of capacitor elcments. Depending on the bank size, those units are again connceted in series or parallel to give the required size. In medium and high voltage levels, sizing of the capacitors in parallel combinations in banks generally has to consider the discharge energy through a shorted parallel capacitor in the same group.

These capacitors banks are fixed or switched type according to a local requirement. The switched type capacitor banks give a poor regulation due to step wise conncctions. Typical applications of capacitor banks at different locations are shown in figure 1.1

Figure 2.1: Typical arrangement of Capacitor banks in a utility svstems

2.2 Different types of Capacitor banks

Different types of capacitor banks are available in the present market. Metal enclosed type, pad mounted type, stack-rack banks and pole tip mounted types are the most common type in utility applications. Metal enclosed type banks specifically made for indoor installations. Pad
mounted capacitor banks are also enclosed in a metal enclosure and commonly used for arcas wherc accessible to public.

Normally, metal enclosed and pad mounted units come with factory assembled and tested hence the installation is very easy. Those banks significantly reduce unnecessary human interference such as trespassing and tampering. They do not need a fence around it. However their initial cost is high compared to other types and only available up to a certain voltage level.

Figure 2.2: Typical pad mounted Capacitor hank

Stack rack capacitor banks are commonly used in the utility sub stations. The initial cost of these is comparatively low and all components are visible. The components are easily replaceable and also easily expandable.

Figure 2.3: Typical stacked rack Capacitor bank
The pole tip mounted banks are commonly uscd in distribution networks for improving the voltage profile in distribution lines. Those are available as smaller banks and eliminate the need for space. The maintenance and component replacement is little difficult.

Figure 2.4: Typical pole tip mounted Capacilor bank

2.3 Controlling philosophy

The switching of the breaker switched capacitor banks in utility substations depends on the local requirements of each utility. Basic need for such a control is to regulate the bus voltage, reducc the losses in lines and transformers and to avoid system constraints. Depending on those, the controlling parameter may be different, and may be one of such as voltage, Var, time, temperature or power factor. Some of these paramcters are directly represent the system parameters but some, for example power factor can be used as an indirect measurement for var, losses etc,.

2.3.1. Temperature control

This is not a true indicator of the system status and an indirect measure only. The control effectiveness depends on how well the load characteristics are known. Not useful in cases where those characteristics change often. Tempcrature control does not require any current sensors.

2.3.2. Time control

Some what better parameter for controlling and has to be based on load characteristics. Ever changing characteristics of the system load profiles does not allow the optimal controlling when time based control is used. Time control does not require any current scnsors. Both time and temperature controlling need only simple and inexpensive controllers.

2.3.3. Current control

Current control is not an efficient control because it responds to total line current, and assumptions must be made about the load power factor. Current controls require current sensors.

2.3.4. Power factor control

The power factor is an indirect measure of the var load or the line or transformer losses of the system and always depends on the real power at the time of measurement. For
same power factor, the actual amount of var load depends or changes according to the real power. These mcasurements require both current and voltage sensors. Generally, power factor regulation or control is advisable for bulk consumer loads, to avoid low load power factors which are penalized by the utility companies. Power factor improvement by capacitor banks in the substation does not reduce the distribution line loses and neither climinates distribution line constraints. It will release the transformer capacities, reduces transmission line losses and improve the voltage profile. However power factor is an indirect measure for all these. Therefore, power factor controlled capacitor banks may not be fully utilized in most of the time unless the setting parameters are carefully assessed.

We have noticed oceasions where the capacitor banks kept unconnected due to power factor being within limits while the loads consume reactive power than minimum switchable steps. Specially, during low voltage profiles, since the power factor does not consider bus voltage, the capacitors may be kept unconnceted if power factor is within the limits. This means that as a result of the switched capacitors they will reduce transmission line losses and improves the bus voltage, but power factor is not a measure of the need for the above. So, for a utility substation, power factor correction is not the best control criteria for switching.

The above will be explained using system data in a later chapter.

2.3.5. Var control

Var control is the natural means to control capacitors bccause the latter adds a fixed amount of leading Var to the system regardless of other conditions, and loss reduction depends only on reactive current. Since reactive current at any point along a feeder is affected by downstream capacitor banks, this kind of control is susceptible to interaction with downstrcam banks. In a system like CEB, there are no switchable capacitor banks along the distribution feeder so that this problem will not arise. How cver, in multiple capacitor feeders, the furthest downstream banks should go on-line first and off-line last. Var controls require current sensors and typically costly.

2.3.6. Voltage control

Voltage control is used to regulate voltage profiles on the bus on which the capacitors are connected to. However, while doing this it may not consider the reduction of system losses since lagging or leading low power factors always increase the currents through its components. Voltage control requires no current sensors.

Considering above parameters for switching the capacitor banks, we can define two concepts of control philosophies. First is single variable switching that considers only one measuring parameter. Second concept is multi variable and Boolean switching. In the latter case multiple parameters are measured and the decision for switching is done depending on the optimal situation considering both parameters. The fact we have to consider is the cost of the controllers.

2.4 CEB's Present Configuration

Ceylon Electricity Board has installed number of breaker switched capacitor banks in various Grid substations in the system. All of such capacitor banks are installed at the 33 kV level and there are no capacitor banks at the transmission level. The reason for this is duc to lower costs
at low voltage levels than at higher voltage levels. The selection of locations has been done considering the system planning studies done by CEB and considering the voltage, MW and Mvar profiles at different locations in the system.

Generally, the banks are cquipped with the inrush limiting reactors as well as detuning reactors in most cascs. Howcver there are banks without those reactors as well. The banks with detuning reactor are callcd as the filter banks because thcy are meant for eliminating the switching inrush, reduce resonance effects and to filter $5^{\text {th }}$ harmonics in the system loads. The other banks are sometimes having inrush limiting reactors and sometimes there are no such rectors.

In the present system, the typical step size of each bank is 5 Mvar . This may slightly changes with the presence of the reactor. The Total capacity is changing from 10 Mvar to 30 Mvar . In Pannipitiya, the bank size is 100 Mvar and thereforc 4×5 and 4×20 banks are available. In Athurugiriya 2×10 Mvar banks are available. The Appendix 1(a) gives the details of capacitor banks available in the CEB system.

CEB's general concept in fixing the capacitor banks is such that it uses symmetrical banks for each bus section in the 33 kV bus sections. Each bus section has an individual controller to switch the particular bank. This arrangement has been changed in some of the substations later due to new additions of transformers. Appendix 1(b) shows the arrangement of capacitor banks in Panaduara grid substation. Appendix 1 (c) shows the CEB transmission network with the connected capacitor banks. The figure 2.5 shows one 5 Mvar stacked rack type capacitor bank at Panadura GSS.

Figure 2.5: 5Mvar stacked rack type capacitor bank - Panadura Grid sub station

For switching the capacitor banks, each bus section has an individual controller. This works as an independent controller when the bus section is open and if the bus section is in ON position, the set of controllers are arranged to work one as a master and the other as a slave. In independent operation, the controller switches the banks assigned to it, typically two. First is always the filter bank and compensator bank later. In the master slave mode, the master will control all the banks if the communication between the controllers is established. If not each controller becomes independent. In master slave mode, the banks assigned to slave are identified by the master and those units are switched once the master's own banks are switched ON.

The switching criteria used in CEB are the power factor regulation. The controller evaluates the power factor of the 33 kV transformer incomer feeder using voltage and current analogue signals and switches the first filter bank when the power factor is below a certain specified limit. Generally, this limit is 0.9800 . The next banks are switched on as per the same condition considering the calculated power factor. Since there are two types of controllers in CEB system switching off schemes is different. Onc type of controller switches off the banks when the power factor becomes leading 0.98. The other type does not use power factor for switching off. It calculates the reactive power calculated with power factor and the real power at the time of measurement and reactive power with the set power factor and real power at the time of measurement. If the ((1+hysterisis)* difference) is greater than minimum step of the banks, then a bank is switched off. Therefore in this kind of controllers, the switching off is depends on a reactive power limit.

During all this period, the automatic voltage regulator of the transformer stays reacting independently to adjust the LV side bus voltage. There is no coordination between the cap bank controller and voltage regulator.

Chapter 3

3. Problems Due to Capacitor banks in Substations

Although the capacitor banks are used by many of the utilities in their substations for local requirements such as var control, power factor control, or voltage control, the presence of same creates considcrable operational difficultics in the network. However those difficulties are not reasons for any utility to refrain from using them because their application gives more benefits than those difficulties. Although, a complete removal of them from the network is difficult, there are ways to minimize them. The cost involved in minimizing them can be justificd with the savings.

Switching transients (voltage \& current), harmonic resonance and increasing voltage distortion at the point they are connected, are the most important factors to be discussed [2]. Switching of the capacitor banks into and out of the system creates heavy switehing transients. The inherent quality of cnergy storing in the capacitors and inductors is the main reason causing the oscillation in both voltage and currents in the system.

The other problems are created by the harmonics in the system loads. The harmonic currents containing multiple frequency current components force the RLC networks to resonate at certain frequencies creating unusual high currents through its components.

Voltage distortion is an impact going together with the resonancc. The high currents drawn at resonance create heavily distorted voltage at all levels in the system. Even for very insignificant harmonic current levels, the resulting distortion in the system is very high. Distorted system voltages create severc mal functionalities causing adverse effects and therefore, are not acceptable by the standards and regulations.

3.1 Switching inrush

Switching of capacitors in power networks that consists of capacitive, inductive and resistive components creatcs oscillator transients in the system. In such cases, the redistribution of encrgy associated with circuit components take place to meet new system conditions. Since such redistribution of energy in inductors and capacitors does not happen instantaneously, this will lead to oscillatory transients until the situation damps to the steady condition.

Capacitors switching transients are experienced during single bank switching (energization inrush), back to back switching and during switching off. The transients are also caused during the faults in other feeders while capacitors are in service in the substations (out rush transients).

The presence of such transients were studicd during the simulations of the models developed using PSCAD. With the theoretical calculation for single bank switching condition as given below, acceptance of devcloped model for such a transient study can be justified.

The figure 3.1 below shows a simplified model of a single bank capacitor switching where it represents an equivalent voltage source and reactance. By considering the typical circuit notations, the above simplificd circuit was analyzed as follows [3].

Figure: 3.I Model for a single hank switching

Assuming that Xsc is much less than Xc , the steady state voltage across C can be approximated to $\mathrm{V}_{\mathrm{m}} \sin (\omega t+\Phi)$. But capacitor voltage can not be changed instantaneously therefore there must be a transient oscillation term to adjust the initial condition voltage across C . This voltage across C is given as

$$
V_{c}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \operatorname{Sin}(\omega \mathrm{t}+\Phi)-\left(\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \Phi\right) \operatorname{Cos} \omega_{\mathrm{o}} \mathrm{t}
$$

The associated current will be

$$
I_{c}(t)=\omega C V_{m} \operatorname{Cos}(\omega t+\Phi)+\left(V_{m} \operatorname{Sin} \Phi\right) \sqrt{ }\left(C / L_{s c}\right) \operatorname{Sin} \omega_{0} t \quad \text { wherc } 1 / \sqrt{ }\left(L_{s c} C\right)=\omega_{0}
$$

It can be shown that the maximum value of inrush current for switching at voltage maximum can be approximated to

$$
\mathrm{I}_{\text {rated }}\left(\mathrm{X}_{\mathrm{c}} / \mathrm{X}_{\mathrm{sc}}\right)^{00.5}
$$

Where $I_{\text {rated }}$ is the rated rms current of capacitor, $X_{\text {sc }}$ is the short circuit reactance at the point of application of capacitor

With these approximations, for the selected substation having,

- $\mathrm{Xsc}=5.1 \mathrm{ohm}$ (equivalent source impedance)
- Inrush reactor of $0.003 \mathrm{H}(\approx 0.9425 \Omega)$
- Two transformers in parallel ($\approx .05 \mathrm{pu}$)
- Single capacitor bank of $14.6 \mu \mathrm{~F}(\approx 218.02 \Omega)$,
the per unit representation will calculates the maximum rms switching current at point of maximum voltage can be high as eight times.

The figure 3.2 and 3.3 shows the simulation results for same conditions with no load connected and gives same results as calculations.

The sub station selected for the case study was modelled with PSCAD gives the following transient results for current and voltages for single bank switching. This was simulated under
no load conditions and for breaker closing at a voltage peak point. The peak switching currents peak steady current ratio is around 10 .

Figure: 3.2 Inrush current in normal bank switching - Panadura GSS Simulation results

Figure: 3.3 Voltage transient - Normal bank switching - Panadura GSS Simulation results
The figure 3.3 shows the voltage transient during the same single bank switching instance and we can see that it goes about to two times the steady state voltage peak.

In general, the degrce of the transient may rise even up to 2.0 p.u in voltage and $10 \mathrm{p} . \mathrm{u}$. in the current [4]. The frequencies of these transients are in the order of 200 to 800 Hz . The cxtent of the transient depends on the fault level of the location of the capacitor, system impedance, capacitance of the capacitor etc. These conditions are clearly visible in the selected substation.

Interestingly, the switching of the filter bank with a comparatively large reactor reduces these impacts. The figures $3.4 \& 3.5$ show the switching transients of filter bank switching.

Figure: 3.4 Inrush current in fitter bank switching - Panadura GSS-Simulation results

Figure: 3.5 Voltage transient in filter bank switching - Pancrdura GSS -Simulation resutts

The above figures indicate that the rise in voltage and current are considerably reduced due to the large inductor. This again raises a question to think about the suitability of the inrush reactor in the normal bank. However CEB has a practice to first switch the filter banks so that the impacts are less.

Back to back switching is the incident where a capacitor bank is encrgized with already energized capacitor bank. The above mentioned problem of high valued high frequency inrush current and over voltages is made more severe by the presence of already energized parallel banks. The similar conditions are modelled and simulated in the PSCAD model and results are shown in figures 3.6 and 3.7

Figure: 3.6 Inrush current in back to back switching - Panadura GSS-Simulation results

Figure: 3.7 Voltage Iransients in back to back switching - Panadura GSS -Simulation results

All these transients with high amplitudes and frequencies adversely affect the life of the breakers and capacitors. The short time rating of breaker as well as the capacitor must be sufficient to withstand this high frequency inrush current which may last for several a.c. cycle. High frequency current flow in capacitor causes considerable thermal overloading in the capacitors. Also, an examination of the voltage equation will show that, in the extreme case of voltage maximum switching, the instantancous voltage of the capacitor may reach a maximum of 2 xVm in the first few a.c cycles. This will lead to severe strain on the capacitor dielectric leading to a loss of life of the capacitor.

The switching transients also can interfere in the others parts of the network and may cause insulation damages, equipment damages, mal tripping of protection relays, metering crrors, tripping of equipment etc.

The switching off transients, specially the voltages across the breaker tips also harmful to the breakers and capacitors. The PSCAD model was run to see theses effects as well and the figure 3.8 indicates how the voltage between breaker tips behaves during the capacitor switching off.

Figare: 3.8 Voltage Iransients across CB during hank opening - Panadura GSS -Simulation results

High frequency transients oceur during the switching causes problems for circuit breakers. Specially, SF6 circuit breakers have considerable impact due to this. Then, during capacitive switching, high voltage possible up to 2.0 p.u may appear between the pole tips of the circuit breaker. This may cause restrike if the breaker cannot bare such a high transient recovery voltage.

All these effects in transients suggest that the regular or frequent switehing of capacitor banks is a problem to the network. In CEB system, in some of the banks, inrush limiting reactors are fixed but in some cases it is not available. Therefore, it is better if the network can be operated with minimum switching operations of the capacitor banks.

3.2 Harmonic resonance

Presence of non-linear load that takes non-sinusoidal current from a sinusoidal supply voltage creates multiple frequency current components in the system loads. Hence, the power network currents can contain harmonics if there are nonlinear loads. Loads like saturated transformers and machines, welding units, arc furnaces, rectifier and inverter units, battery charging equipment, thyristor controlled power converters and motor control equipment, static VAR compensators etc. are nonlinear and introduce harmonic currents into the distribution network and elsewhere.

These harmonic currents flowing in the line impedance produces harmonic voltages along with the fundamental frequency voltage at all points in the system. The effects due to tooth ripple in generation \& machines, variation in air gap reluctance in a synchronous machine, non-sinusoidal flux distribution in a generator, magnetizing inrush of transformers etc. also create harmonic voltages in the system [5] [6].

Irrespective to the reasons for them to be present, when they are close or equal to the order of the resonant frequency of the network, then large harmonic currents may be circulated between the supply and the capacitor equipment. These currents as same as switching transients will do the same adverse effects to the equipment. The figure 3.9 shows a typical frequency scan plot obtained by the PSCAD model run for two different cap bank transformer configurations in Panadura substation.

Figure: 3.9 Frequency scan obtained from PSCAD model for panadura GSS
The figure clearly shows two distinct frequencies where one shows very high impedance and the other like short circuit. Most system loads have harmonics closer to those frequencies.

3.3 Voltage distortion

The other severe problem due to these harmonics is the voltage distortion at the point where the capacitors are connected. As in figure 3.9 at the frequencies at which high impedances are formed, very smaller harmonic current can introduce a high harmonic voltage. The result is such that it distorts the system voltage at the point of capacitor connection.

Voltage distortion beyond critical limits will create un necessary mal funtions in the system. Where the capacitors are concerned, the high voltage harmonics over stress the insulation of capacitors and may cause even blowing them. To avoid such occurrences when installing capacitor banks in sub stations, the utility has to invest on the detuning reactors as well. The sclection of those reactors should be done following a study of the real system.

The figure 3.10 shows an example for measured distortion levels at Panadura GSS for station maximum load with all banks are in ON position, under worst harmonic level content of the substation (For around 16% THD). The initial high distortion is due to voltage source time constant in the simulation and no need to consider.

Chapter 4

4. Case Study for Panaduara Substation

A detailed study on the real system behaviour is an important necessity, not only in deciding a policy to switch the capacitor banks in a system but also to evaluate and existing such criteria. However, studying the total system is practically impossible in a live system. There are lots of operational difficulties for precise data collection and measurements in an operating system. How ever, a case study is a sufficient and satisfactory solution for a research like this. Such a sample study has to be selected to represent the total system as a whole. On the other hand, the duration during which the data collection and measurements is done, shall cover a substantial duration to represent the actual system variations. The general practice of such a study is to have one week duration.

Considering the data available in the system control centre of CEB, and taking the fact of locating amidst balanced domestic and industrial load area, Panadura grid substation was selected as a pilot station and the research was based on the findings for the selected sub station. Factors like convenience in fixing equipment, flexibilities in supervision etc, made the selection further easy. The load curves both real and reactive, were compared with the system behaviour and found satisfactorily matching and representing the system as a whole.

4.1 Substation details

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{Sub station capacity
Incoming feeders ctronic

No of feeders}}

\hline \&

\hline
\end{tabular}

4.2 Measurements \& Collection of sub station data

Two on line data loggers were used for recording data, one at 33 kV voltage level and other at 132 kV level. Following inputs were connected and recorded, firstly for 8 days cycle without connecting the capacitor banks. The recorded data is as per the format given in Appendix $2(a)$.

33 kV side measurements $\quad-\mathrm{MW}$ and Mvar

- 33 kV bus voltage
- Power factor at 33 kV incomer - Transformer 1
- Tap position of on load tap changer - transformer 1
- Load side harmonics

Measured data was fed and simulated to a model of the substation developed with PSCAD which is the simulation software used for the network simulations. Following the results of these simulations, the same measurements were done with all four capacitor banks forcibly connected to the system.

4.3 Measuring devices and data loggers

The following standard data logging equipment with their sensing equipment were used in measuring and recording the data.

- LEM Qwave Primium - power quality Analizer
- Ellite 4 - Pholyphase power meter

Figure 4.1 and 4.2 shows the equipment and their sensing devices used for the data logging and recording.

4.1 (c) Sensing equipment

Figure: 4.2 Sensing equipment (Contd)

4.4 Behaviour of the power factor in the system

The figures 4.3(a) and 4.3(b) show the pattern of the power factor in the substation load. It shows a regular daily pattern with two peaks. One peak can be observed around 6.00 hrs in the morning, during the morning load peak. The second peak is during the night peak time.

Power factor - Panaduara GSS (20th to 28th Jan 2009)
Measured at $\mathbf{3 3 k V}$ bus and 132 kV bus

Figure: 4.3(a) Pattern of the power factor measured at 33 kv \& 132 kV levels over total measurement period

Figure: 4.3(b) Pattern of the power factor measured at 33 kv \& 132 kV levels on $21^{s t}$ January 2009

The power factor improves during these two time slots because the load rises are mainly due to lighting loads. This can be further clarified by observing the real and reactive power consumptions. Obviously, during these periods, there must be a voltage drop due to rise in loads. The figures 4.4(a) and 4.4(b) shows this clearly. We cannot see such a drop in 33 kV voltage level because of the AVR which regulates the secondary side voltage.

Figure: 4.4(a) Comparison of 132 kV voltage and power factor over total measurement period

Figure: 4.4(b) Comparison of 132 kV voltage and power factor on $21^{\text {st }}$ January 2009

As the figures 4.4(a) \& 4.4(b) suggest, the voltage drops during day time is mainly due to heavy reactive load and due to lighting load during night and morning. For a switching criteria based on power factor, contradictorily power factor goes high during night and morning peaks causing tendency to switch off the capacitors but bus voltage goes down. Due to this, we may deliberately ignore a possibility of improving bus voltage due to gradual disconnecting capacitor banks during night peak or delay in picking up the banks in the morning. In other words, either it is possible to keep some capacitor banks for extended time or some banks can be connected bit earlier.

During day time the both real and reactive loads are high so that voltage drops again due to this. The low power factor initiates to switch on the capacitors. As the figure 4.3,4.4 and 4.5 reveal, power factor stabilizes during day time and show a flat profile. This means that the real and reactive loads have similar slopes during up and down. The point that has to consider is that if the first come banks correct the power factor then the others will not come even if there is a possibility of compensating more reactive power.

Not only that but there is another important feature in the power factor, real and reactive load cureves. During mid night, there is another region where the power factor becomes worse and reactive power remains some what constant while real power still dropping down. There is a possibility of over compensating during such a period.

We can see this very clealy in figures 4.6 (a to h) since the graphs are exagerated on daily basis. The flat regions of the power factor are clearly seen in these figures. Power factor during these flat areas are apprximately close but the real and reactive power loads show large variation. Due to these considerations, the switching of capcitor banks based on power factor is not the best criteria for a sub station in CEB system.

Figure: 4.5 Comparison of real and reactive power with power factor

4.5 Switching pattern of capacitor banks in the Substation

The behaviour of the capacitor banks in the substation with the present switching criteria was observed. The capacitor controller installed at Panadura grid sub station behaves as follows [7].
$\begin{array}{ll}\text { Controller } & \text { - POCOS reactive power controller } \\ \text { Type } & \text { - RPC-A-064-111-S } 000 \mathrm{M}\end{array}$
Type - RPC-A-064-111-S000 M
Switching ON criteria;
If measured power factor <0.98
Switching OFF criteria;

$$
\text { If } \mathrm{Q}_{\mathrm{komp}}>\mathrm{Q}_{\text {set }} *(1+\text { Hysteresis/100 })
$$

Where $\mathrm{Q}_{\mathrm{komp}} \quad=$ Difference in reactive power calculated from the actual $\cos \phi$ value and set $\cos \phi$ value
Hysteresis $=$ A setting value defined by user (set value 10\%)
$\mathrm{Q}_{\text {set }} \quad=$ Lowest switchable power

Although the controller at this sub station switch on the banks based on power factor, it does not switch off the banks based on the same principle. Therefore, this kind of controllers installed in CEB system is not purely power factor based control. But in ABB and ASEA capacitor controllers used in some of the other substations, the switching off criteria is also
based on leading power factor. The switching off criteria based on reactive power avoids the hunting of capacitor bank switching and considerably improves the utilization of capacitor banks.

The switching pattern of the capacitor banks for the measuring period based on above criteria is shown in figures 4.6 and 4.7. The figures 4.6 (a) to (g) show the switching pattern in master slave mode (bus coupler closed) while the figures 4.7 (a) to (g) show the same with bus coupler off position (Independent mode).

By observing the switching patterns, the following factors are noticed.

- There is a distinct difference in switching pattern under two operating conditions (at bus coupler ON and OFF)
- In the independent mode, two capacitor banks (one for each transformer) are in ON state through out the day. In the master slave mode, most of the time three capacitors are in ON position.
- In master slave mode, since three banks are ON in the mid night time, i.e. approximately after the night peak time and up to around 6.00 hrs morning, the sub station operates at a high leading power factor.
- In the real situation, during the period with lightly loaded lines especially in mid night, the line capacitances dominate and Ferranti effects causes high voltages at load ends. Addition of capacitors during such a period at substation makes the situation worst. Due to this, the control centre sometimes instructs to switch off the capacitor banks manually. Under such circumstances, due to operational difficulties, the operators switch off the controllers and hence all the banks are switched off. When operating a transmission network, this kind of leading reactive power compensation is also necessary. Although this is an un-economical situation as far as the sub station is considered, it is unavoidable. The situations like this once again prove that the power factor regulation is not the best switching criteria for CEB sub stations.
- Daily switching pattern shows that even at times where all four banks can be switched on, there are occasions where the controller switches only three banks especially during daytime. This may be due to the flat profile of the power factor during such periods. Both real and reactive power increases in the same proportion keeping the power factor unchanged. The controller does not consider reactive power increase if there is no decrease in power factor below limits.
- When the banks are switched off at nights manually to avoid voltage rises and again put into auto mode in the next morning, then the switching pattern disrupts and become even more uneconomical.
- The table 4.1 below shows a segment of data record that shows certain time slots in which only 3 banks are connected but still the other bank also can be connected.

	Station Load		1 bank ON		2banks ON		3Banks ON		4 Banks ON	
Date \& Time	MW	Mvar	$\begin{gathered} \hline \text { Unserv } \\ \text { ed } \\ \text { varilTF } \end{gathered}$	$\begin{aligned} & \text { P.F after } \\ & \text { banks } \end{aligned}$	$\begin{gathered} \hline \text { Unserv } \\ \text { ed } \\ \text { Var/TF } \end{gathered}$	P.F after banks	$\begin{aligned} & \text { Unserve } \\ & \text { dVar/TF } \end{aligned}$	P.F after banks	$\begin{aligned} & \text { Unsen } \\ & \text { ed } \\ & \text { Var/TF } \end{aligned}$	P.F after banks
$\begin{gathered} 22.01 .2009 \\ 09: 00: 00 \end{gathered}$	29,78	19.18	7.09	-0.9029	4.59	-0.9556	2.0908	-0.9903	-0.41	0.9996
$\begin{gathered} \text { 22.01.2009 } \\ \text { 09:10:00 } \end{gathered}$	30.43	20.00	7.50	-0.8970	5.00	-0.9500	2.4981	-0.9868	0.00	1.0000
$\begin{gathered} \text { 22.01.2009 } \\ \text { 09:20:00 } \end{gathered}$	30.53	19.94	7.47	-0.8982	4.97	-0.9508	24726	-0.9871	-0.03	1.0000
$\begin{gathered} \text { 22.01.2009 } \\ \text { 09:30:00 } \end{gathered}$	30.71	19.89	7.45	-0.8998	4.95	-0.9518	2.4461	-0.9875	40.05	1.0000
$\begin{gathered} \text { 22.01.2009 } \\ 09: 40: 00 \end{gathered}$	31.21	20.00	7.50	-0.9013	5.00	-0.9523	24981	-0.9874	0.00	1.0000
$\begin{gathered} \text { 22.01.2009 } \\ \text { 09:50:00 } \end{gathered}$	31.34	20.07	7.53	-0.9012	5.03	-0.9521		-0.9872	$1^{0.03}$	-1.0000
$\begin{gathered} \text { 22.01.2009 } \\ \text { 10:00:00 } \end{gathered}$	30.88	19.84	7.42	-0.9013	4.92	-0.9528	24188	-0.9879	-0.08	1.0000
$\begin{gathered} 22.01 .2009 \\ 10: 10: 00 \end{gathered}$	28.69	18.73	6.86	-0.9021	4.36	$-0,0567$	1.8648	-0.991	0.64	0.9990
3 Banks ON and still 2.53 Mvar/transformer, drawn from source. Therefore if other bank is energized all var requirement can be fed.							Situation if $4^{\text {th }}$ bank is connected			

Table: 4.1 Extract from the data measurement

The figure 4.6, shows that there are occasions where the fourth capacitor bank does not automatically operates under power factor regulation control. However, independent mode operation seems to be more economical than master slave mode under same switching control in day time but during night time it may be not. However, the feeder loads are not identical so that the bus coupler has to be kept closed all the time. Therefore, most of the time the capacitor bank controllers are in master slave mode and utilization is not optimized.

4.6 Uncompensated reactive power

The best operational criterion for the substation is to operate its loads close as possible to unity power factor as far as the losses are concerned. The data measured and recorded shows that there are occasions where reactive loads could be further compensated by the capaeitor banks while they are not fully utilized, to minimize line and transformer losses. The breaker switched capacitors operates in steps and hence they give poor regulation. Low power factors whether lagging or leading gives same effects as far as losses are concerned. Howerer, under the conditions where transmission network needs reactive power, operate with leading power factor can be considered.
Utilization of Cap Banks (21.02.09)

$\begin{array}{llllllllll} & \text { 00:00:00 } & 02: 30: 00 & 05: 00: 00 & 07: 30: 00 & 10: 00: 00 & 12: 30: 00 & 15: 00: 00 & 17: 30: 00 & 20: 00: 00 \\ & 22: 30: 00\end{array}$
4.6(a) Time of Day

$4.6(b)$ Time of Day

$0: 00: 00$	$02: 30: 00$	$05: 00: 00$	$07: 30: 00$	$10: 00: 00$

Utilization of Cap Banks (24.02.09)
 Time of Day 4.6(d) Phase Anqle at 33 bus (no Caps)
Figure: 4.6(a to d) Utilization of cap banks under master slave mode
Utilization of Cap Banks (22.02.09)

Utilization of Cap Banks (25.02.09)

 $4.6(f)$

Utilization of Cap Banks (27.02.09)

45.00										
-5.00										
-20.00 ---- - + - - - - -										
-35.00--- $\frac{1}{1}-\cdots$										
00:00:00	02:30:00	05:00:00	07:30:00	10:00:00	12:30:00	15:00:00	17:30:00	20:00:00	22:30:00	
Time of Day										
4.6(g)			$\begin{aligned} & \bar{Z} \mathrm{Pho} \\ & =\mathrm{Ph} . \\ & \mathrm{Noc} \end{aligned}$	Angle at 33 glo (Nomina Max Cap Be	pus (no Caps)		—Phase	nale with C PBanks	Banks (cal	

Figure: 4.6 (e to g) Utilization of cap banks under master slave mode

$\begin{array}{llllllllll}\text { 0:000:00 } & \text { 02:30:00 } & \text { 05:00:00 } & \text { 07:30:00 } & \text { 10:00:000 } & \text { 12:30:00 } & \text { 15:00:00 } & \text { 17:30:00 } & \text { 20:00:00 } & \text { 22:30:00 } \\ & & & & \text { Time ot Day } & & & & \\ \text { 4.6(e) } & & & & & & & & \end{array}$

Utilization of Cap Banks (26.02.09)
Utilization of Cap Banks (22.02.09)

4.7(b)

Figure: 4.7 (a to d) Utilization of cap banks under independent mode

Utilization of Cap Banks (21.02.09)

$\begin{array}{lllllllll}\text { 00:00 } & \text { 02:30:00 } & \text { 05:00:00 } & \text { 07:30:00 } & \text { 10:00:00 } & \text { 12:30:00 } & 15: 00: 00 & 17: 30: 00 & 20: 00: 00\end{array} \quad$ 22:30:00
Utilization of Cap Banks (23.02.09)

$\begin{array}{llllllllll}\text { 00:00:00 } & 02: 30: 00 & 05: 00: 00 & 07: 30: 00 & 10: 00: 00 & 12: 30: 00 & 15: 00: 00 & 17: 30: 00 & \text { 20:00:00 } & \text { 22:30:00 }\end{array}$

4.7(c)

45.00
Utilization of Cap Banks (25.02.09)
$\begin{array}{r}45.00 \\ 40.00 \\ 35.00 \\ 30.00 \\ 25.00 \\ 20.00 \\ 15.00 \\ 10.00 \\ 5.00 \\ 0.00 \\ -5.00 \\ -10.00 \\ -15.00 \\ -20.00 \\ -25.00 \\ -30.00 \\ -35.00 \\ \hline-40.00 \\ \hline-45.00\end{array}$

$4.7(f)$

Utilization of Cap Banks (27.02.09)

Phase Angle with Cap Banka (calculated)
No of Cap Banks
Figure: 4.7 (e to g) Utilization of cap banks under independent mode

The figures 4.8 (a) to (g) shows the reactive power drawn from the system or fed into the system after capacitor banks are connected to the system under present switching criteria. The reactive power drawn from the system at the time, in which capacitors are not fully utilized, is the important matter to be discussed.

In the graphs the negative reactive power means it back feeds reactive power to the network and positive means it draws reactive power from the system.

Figure: 4.8 (a) Reactive power flow under present switching criteria in master slave mode 21.01.09

The yellow arrow shows the area where capacitors are under utilized while the load substaintially drawing reactive power from the system.

Figure: 4.8 (b) Reactive power flow under present switching criteria in master slave mode 22.01.09

Uncompensated reactive power ($23^{\text {ro }}$ Jan -Friday)

Figure: 4.8 (c) Reactive power flow under present switching criteria in master slave mode 23.01.09

Uncompensated reactive power ($24^{\text {th }}$ Jan -Saturday)

Figure: 4.8 (d) Reactive power flow under present switching criteria in master slave mode 24.01.09

Figure: 4.8 (e) Reactive power flow under present switching criteria in master slave mode 25.01.09

Figure: 4.8 (f) Reactive power flow under present switching criteria in master slave mode 26.012009

Figure: 4.8 (g) Reactive power flow under present switching criteria in master slave mode 27.01.09

The figure 4.8 (b) shows that the $4^{\text {th }}$ bank has not connected even till 14.00 hrs and could have been in ON position more hours during the evening, in the particular day. Figure 4.8 (c) suggests, the fourth capacitor banks could be connected more early in the day.

All other figures $4.8(\mathrm{~d}), 4.8(\mathrm{e}), 4.8(\mathrm{f})$, and $4.8(\mathrm{~g})$ shows that there are possibilities of switching more capacitor banks early, maintain the already connected ones furthermore, or switch the fourth bank that has not come during the day.

4.7 Behaviour of transformer Tap position

The function of the on load tap changer (OLTC) is to adjust the LV bus voltage to its nominal value. When the load is high, the bus voltage is low due to IZ drop and tap changer raises its tap to high position to adjust the terminal voltage.

The voltage rise obtained by raising one tap position up, is 1.5% of the voltage at the point of measuring. This is as per the specifications of the OLTC. At 33 kV voltage this rise is about 0.495 kV . The approximated percentage voltage rise given by switching one 5 Mvar capacitor bank is given as (kvar / kva) * X_{t} Where kvar = addition of reactive load, $\mathrm{kva}=$ transformer rating and $\mathrm{X}_{\mathrm{t}}=$ transformer reactance in \% [8]. When two transformers are in parallel, this value becomes 0.79% and the voltage rise is 0.260 kV at 33 kV .

As these figures suggests, the effect of rise in one tap step is same as adding two 5 Mvar capacitor banks when two transformers are paralleled or one 5 Mvar banks when one transformer is connected. Tap changer adjusts the voltage by adjusting the transformer ratio but capacitor banks by reducing the reactive power through the transformers and tranmission lines. Further it reduces the currents and hence the losses and release the euipment capacities. Therefore, the reactions of capacitor controller and AVR has to be optimally utilized.

The Table 4.2 gives an extract from a output file showing simulation results for LV and HV voltage, MW and Mvar at LV side and transformer HV side peak currents under different tap positions with no capacitor banks and with four capacitor banks. (simulation results for conditions at 20.30 hrs on 24.01 .09) If the condition starts from point (\mathbf{A}) in tablee 4.2 , It stabilizes at point (B) under tap changer control and ends at point (C) when capacitors are switched on by a voltage control scheme.

From (A) to (B), the results shows 3\% voltage rise, 6% real power increase, 6% reactive power increase and 5% current increase. From (A) to (C), there is a voltage increase of 3%, real power increase of 6% but the current and reactive power reduces by 7% and 74% respectively. This shows the effectiveness of both control loops when operates independently.

Multiple Run Output File No cap banks							
Run \#	Tap Position	HV Voltage	LV Voltage	Ph Ang_LV	LV_MW	LV_MVar TF	V_Current
1	. 9250000000	74.78120511	33.50227824	-23.51500332	47.12524546	20.50556929	. 1714195128
2	. 8400000000	74.78557315	32.98082952	-23.51500149	45,66920959	19.87200561	.1660712497- (B)
3	9550000000	74.80926471	32.47476970	-23.51500464	44.27907683	19.26711830	1609690167
4	. 9700000000	74.82232163	31.98400256	-23.51500323	42,95096263	18.68921707	$1560980129 \longrightarrow$ (A)
5	9850000000	74.83478258	31.50767152	-23.51499635	41.68126197	18,13673328	1514445311

Multiple Run Output File 3 cap banks							
Run\#	Tap Position	HV Voltage	LV Voltage	Ph Ang_LV	LV_MW	LV_MVar TF	HV_Current
1	. 9250000000	75.17429356	34.45411052	-6.171918169	49.83944434	5.389319552	1621685425
2	. 9400000000	75.17643599	33.91244808	-6.172074955	48.28522601	5.221766022	. 1570913437
3	9550000000	75.17849488	33.38725110	-6.171084037	46.80027560	5.060076609	1522262048
4	. 9700000000	75.18038156	32.87809635	-6.170808773	45.38412407	4.906991965	.1476188801 - (C)
5	. 9850000000	75.18219740	32.38406964	-6.171620046	44.03061954	4.760750879	. 1431963655

Table: 4.2 Output file from PSCAD simulation showing differences in measurements

Figures 4.9 (a), (b) and (c) shows the observations on the behaviour of the tap position in the absence of the capacitors. The number of capacitor banks that could be connected if the controller was in auto mode, is also indicated in the figures. The figures reveal that there is the possibility of operating the sub station at lower tap positions if the capacitor banks connected under the present criteria. The Appendix 2(b) illustrates the effects clearly.

Figure: 4.9 (a) Pattern of tap position with no capacitor banks $21^{\text {st }} \& 22$ nd

132kV voltage pattern, tap position \& no of cap banks (23rd \& 24th)

Figure: 4.9 (b) Pattern of tap position with no capacitor banks $23^{\text {nd }} \& 24$ th

Figure: 4.9 (c) Pattern of tap position with no capacitor banks $25^{\text {th }}$ to 27 th

Appendix 2(b) compares the difference between the patterns of the tap position while having no capacitor banks and the same with the maximum number of capacitor banks. Since the voltage boost up by adding capacitors at 33 kV side, the raise of transformer tap can be minimized.

4.8 Summary of the system study

By summarizing the results from the case study, it seems that the present switching criteria especially when the bus section breaker is in ON position dose not neither maximize nor optimize the use of installed capacitor banks in the selected substation.

Therefore, it is worth to consider different switching criteria that utilize the capacitor banks, than the existing utilization. However, under such circumstances, the effects to the system voltage, avoiding extreme over compensation that introduces losses due to leading power factor and other technical constraints have to be considered.

Chapter 5

5. System modelling, simulations and data analysis

Exploring the possibilities of maximizing the use of capacitor banks in an existing substation has to be done in several steps. As discussed in the previous chapter, the first is to collect and record the system data and analyze them. Then by considering those results, simulation of the system under various operating scenarios and different capacitor bank combinations can be done. This needs a suitably developed computer simulation model. Using such a simulation various effects on the system due to switched capacitor banks can be studicd. Followings are the areas that have to be studied as mentioned above.

- Maximum voltage rise due addition of capacitor banks at the bus bar in which they are connceted
- The capability of transformer OLTC and AVR to handle those voltage variations by changing tap position, when necessary.
- The capability of OLTC to handle the current through it without exceeding it's current switching capacity during back feeding reactive power into the system
- The effect of resonance when adding more capacitor banks under various load conditions and system harmonic levels
- Effects on voltage distortion caused by load harmonies at 33 kV bus, when adding more capacitor banks
- Cost analysis considering the reduction of losses due to power factor improvement, release of system component capacities etc. and many others.

5.1 System modelling and simulation

One of the main aspects of the research is to model the substation for analyzing various system conditions by simulation. Suitable computer aided simulation software with transient as well as steady state analyzing capabilities was needed for this purpose. Thercfore, PSCAD which is a tool used by many power system Engineers, was used for modelling and simulations. PSCAD is a graphical user interface working along with an electromagnetic transient analysis program called EMTDC and a widely used software by power system engineers for power system studies [9]. Power system Computer Aided Design abbreviated as PSCAD schematically construct a circuit, run a simulation, analyze the results and manage the data in a completely integrated graphical environment. PSCAD is mainly for transient analysis but also equipped with all modules for the steady state analysis as well.

The difficulty faced in using PSCAD was that it is not free software and needs a license for use. However, a free student version with limited nodes is available. Also a trail version is available for limited time frame. The basic trials were done for simplest blocks with the free student version and later the complete model was developed with the trial version.

5.2 The Basics in Substation model

Main substation components such as power transformers, grounding zigzag transformers, circuit breakers, substation load, capacitor banks, tap changers, etc., are included in the model. Most of the components are available with the master library in the PSCAD. Some has to be approximated to the available modules in the main library.

The transformers are selected as two winding transformers with the tap changer on HV side of the transformers. The real transformer was approximated to the simplest form and percentage impedance was considered as an inductance only. The magnetization circuit was approximated with typical values.

The grounding zigzag transformer is represented with a typical star delta transformer with delta winding unconnected to a load. This representation is sufficiently valid for this kind of analysis [10]. The developed module for the transformer is as given in figure 5.1

Figure 5.1 Transformer \& Grounding transformer module

The tap changer is represented as a HV to LV ratio changer to suit the real tap changer ratios. Nominal ratio of the transformer is 4 and this has to be taken as 1 in the PSCAD model. The tap changer at Panadura is consisting of 18 taps with each 1.5% voltage difference. The tap changer is arranged as to control manually or change step wise in the multiple run mode, as below.

Tap Position	Ratio	Tap Position	Ratio
1	1.105	10	0.970
2	1.090	11	0.955
3	1.075	12	0.940
4	1.060	13	0.925
5	1.045	14	0.910
6	1.030	15	0.895
7	1.015	16	0.880
$\mathbf{8}$	$\mathbf{1 . 0 0 0}$	17	0.865
9	0.985	18	0.850

Tap Changer Control

Representing the network beyond the substation basically depends on approximations. Typically, in any approximated representation, if frequency response analysis at the bus bar level is not expected then a simple Thevinin's equivalent is sufficient.

The load is represented in two ways in the model and as a lumped load. One is specified with real and reactive power but the input values are real valucs so that input parameters from outputs of others modules could not be used in this module. Therefore, during multiple run functions, the second module with R and L values was used. R and L values are calculated as per the MW and Mvar values at different time slots.

Figure 5.3 Load \& load current measuring module
Capacitor banks with inrush and detune reactors are represented with equivalent C and L values as in the diagram. Though the real capacitor bank configuration ungrounded double WYE configuration, it is sufficient to represent it with a lumped star connected load for the analysis.

Figure 5.4 Capacitor hank \& Imrush/Detuning reactor module

With all these main components and other measuring and recording modules, the complete model developed for the Panadura Grid Substation in CEB system is shown in the Figure 5.4

5.3 Running the simulations

First the simulations were run for measured data, real and reactive loads, tap positions, and voltage at source end and recorded data was compared with the actual measured data. This was done with no capacitor banks connected to the LV bus. Further, the real measurements were done with 10 minute interval but it was time consuming to run the simulations with the same time intervals. Therefore the simulations were run only for 30 minute interval.

The results obtained from the simulation shows that the model gives approximately same results as the actual. Next step of the simulations was to run the model with the capacitor banks connected as per the existing switching criteria. This run was done not only for the same tap position as with no capacitors but also for different tap positions until the LV bus voltage gives a close voltage level to its nominal value.

While running the simulations in this manner, all the data required for the analysis was recorded in the output file of the multiple run function block in PSCAD.

The third step in simulation was to energize one more step of the capacitor banks except for durations where all capacitor banks were energized. For example, when the controller switches only two capacitor banks in the real system, simulations were run with the third and fourth banks as well at different tap positions.

Typical output file obtained for the system with 3 capacitor banks switched on to the bus and under different tap positions is given below.

Even with the half hour interval time slots, the simulations takes long time. Therefore, running simulation for more and more days is a time consuming task. Therefore, the simulations were done for three selected days only. The recorded data is as per the format annexed in Appendix 3-a. The data summery is given in Appendix 3-b.

5.4 Voltage raise due to capacitor banks

The substation model was adjusted to have same measurement condition as measured without capacitor banks and voltage at high and low voltage bus bars, real and reactive power, phase angle measured at 33 kV bus bar, current through the transformer etc, were recorded. The changes of above parameters by switching on the capacitor banks as per present criteria, for the optimum condition with maximum var compensation, for maximum capacitor banks were also recorded.

The table 5.2 gives an indication how the high voltage and low voltage bus voltages has been affected when changing from present criteria to maximum capacitor bank state with the AVR function as well.

Time	Changes due to maximum cap banks compared to present criteria 21.01.2009				Changes due to maximum cap banks compared to present criteria 22.01.2009				Changes due to maximum cap banks compared to present criteria 24.01.2009			
	$\begin{gathered} \text { Change } \\ \text { of HV } \\ \text { bus } \\ \text { Voltage } \\ (\mathrm{kV}) \end{gathered}$	$\begin{gathered} \hline \text { Change } \\ \text { of LV } \\ \text { bus } \\ \text { voltage } \\ \text { (kV) } \end{gathered}$	Change of No of cap banks	Change of Tap position	$\begin{aligned} & \text { Change } \\ & \text { of HV } \\ & \text { bus } \\ & \text { Voltage } \\ & \text { (kV) } \end{aligned}$	$\begin{gathered} \hline \text { Change } \\ \text { of LV } \\ \text { bus } \\ \text { voltage } \\ (\mathrm{kV}) \end{gathered}$	Change of No of banks	Change of Tap position	$\begin{gathered} \hline \text { Change } \\ \text { of HV } \\ \text { bus } \\ \text { voltage } \\ \text { (kV) } \end{gathered}$	$\begin{gathered} \text { Change } \\ \text { of LV } \\ \text { bus } \\ \text { vottage } \\ (\mathrm{kV}) \end{gathered}$	Change of No of cap banks	Change of Tap position
00:00:00	0.22	0.13	2	-1	0.10	-0.17	$1)^{18}$	111-2	0.12	0.31	1	0
00:30:00	0.25	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.31	1	0
01:00:00	0.25	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.31	1	0
01:30:00	0.24	-0.38	2	-2	0.12	0.32	1	0	0.12	0.31	1	0
02:00:00	0.25	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.31	1	0
02:30:00	0.24	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.31	1	0
03:00:00	0.23	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.32	1	0
03:30:00	0.24	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.32	1	0
04:00:00	0.24	0.13	2	-1	0.12	-0.18	1	-1	0.12	0.32	1	0
04:30:00	0.24	-0.37	2	-2	0.12	-0.18	1	-1	0.12	0.31	1	0
05:00:00	0.24	-0.37	2	-2	0.12	0.32	1	0	0.12	0.31	1	0
05:30:00	0.24	0.12	2	-1	0.12	-0.18	1	-1	0.13	0.32	1	0
06:00:00	0.24	0.13	2	-1	0.12	-0.18	1	-1	0.13	0.32	1	0
06:30:00	0.25	0.13	2	-1	0.12	-0.19	1	-1	0.01	0.32	1	0
07:00:00	0.25	-0.38	2	-2	0.12	-0.18	2	-1	0.12	0.31	1	0
07:30:00	0.24	0.13	2	-1	0.12	-0.19	1	-1	0.12	0.31	1	0
08:00:00	0.13	-0.20	1	-1	0.12	-0.19	1	-1	0.12	0.31	1	0
08:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.12	0.31	1	0
09:00:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.12	0.31	1	0
09:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.12	0.31	1	0
10:00:00	0.00	0.00	0	0	0.12	0.31	1	0	0.12	0.31	1	0
10:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	0.31	1	0
11:00:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	0.31	1	0
11:30:00	0.00	0.00	0	0	0.13	0.31	1	0	0.13	0.31	1	0
12:00:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	0.31	1	0
12:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	0.31	1	0
13:00:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	-0.20	1	0
13:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	-0.20	1	0
14:00:00	0.00	0.00	0	0	0.13	0.31	1	0	0.13	0.31	1	0
14:30:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	0.31	1	0
15:00:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	-0.20	1	0
15:30:00	0.00	0.00	0	0	0.00	0.00	0	0	0.12	0.31	1	0
16:00:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	-0.20	1	0
16:30:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	-0.20	1	0
17:00:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	0.31	1	0
17:30:00	0.00	0.00	0	0	0.00	0.00	0	0	0.12	0.32	1	0

18:00:00	0.00	0.00	0	0	0.00	0.00	0	0	0.12	0.32	1	0
18:30:00	0.00	0.00	0	0	0.00	0.00	0	0	0.13	-0.20	1	0
19:00:00	0.00	0.00	0	0	0.13	0.32	1	0	0.13	0.31	1	0
19:30:00	0.00	0.00	0	0	0.12	-0.20	1	-1	0.13	0.31	1	0
20:00:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	0.31	1	0
20:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.13	-0.20	1	0
21:00:00	0.00	0.00	0	0	0.13	0.31	1	0	0.13	0.31	1	0
21:30:00	0.00	0.00	0	0	0.13	-0.20	1	-1	0.12	-0.19	1	0
22:00:00	0.12	0.32	1	0	0.12	-0.20	1	-1	0.12	0.31	1	0
22:30:00	0.12	0.32	1	0	0.12	-0.19	1	-1	0.12	-0.19	1	0
23:00:00	0.12	-0.18	1	-1	0.13	0.32	1	0	0.12	0.31	1	0
23:30:00	0.11	-1.17	1	-1	0.12	-0.18	1	-1	0.12	0.31	1	0

Table: 5.2 Increase /Decrease in bus voltages due to maximum capacitor connections

As per the data in the table, the maximum voltage rise in 132 kV bus bar is 0.25 kV and 0.32 kV in 33 kV bus bar, under real system conditions (with tap changer). The maximum voltage at the HV bus is 77.80 kV . (Refer Appendix 3-b)

The maximum effect to the voltage occurs when all capacitors are connected, at maximum source voltage and at minimum load. To check the effect, simulation was run for maximum continuous source voltage of 145 kV at minimum substation load of 17.2 MW and 9.6 Mvar for various tap positions. The results are shown in following table.

Table: 5.3 Voltage variation for max continuous HV side voltage \& Minimum substation load for different tap positions

Under the selected worst case, with all capacitor banks are switched off, the LV bus voltage will be maintained at 33.494 kV by the AVR adjusting tap position to 4 . When all banks are
connected at this stage, AVR \& tap changer is capable to maintain the bus voltage at 33.344 kV . The tap changes from 4 to 1 , under this worst case. Practically this is not a desired condition but such a worst case will not be allowed by the system operator.

According to the theoretical calculations, the voltage rise at LV side of a transformer can be approximated as follows.

$$
\begin{aligned}
& \text { Percentage voltage rise }=(\mathrm{kvar} / \mathrm{kva}) * \mathrm{X}_{\mathrm{t}} \\
& \text { Where kvar = addition of reactive load } \\
& \text { kva }=\text { transformer rating } \\
& \mathrm{X}_{\mathrm{t}} \quad=\text { transformer reactance in } \%
\end{aligned}
$$

With present configuration, the maximum effective reactive power injection when either transformers in parallel, or transformers are independent, is 10Mvar (since each transformer is connected with two banks). Therefore, as per the above approximation, for this substation addition of full reactive load of 20 Mvar give a rise of about 1.04 kV at 33 kV bus voltage. The simulation results confirm the above approximation as in table 5.3.

As indicated in section 4.7, the change of one tap position change the voltage by 0.015 pu and this is about 0.495 kV at 33 kV . The effect of rise in voltage over the nominal value due to addition of maximum capacitor banks can be handled with two tap positions.

The table 5.3 very clearly indicates that the high voltage side bus voltage at the present real conditions does not overstep the maximum continuous voltage of 83.715 kV . The figure also shows that for maximum allowable HV bus voltage and for minimum load, the maximum LV bus voltage rise for same tap position is $(36.8559-35.4859) \mathrm{kV}$ equalling to 1.37 kV .

The figures 5.6 (a), (b), (c) show the simulation results of how the voltage at the HV bus behaves with the number of capacitor banks, for $21^{\text {st }}, 22^{\text {nd }}$ and $24^{\text {th }}$ of January.

Phase Voltage - 132kV bus 21st January 2009

Figure: 5.6 (a)

Figure: 5.6 (b)

Phase Voltage - 132kV bus 24nd January 2009

Figure: 5.6 (c)
Figure: 5.6 HV bus voltage variations under different cap bank configurations -
Simulated data for $21^{s t}, 22^{n d} \& 24$ th Jan 2009
Considering the above factors, switching the maximum capacitor banks under any real time condition, is obviously possible as far as the voltage rise at bus bar is concerned. With the results analyzed, a real time measurement of 132 kV voltages with all 4 capacitor banks in ON condition, was done at Panaduara substation and recorded as in the format Appendix 4. The figure 5.7 below shows the variation of high voltage side voltage under above conditions.

Figure: 5.7 HV bus voltage values with all 4 banks in ON position-Actual measurements

5.5 Voltage control by OLTC \& AVR

As mentioned in the previous paragraph, while providing the necessary reactive power support to the system at grid substation, if the switching of the capacitor banks is not based on voltage, i.e- voltage controlled switching, and then rise of voltages beyond the nominal values has to be maintained by the AVR and tap changer. For this purpose, the voltage at 33 kV bus has to be within the controllable limit of the tap positions. Otherwise, the capacitor banks will be tripped by the over voltage relay.

Variation of tap position-21st \& 22nd January 2009

The figure 5.8 shows the simulation results of variation of the tap position under maximum var support. It indicates that the tap position remains around the nominal tap and voltage variation has been handled by the taps. A real time measurement also was done to track the varying tap position throughout couple of days with all capacitors connected and the data is shown in figure 5.9.

Tap - real measurements 18th Feb to 21 st Feb 2009

$18.02 .200918 .02 .200918 .02 .200919 .02 .200919 .02 .200919 .02 .200919 .02 .200919 .02 .2009 \quad 20.02 .2009$ 20.02.2009 20.02.2000 20.02.2009 21.02.2009 21.02.2009 21.02.2009 $\begin{array}{lllllllllllll}12: 00: 00 & 17: 00: 00 & 22: 00: 00 & 03: 00: 00 & 08: 00: 00 & 13: 00: 00 & 18: 00: 00 & 23: 00: 00 & 04: 00: 00 & 08: 00: 00 & 14: 00: 00 & 19: 00: 00 & 00: 00: 00 \\ 05: 00: 00 & 10: 00: 00\end{array}$ Time of day

Figure: 5.9 Tap position variations to give constant LV voltage-Actual measurements

5.6 Current through the OLTC

With the present load conditions at the selected substation, the transformers are only partially loaded. Also, the minimum reactive load is around 9 Mvar.

Figure: 5.10 Current variations through OLTC-Simulation results

If all capacitor banks are connected, the maximum leading reactive power flow through a transformer occurs at this stage if the bus section is closed and one transformer is out of service. Even under this condition, it does not exceed the transformer capacities and therefore it is not a factor to be worried about. However simulation was done to check the current variation through the tap changer. The particular tap changer type installed at the transformer high voltage winding can handle 200A current. Figure 5.10 shows it is well within the range of the OLTC switching current capabilities.

5.7 Effect Of resonance due to maximum capacitor banks

The effects of resonance due to adding capacitors were studied using the same PSCAD model. For tracking the frequencies at which the resonance occurs, a module named as "Interface to harmonic impedance solution" available in the master library, was used. The function of the module is to measure the impedance looking from the point of connection at different frequencies and gives an output file.

Figure: 5.11 Module for measurement of resonance frequency
A typical output of such a simulation run is shown in the Table 5.4. The simulations were done for different load combinations and for different substation configurations as well. By observing the data recorded from such simulation runs for different loads with all four capacitor banks kept connected, impedance Vs frequency graph was drawn. It shows three distinct frequency points where one with minimum impedance and other two with high impedances, irrespective of the load. Refer Appendix 5(a) \&5(b)

| F(Hz) | \|Z0|(ohms) | E(Z0)(Deg) | \| $\mathbf{Z}+$ \|(ohms) \mathbf{P} | PHASE(Z+)(Deg) | \|Z-|(ohms) | PHASE(Z-)(Deg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50.00000000 | 55.09203446 | -4.098444255 | 2.097409124 | 482.98484493 | 2.097409124 | 82.98484493 |
| 60.00000000 | 50.44407441 | -24.03703513 | 2.558087278 | $8 \quad 83.23138944$ | 2.558087278 | 83.23138944 |
| 70.00000000 | 43.46072201 | -38.10848309 | 3.047037667 | $7 \quad 83.22463190$ | 3.047037667 | 83.22463190 |
| 80.00000000 | 37.04461190 | -47.88060994 | 3.573022622 | 233.03573202 | 3.573022622 | 83.03573202 |
| 90.00000000 | 31.75274158 | -54.90963345 | 4.148001435 | 82.69569991 | 4.148001435 | 82.69569991 |
| 100.0000000 | 27.44952485 | -60.20104551 | 4.788935334 | 482.21114615 | 4.788935334 | 82.21114615 |
| 110.0000000 | 23.90208802 | -64.35890785 | 5.521017001 | 181.56846432 | 5.521017001 | 81.56846432 |
| 120.0000000 | 20.91325779 | -67.75173676 | 6.383784086 | 680.73025346 | 6.383784086 | - 80.73025346 |
| 130.0000000 | 18.33472075 | -70.61360360 | 7.443618738 | 879.62166641 | 7.443618738 | 79.62166641 |
| 140.0000000 | 16.05674512 | -73.10039898 | 8.821990580 | 78.09539609 | 8.821990580 | 78.09539609 |

Table: 5.4 Typical frequency resonance output file

The first high impedance point is in between $3^{\text {rd }}$ and $4^{\text {th }}$ harmonics and closed to $4^{\text {th }}$ harmonic. The presence of such inter-harmonics or $4^{\text {th }}$ harmonics in the system is very low so that contribution to $V_{\text {THD }}$ is less. The $2^{\text {nd }}$ high impedance point is in between $8^{\text {th }}$ and $9^{\text {th }}$ harmonics
but very close to the $9^{\text {th }}$ harmonic. The content of $9^{\text {th }}$ harmonics in the system loads is higher therefore this will have an impact on the voltage distortion. The minimum impedance is falling between $4^{\text {th }}$ and $5^{\text {th }}$ harmonic levels and close to $5^{\text {th }}$ harmonic level. This is due to the fact that the filter bank is tuned to $5^{\text {th }}$ harmonic. This point does not exactly come to the $5^{\text {th }}$ harmonic level since the model is approximated to a equivalent source beyond the 132 kV bus, neglecting the line capacitances.

Resonance Characteristics

Figure: 5.12 Frequency plot for different load conditions with all banks connected

For a typical load condition, simulation was run for different tap positions but there is no significant effect on the resonance frequencies by the tap position. Figures 5.13 (a), (b) and (c) shows the resonance characteristics for different transformer / Cap bank configurations.

Figure: 5.13 Frequency plot for different load conditions under different bank configurations

Finally, taking the factors above into consideration, it seems that the series resonance point does not change with the load or capacitor/transformer arrangement therefore it is not a critical issue. However, the high impedance points close to harmonic levels that are present in the system will cause certain voltage distortion at the 33 kV bus. Therefore, these high impedance points are to be evaluated from the voltage distortion point of view.

5.8 Effects on voltage distortion caused by harmonics under maximum capacitor banks

The same PSCAD model used for other simulations were slightly modified and added with required components to investigate the voltage distortion at the 33 kV bus due switched capacitor banks in the presence of load side harmonics.

The difficulty faced in modelling for distortion level observations, was due to inability to introduce a harmonic load with specified THD level. However, it was possible to inject individual harmonic currents with amplitudes calculated according to actual measurements.

The accuracy of model was checked by recording the $\mathrm{I}_{\mathrm{THD}}$ from simulation results for a set of measured values as follows (Appendix 6).

3rd \%			5th \%			7th \%			9th \%			11th \%			13th \%		
L1	L2	L3	L1	-2	L3	L1	L2	L3									
6	14	13	3	3	4	2	2	1	1	1	2	1	1	1	1	1	1

For above data, $\mathrm{I}_{\text {THD }}$ is around 13% and the simulation result also gives the same results as shown in the figure below.

Controls	Controls	Controls
I Rohase	IYphase	I Bphase
13.0065	13.0026	13.0043

Figure: 5.14 I THD measurement for a known set of data
Considering the observations made in resonance studies, the voltage distortion for a certain load condition was measured for each harmonic order. It shows that $3^{\text {rd }}, 7^{\text {th }}$ and $9^{\text {th }}$ order harmonics give maximum contribution to the total harmonic level since the system has a high frequency point close to $3^{\text {rd }}$ and $9^{\text {th }}$ harmonic and also the $3^{\text {rd }}$ harmonic current is dominating in load current. The results in figure 5.15 clearly indicate these results.

Controls	Controls	Controls	Controls	Controls	Contrals
3rdorder	5th order	7thorder	9th order	11th order	VTHD
					$0<100$
6.46151	0.654318	1.62205	234632	0.844122	7.16862

The voltage distortion level at the 33 kV bus was simulated for maximum load and minimum load conditions for all four capacitor banks switched ON, 3 capacitor banks switched ON, two banks ON, one bank ON and without capacitor banks connected etc,.

Under these configurations, the voltage distortion at 33 kV bus level is below 7.2% level (6.5% is the planning value as per IEC 61000-3-6 and 8% tolerance value as per EN 50160) . High distortion is resulted when all capacitor banks are connected. Therefore the impact to allowable voltage distortion levels by maximum use of capacitor banks is under acceptable levels.

Figure: 5.16 Voltage distortion measurements
(Total harmonic distortion levels)

For maximum load with all capacitor banks

For Maximum load with three capacitor bans

For Maximum load with two filter bans

Controls						
3rdorder	5th order	Thorder	Gthorder	17thorder	13thorder	VTHD
5.00057	0.920135	1.47377	2.09187	1.14265	1.05283	5.90037

For Maximum load with one filter and one normal

For Maximum load with one filter

For Maximum load with no filter

Figure: 5.17 Voltage distortion measurements (Individual harmonic distortion levels)

Figure: 5.18 Complete PSCAD model for voltage distortion analysis

Chapter 6

6. A Solution for switching

As discussed so far, it is clear that the power factor regulation with present parameters does neither maximize nor optimize the use of the capacitor banks installed in the selected grid substation where the losses and voltage support is concerned. The time periods in which all the capacitor banks are not switched while having an opportunity for that, were observed. Clearly, there is an opportunity to further utilize the already installed banks to reduce the losses by reducing reactive power drawn from sources and to use as an economical voltage stabilizer. The utilization of capacitor banks with the present power factor/var combined scheme is as in the figure 6.1 below. The switching pattern if pure power factor control is used is also included in the figure.

Figure: 6.1 switching pattern under present criteria
Considering the above data, the utilization of the capacitor banks calculated on daily average and with reference to maximum utilization is about 75%. With the pure power factor control, this becomes to 70.03%.

Calculation based on; Utilization $=\left(\right.$ Mvar $_{1}{ }^{*} t_{1}+$ Mvar $_{2}{ }^{*} t_{2}+\ldots \ldots+$ Mvar $\left._{n}{ }^{*} t_{n}\right) /$ Maximum Mvar ${ }^{*}$ 24)
Mvar $_{n}=$ switched capacitor rating at time slot t_{n} and t_{n} is taken as 10 min interval)

Although these values are high, it does not indicate the optimality of the use. The present scheme contains unnecessary utilization at certain time periods. Also, it contains periods of partial utilization of capacitor banks even the opportunity is there to fully use them.

In real situation, sometimes the network operators manually switch off the banks to avoid high leading power factor and bus voltage rises or switch on the banks which are already in off position due to improved power factor. Therefore, the high utilization factor is not the
mere deciding factor for the optimal usage. Loss minimization, voltage support, releasing capacity constraints etc., are the factors to be considered.

6.1 Important factors in new switching criteria

As discussed in the previous chapters, the possibility of connecting the maximum number of capacitor banks into the LV bus under any system conditions is obvious. The analysis shows that the harmful effects can be maintained with marginally affecting the regulations and not violating the technical limitations. Therefore, following conclusions can be made.

- For the selected substation, it is possible to connect all four capacitor banks under any system condition.
- Therefore, any other combinational arrangement, to suit the local requirements is also possible.

The first point can be considered in the system point of view. There are situations where the capacitor banks on the distribution substations are kept unused, while having an acute problem of heavy var requirement in transmission system. This happens mostly when power across the company's transmission system does not coincide with load conditions in locations where the capacitor banks are fixed. This situation can be mostly experienced in substations which are heavily interconnected. Under those conditions, keeping a definitely economical reactive energy source underutilized or unutilized depending on local requirements, while generation or some other means producing and transmitting them in the system, is not justifiable.

For substations like Pannipitiya where it has a installed capacity of 100 Mvar and which is still not put into operation due to some technical problems, this kind of approach may be a very economical solution. Power factor regulation with a large reactive power source will not utilize them fully. Other thing is that it is connected to both 220 kV system as well as 132 kV system sothat the transmission network will be a good tank for reactive power transferred from substation capacitor banks.

When power system economics are considered, CEB has to take advantages of concepts such as "ON Demand Control" to use the already installed capacitor banks in this manner. If the transmission system needs var at a location different to the location where capacitor banks are installed and if a centralized network control center monitor the load flow in its transmission system, then switching of unused capacitor banks at such a time can be used to inject reactive power. This needs a comprehensive load flow study, fully pledged SCADA system and sometimes remote station control fascility etc., to implement the above schemes. Interestingly, those are already in touch with the CEB transmission network. Therefore, if necessary CEB can use its maximum installed capacitor banks without any difficulty.

Secondly, if the first option is not the real requirement of the network, then what is important is to meet local requirements in each substation. As CEB is considered, its main objective is to maintain the bus bar voltage at the desired limit. Reduction of losses, releasing the line and transformer capacities comes as secondary aspects.

In meeting the local requirements, still the voltage and var control may be the best compared to power factor. Power factor is always an indirect measure of reactive power or the system voltage. Power factor does not consider the effects beyond the substation where sometimes it has to consider the bus voltage rise due to line capacitance. During very light loaded
conditions, the line capacitances are predominant and the Ferranti effect comes into effect. In such cases, availability of considerable reactive loads at load centres is a requirement. If the substation reactive power requirement is fully compensated during these periods, the voltage rise at receiving ends will be a problem. In such cases capacitor bank switching based on voltage control may have more benefits. However, the factors like loss minimization, voltage control and the capacity release of the system components can be considered in local station point of view. Providing reactive power from capacitor banks as much as posible to compensate real load requirments while not allowing them to draw from the system is the factor to be considered. This will reduce losses and release the power transformer and transmission line capacity.

6.2 Proposal for switching criteria based on Var control

Figure: 6.2 Typical var control concept

Capacitor bank switching based on reactive power requirements is a more flexible and natural means of capacitor control concepts. It adds a fixed amount of lagging reactive power into the system regardless of most other conditions. Since the reduction of losses and the capacity release directly proportional to the reactive current drawn, injecting the reactive power at substation bus level reduces losses beyond bus towards source including the transformer.

In var control based switching, due consideration has to be given to avoid hunting or PUMPING of the banks. Unless the parameters are properly set this purpose cannot be achieved. Hysteresis or restraint control is suggested to avoid such a hunting problem. As shown in figure 6.2 , switching "ON" is based on about $2 / 3$ of a step and switching off is based on an amount more than the balance $1 / 3$ of the step in leading direction. These are typically used values decided with experience.

To avoid responding to sudden reactive power changes, restraint control or integration of inputs over certain time period can be used. These are available in most of the capacitor bank controllers.

Considering the above basis, parameters for reactive power control switching for master slave control was suggested as follows. The calculated settings can be used for one setting parameter set, considering master slave control. Second set of parameters is to be defined for the independent mode. Multiple sets of parameters and switching between them depending on
external inputs are regular features in modern controllers. Considering the results obtained by simulations, following points can be considered in a reactive power control based switching criteria for CEB.

- When transformers are paralleled, one controller feels only a half of the capacity of a switched bank.
- Step size of a bank is 5 Mvar .
- Switching ON when lagging reactive power exceeds $2.5 * 2 / 3=1.6 \mathrm{Mvar}$ (lag)
- Switching OFF when leading reactive power exceeds $(2.5 * 1 / 3) * 1.4 \approx 1.2 \mathrm{Mvar}($ lead $)$

Switching points were selected from simulation results with approximated AVR control and shown in figure 6.3. The switching points based on lowest reactive power drawn from system and power factor close to unity (optimum compared to losses) was also show in the diagram.

Figure: 6.3 comparison of switched banks under present, optimum and var control schemes

The three figures show that the proposed switching policy based on reactive power control goes neck to neck with the loss optimized switching pattern than the present switching criteria. No of switching operations were calculated as per the switching points. A typical capacitor bank switch can operate 6times per day considering 50,000 no of operations and 20 years life time. The no of operations of the breakers are within the acceptable limits.

Date	Number of switching			
	Bank 1	Bank 2	Bank 3	Bank 4
21.01 .09	0	0	2	2
22.01 .09	0	0	2	2
24.01.09	0	0	1	2

Table: 6.1 No of switching operations under proposed var control scheme

The utilization factor is calculated based on the same criteria described early in the chapter and equals to 80%. The utilization is approximately same as the present system but the new scheme is closer to the loss optimized pattern.

Increase or decrease of energy loss was calculated based on the point that the losses are directly proportional to I^{2}. For all three days considered, a decrease of $1.8 \%, 4.9 \%$ and 5.04% was observed and average reduction in energy loss is 3.94%. (Considering only the transformer losses)

From the equation below, it is possible to calculate the capacity release of the substation and hence same capacity must be released from the generation as well [8].

$$
\Delta K V A_{5}=\left[\sqrt{1-\frac{(K V A R)^{2}(\operatorname{Cos} \phi)^{2}}{\left(K V A_{s}\right)^{2}}}+\frac{\sin \phi(X V A R)}{K V A_{3}}-1\right] K V A_{5}
$$

$$
\text { Where } \quad \begin{aligned}
& \Delta K V A_{s} \text { - release of substation } \\
& K V A_{s} \quad \text { - Capacity of substation } \\
& K V A R \quad \text { - Capacity of next step of the banks } \\
& \operatorname{Cos} \Phi \text { and } \operatorname{Sin} \Phi \text { - Cos and sine of power factor before adding next step }
\end{aligned}
$$

For the selected substation, addition of 5Mvar for $2 * 31.5 \mathrm{MVA}$ transformers at the conditions as at 8.30 hrs on $24^{\text {th }}$ January 2009 , the capacity release $\Delta K V A_{s}$ was calculated as,

$$
\begin{aligned}
\Delta \text { MVA }_{s} & =\left[\sqrt{ }\left\{1-(5 * \operatorname{Cos} 7.13 / 63)^{2}\right\}+\operatorname{Sin} 7.13 *(5 / 63)-1\right] 63 \\
& =0.425 \mathrm{MVA}
\end{aligned}
$$

 Time	Under Present criteria													
	MW	Mvar	33 Volt	132 Volt	No of Banks	Ph angle	Utilization	HV A	Tap					
24.01 .2009 $08: 30: 00$	33.01	4.07	32.98	74.97	3	-7.13	7.50	76.08	10					

 Time	Proposed var control scheme									
	MW	Mvar	33 Volt	132 Volt	No of Banks	Ph angle	Utilization	HV A	Tap	
24.01 .2009 $08: 30: 00$	32.6274	-								
0.89685	32.7843	75.0884	4	1.574976	10.00	73.76	9			

Table: 0.2 An extract from simulation results to compare capacity release

With the simulation results it can be calculated as;

$$
\begin{aligned}
\Delta \mathrm{MVA}_{\mathrm{s}} & =\sqrt{ }\left(33.01^{2}+4.07^{2}\right)-\sqrt{ }\left(32.6274^{2}+.89685^{2}\right) \\
& =0.620 \text { MVA, But this is with a tap position change as well. }
\end{aligned}
$$

Therefore the simulation results can be justified. Considering the simulation results, total average energy released by switching from present scheme to proposed var control scheme is 15.64 MWh per day (calculated based on 30 min sample time hence totalling energy for 30 min samole). The scheme maintains the tap close to nominal tap while keeping the 33 kV voltages also within the range. (Refer Appendix 7-Data format for reactive power control switching points and summery of results)

6.3 Proposal for switching criteria based on Voltage control

Voltage control based capacitor switching in a utility substation has to follow a complex algorithm. The difficulty in voltage control based switching is due to the voltage regulator of the power transformers. When both functions try to control voltage at the same time without any coordination between them, then there will be severe mal functioning of the two
controllers. This will cause hunting of capacitor banks and tap changer. Therefore, for such a control scheme, an algorithm to coordinate AVR and capacitor bank controller is required. The factors that has to be considered in such a system are,

- During switching on for decreasing bus bar voltages, the capacitors shall come first if the reactive power load is more than a portion of the minimum step of a bank otherwise the tap changer can increase the voltage. The purpose of this is to minimize the losses and adding excess leading reactive power.
- During switching off for increasing terminal voltages, AVR and the capacitor controller shall follow the same philosophy. The reactive power at the time of decision must be considered in deciding whether to reduce the tap or to switch off a capacitor bank.
- Algorithm for an above control is necessary to optimize the use of capacitor banks. If the only requirement is to control the voltage, then proper dead band selection for two controllers also can serve the purpose.
- Differentiate the integration time, the time period over which the measurement is averaged, also can be used with hysteresis control to make the control philosophy more simple.

One other thing to be considered is that when the network control centre increases the voltage at some other station having no capacitor banks by generator voltage adjustments, the substation having capacitor banks also will feel that and the bus voltage will improve. Then the capacitors will tend to switch off responding to outside voltage adjustments. This is not an economical solution.

A voltage selection scheme based on a hysteresis control as in figure 6.4 is evaluated for comparison with the present and proposed var control schemes. The approximated switching points of capacitor banks based on above voltage control scheme, was selected using the simulation results for $21^{\text {st }}, 22^{\text {nd }}$ and $24^{\text {th }}$ January 2009. (Appendix 8 - Data format for voltage control switching points and summery of results). Figure 6.5 illustrates the comparison of present switching and the switching pattern with the proposed voltage control.

Figure: 6.4 Proposal for dead bands for AVR and capacitor controller

Figure: 6.5 comparison of switched banks under present and woltage control schemes $21^{\text {st }} 22$ nd \&24th

The figures show that with the voltage control, maximum number of banks is maintained only at day time from around 9.00 hrs to 17.00 hrs . During mid night, this comes even up to zero banks, due to the voltage rise. The criterion does not maximize the utilization. Gradual switching off of banks around 17.00 to 18.00 hrs also observed due to reduction of loads after office hours. There is a voltage rise during this period and the load rises after that due to lighting. In comparison to the reactive power control, voltage control scheme is not coincides with the optimum curve.

As the data shows, following conclusions can be made.

- Maximum switching operations per $3^{\text {rd }}$ and $4^{\text {th }}$ banks is about 4 so that the switching does not cause any unnecessary impact.
- Utilization when voltage control is used seems to be low compared to loss optimized switching pattern. It is $55 \%, 58 \%$ and 77% on $21^{\text {st }}, 22^{\text {nd }}$ and $24^{\text {th }}$ respectively..
- Due to reduced utilization, energy losses and substation capacity release also not be economical. However it matches with the voltage properly. Therefore, if the need is to give voltage support, then this kind of switching policy is very satisfactory.

6.4 Optimum switching solution

In operating a utility network under real conditions, some dominant local requirements that needed to be controlled by capacitor banks are to be decided. As CEB is concerned, due to the factor of concentrating the generation to certain localized areas, maintaining voltage stability is a considerable factor. Although reactive power control capacitor switching gives more benefits, sometimes it may need to switch off the capacitors in low load conditions due to higher receiving end voltages although the station at which capacitors are connected could deal its voltage rise. In that sense, voltage controlled switching can be an optimized solution for CEB although it is not economical in some aspects described earlier.

Reactive power controlled switching aiming to manually switch off the banks at low load conditions to avoid voltage effects at remote ends was evaluated. The results are shown in figures $6.7 \& 6.8$ (OFF from 22.30hrs to 7.00hrs next day).

Comparison of voltage control Vs var control (Manual OFF at night)

Figure: 6.7 comparison of switched banks under voltage control schemes \& var control with mamual off $-24^{\text {th }}$ Jan

As we see from the drawings if reactive power controlled switching can be used as above, it can be useful. The disadvantage is the functionality of such a manual auto mixed control. However, if both voltage and reactive power combined controller having multiple variable or Boolean switching controllers can be used to switch the banks considering voltage and var, it could be a good idea.

Chapter 7

7. Conclusion and recommendations

7.1 Analysis and results

i. Using capacitor banks at 33 kV sub distribution level to compensatc reactive power requirement and thercin, to maintain voltage stability at same level is economical and effective in the CEB system.
ii. Occasions where the capacitor banks are switched ON and OFF manually by overriding the auto controller was frequently observed. This says that the switching criteria are not fully fit to the requirements in CEB system. The observations also show that present switching criteria at the selected substation neither maximize nor optimize the utilization.
iii. Simulations with PSCAD models prove the tcehnical feasibility of maximum capacitor bank conncctions to the point at which they are fixed without violating the standards. Voltage rise due to reactive power injection, effects to voltage distortion and resonance due to harmonics with additional capacitor banks, switching capabilities of the on-load tap changer and the capabilitics of AVR to handle voltage variations due to reactive power injection are the factors considered in the PSCAD simulations. The results and analysis reveals that it is possible to achieve the purpose without violating otherwise maintaining below the recommended limits of all relevant parameters.
iv. PSCAD simulations indicates that the maximum voltage rise under different capacitor bank combinations (with effective Tap control) for $21^{\text {st }}, 22^{\text {nd }} \& 24^{\text {th }}$ are 77.57 kV , $77.8 \mathrm{kV} \& 77.17 \mathrm{kV}$ respectively. The maximum percentage rise for high voltage side is $.33 \%$ and that for low voltage side is 0.95%.
v. For the worst case of conditions (which will never be allowed by the network operators),

- Maximum continues voltage at 132 bus bar is 145 kV
- The minimum sub station load $17.2 \mathrm{MW}+9.6 \mathrm{Mvar}$

PSCAD simulations indicate that the maximum low voltage rise is 3.8% and that for HV side is 0.56%.
vi. In the case of effects due to resonance for the selected substation, PSCAD simulation results shows that it occurs at an inter-harmonic condition in between $4^{\text {th }}$ and $5^{\text {th }}$ harmonics under any load condition or under any capacitor bank / transformer combination. Normally, the system does not have such inter-harmonics as per the harmonic measurements recorded for the selceted sub station. For other sub stations also, such harmonics are not present.
vii. PSCAD simulation results indicate that the highest impedance points seen by the harmonic currents sometimes fall at inter-harmonics and sometimes on harmonic frequencies. The harmonics at which these happens slightly changes with the configuration and load as well. However, the voltage distortion levels remains marginally below 8% which is the accepted level [11].
viii. Local voltage variation due to added reactive power can be handled by the AVR and tap changer controls so that any combination of banks is feasible to connect.
ix. The current through the tap changer does not exceed its switehing capacity.
x. Reactive powcr controlled based switching is a very much economical method of capacitor bank controlling as far as the utilization, loss reduction and capacity relcase is concerned. Only problem a utility may face is that, some times especially in light load conditions with long transmission lines, there may be a nccessity to have some reactive power to reduce the Ferranti effects. In such cases, minimizing reactive power consumption is not desired.
xi. In real sense, for a utility like CEB where most of the generation is concentrated to certain areas, maintaining voltage stability may be a real challenge than reducing losses using capacitor banks. In such a, voltage control based capacitor switching will be a good solution.

7.2 Conclusion

Considcring all these factors discussed so far, followings are the conclusions from this research study.
i. Present capacitor bank switching philosophy based on power factor regulation does not give maximum benefits to the CEB transmission network. This scheme neither maximizes nor optimises the utilization.
ii. Considering the installed capacitics and step sizes in each substation, it is technically possible to utilize the full installed capacities in all substations without violating the technical standards.
iii. Therefore, it is technically feasible to back feed the excess capacitor bank capacity for reactive power compensation in the transmission network.
iv. Use of a switching policy based on reactive power control or voltage control is more useful as far as the CEB system is considered. Reactive power based switching which is simple, is useful for loss minimization and voltage based control is useful when voltage stability is concerned.
v. Considering the factors discussed in 7.1 viii and ix, for network like CEB, it is useful to consider the controllers with multi-parameter or Boolean switching options. Reactive power and voltage can be the parameters to be considercd in the switching decisions.

7.3 Recommendations for future studies

When introducing a switching criterion based on the voltage, the co-rclation between AVR loop and capacitor controller loop is an important factor and need to be studied in details. Therefore it is recommended to study an algorithm to correlate these two control loops who trics to control the same parameter at the same time, to avoid unnecessary pumping of capacitor banks and hunting the tap changer.

References

[1] Kusumshanthi K.P "Benchmark the Sri Lankan power system by power quality monitoring \& analysis" Master Thesis, University of Moratuwa, 2005. Chapter 7.2 pp 51.
[2] P.Wang, D.Muthumani, Z.Zhou, J.C.Alonso, P.Wilson, R.Wachal " Transient analysis of capacitor bank installation at distribution stations with PSCAD/EMTDC. June 2007. Chapter 1 pp 1.
[3] Surcsh Kumar K.S "Applications of power capacitors in electrical distribution systems" pp 1-5
[4] IEC 60871-1 Shunt capacitors for AC power systems having a rated voltage above 1000 V Part 1: General - Performance, testing and rating. Safety requirements Guide for installation and opcration - Section 4.
[5] Website hup: w.w.w.nokiancapacitors.com "Reactors and shunt capacitor banksAn application note-EN TH08 11/2004" pp 2-4
[6] Jordan Sylvester "Investigation of harmonic voltage distortion during capacitor bank switching due to system resonance issues and transformer saturation" pp 3-4
[7] User Manual for POCOS control - reactive power controller and harmonic analyzer
[8] Technical paper in web nciuroupssamericacom "Economics when applying shunt capacitors" pp 6-7
[9] User Manual for PSCAD
[10] Website hup:w.w.w.cecrclays.co.uk, CEE Rclays Itd. "Modelling earthing transformers- A technical paper" pp 1
[11] Kusumshanthi K.P, Rangith Pererra, Sarath Pererra "Benchmarking the Sri Lankan power system by a power quality monitoring program" 2005. Section III D pp 4 .
[12] Willium G. Edwards "Distribution capacitor bank switching - A technical presentation" (for general reading reference)
[13] Website hup: W.W.W.nepsi.com (for general reading reference)
Appendix 1(a) - Capacitor bank details in CEB system

Gss	Point of connection	Mvar Rating	Currently Available	Configuration	Bank type 1		Bank type 2	
					C/Phase (μ F)	I. / Phase (mil)	C/ Phase ($\mu \mathrm{F}$)	I. / Phase (mil)
Habarana	$33 \mathrm{kV} \mathrm{P313}$	10	10	ift-1x5Mvar(typel)	14.6	0.300	13.9	36.01
				tfi-1x5Mvar(type2)				
Panadura	33 kV BB	20	20	tf -2x 5 Mvart typel \& 2 each)	14.6	0.300	13.9	36.01
				t12-2x5 Mvarttypel \& 2 cach)				
Kiribathkumbura	33 kV VB	20	20	tfi \& $3-2 \times 5$ M $\operatorname{varar(typel~\& ~} 2$ each)	14.6	0.300	13.9	36.01
				tf2-2x5 M var (typel \& 2 cach)				
Puttalam	33 kV BB	20	20	[f7-2x 5 Mvar (typel \& 2 each)	14.6	0.300	13.9	36.01
				tt2-2x5Mvar(typel \& 2 each) $\square \square$				
Kurun egala	33 kV BB	10	10	tff-1x5Mvar(typel) $\square^{\text {a }}$.	14.6	0.300	13.9	36.01
				tf1-1x5Mvar(type2) $\quad=$				
F三								
Galle	33 kV BB	20	20		14.6	0.100		
				(t2-2x5Mvarttypel) \square				
Matuga na	$33 \mathrm{kV} \mathrm{P13}$	20	20	(fl \& $3-2 \times 5 \mathrm{M}$ var(typel)	14.6	0.100		
				ti2-2x5 Marattypel)				
Old Anuradapura	33 kV BB	20	20	$\mathrm{tIl}^{2 \times 5 \mathrm{Mvar}, \mathrm{t} 2-2 \times 5 \mathrm{Mvar}}$ -	14.6	0.100		
Q un								
Kotugoda (stage 1)	33 kV BB	20	20	tf $1-2 \times 5 \mathrm{Mvar}, \mathrm{tt2}-2 \times 5 \mathrm{Mvar}$	14.6	0.100		
Kotugoda (stage 2)	33 kV BB	30	30	tf1-3x5 Mvar, tf2-3x5Mvar	14.6	0.255		
				b.				
-								
Athurugiriya	$33 \mathrm{kV} \mathrm{B13}$	20		Not encrgized duc to technical problems				
I hulhiriya	$33 \mathrm{k} \vee 1313$	10		Not energized duc to technical problems				
Pannipitiya	A TF 33 kV winding	100		Not energized duc to technical problems				

GSS		Fault Level (kA)		Transformers						\% Impedance	larthing IF	
		132k ${ }^{\text {d }}$ bus	$\begin{aligned} & 220 \mathrm{kV} \\ & \text { bus } \end{aligned}$	No	Type	Rating	Vector	Taps	AVR		Rating	Vector
***	Ifabarana	5.5		1.2	HYUNDAI II 666	23.31 .5 MVA	YNdI	18	MR VIII 350 Y	. 1046 at 31.5 MVA	0.2	ZNyn11
***	Panadura	12.5		1,2	HYUNDA1 IL288	2331.5	YNdI	18	MR VIII Y350	. 1000 at 31.5 MVA	0.2	ZNyn11
***	Kiribathkumbura	9.6		1,2	FGB. IIN\% ALISIRIA DOR. 5500 130F:	23.31 .5 MVA	YNdI	13	$\mathrm{MR}_{60} \text { VIII } 200 \mathrm{Y}$. 1090 at 31.5 MVA	0.2	ZNyn11
				3	PAUWELS TRAFO 13	$\begin{aligned} & 73-100^{\prime \prime \prime} \\ & 31.5 \mathrm{MVA} \end{aligned}$	YNdI	13	$\begin{aligned} & \text { MR MS III } 300- \\ & 72.5 \cdot \mathrm{FD} \end{aligned}$. 1090 at 31.5 MVA	0.2	ZNyn11
***	Putalam	5.2		1.2	HYCNIDAI 11.288	2331.5	YNdI	18	MR VIII Y350	. 1000 at 31.5 MVA	0.2	ZNyn11
						$\sum[\square]$						
***	Kurunegala	5.1		1,2	PALMELSTRAFO 19	$\begin{aligned} & 73-100^{\circ} 0 \\ & 31.5 \mathrm{MVA} \end{aligned}$	$Y \mathrm{NdI}$	19	$\begin{aligned} & \text { MR MS III } 300- \\ & 72.5 \cdot \mathrm{FD} \end{aligned}$. 1000 at 31.5 MVA	0.2	ZNyn11
						$\square \square$						
$\square 5$												
*	Galle	5		1	ALSTHOM SAVOISIENNE.	23.130 MVA	YNd	21	$\begin{aligned} & \text { ALSTHOM MAC } \\ & 27 \end{aligned}$. 1040 at 30 MVA	0.2	ZNyn11
				2		$31.5 \square$. 1029 at 31.5 MVA		
*	Matugama	8.2		1,2	HYUNDAI TL288	23315	Y NdI	18	MR VIII Y350	. 0998 at 31.5 MVA	0.2	ZNyn11
				3	PAUWFIS TRAFO 18	$\begin{aligned} & 73-100 \% \\ & 315 \mathrm{MVA} \end{aligned}$	Y NdI	18	$\begin{aligned} & \text { MR MS III } 300- \\ & 72.5 \text { FD } \end{aligned}$. 1000 at 31.5 MVA	0.2	ZNyn11
*	Old Anuradapura	6.5		1	ABBEITA TNARCA 31500 132PT	23.315 MVA	Y Ndl	18	MR V 111200 Y 601081 G	. 1000 at 31.5 MVA	0.2	ZNyn11
				2	ALSIHOM SAVOISIENNE THGE $1+511000$	10MVA	YNdl	21	$\begin{aligned} & \text { ALSTHOM } \\ & \text { K } 4900 \\ & \hline \end{aligned}$. 1000 at 10 MVA	0.2	ZNyn11
W0												
*	Kotugoda (stage 1)	18	19	1,2	TAKAOKA ALTOTRAVSFORMER	$\begin{aligned} & 20032503 \mathrm{HV} \\ & 603 \mathrm{HV} \end{aligned}$	YNaOdl	$\begin{aligned} & 13(\mathrm{MV}) \\ & 13(\mathrm{LV}) \end{aligned}$	MR	$\begin{array}{llll} \text { H-M } \\ \text { MVA } \end{array}$	0.2	ZNyn11
**	Kotugoda (stage 2)					-				H-I. 0.899 at 250 MVA		
						\square				$\begin{aligned} & \text { M-L at } \\ & 250 \mathrm{MVA} \\ & \hline \end{aligned}$		
-												
*	Athurugiriva											
"	Thulhiriya											
*	Pannipitiya											

Appendix 1(b) - Substation arrangement - Panadura Grid sub station

Appendix 2(b)- Comparison of measured tap with no capacitor banks and all capacitor banks

ime of day	With capacitors				Without capacitors							
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12
0.00		7	8	10	11	9	10	11	10	10	10	9
0.30		7	8	10	11	10	10	11	10	10	10	9
1.00		7	8	10	11	10	10	11	10	10	10	9
1.30		7	8	9	11	10	10	11	10	10	10	9
2.00		7	8	9	11	10	10	11	10	10	10	9
2.30		7	8	9	11	10	10	11	10	10	10	9
3.00		7	8	9	11	10	10	11	10	10	10	9
3.30		7	8	9	10	10	10	11	10	10	10	9
4.00		7	8	9	10	10	10	11	10	10	10	9
4.30		7	8	9	10	10	10	11	10	10	10	9
5.00		7	8	9	10	10	10	11	10	10	10	9
5.30		8	9	9	11	10	10	11	10	10	11	10
6.00		9	9	9	11	10	11	11	10	10	11	10
6.30		9	9	9	11	10	11	11	10	10	11	10
7.00		8	8	9	11	10	10	11	10	10	11	10
7.30		8	8	9	10	10	10	11	10	10	11	10
8.00		9	8	9	10	11	11	11	10	11	11	10
8.30		10	9	10	12	12	12	12	10	12	12	10
9.00		10	9	11	13	12	12	12	10	12	13	10
9.30		10	10	11	13	12	13	12	10	12	13	10
10.00		10	10	11	13	12	13	${ }^{12}$	10	13	13	10
10.30		10	10	1	13	12	13	13	12	13	13	10
11.00		10	11		13	12	13	13	12	13	13	10
11.30		10	11	wn	13	12	13	13	12	13	14	10
12.00	11	10	11		13	12	13	13	12	13	14	
12.30	11	10	10		13	12	13	13	12	13	14	
13.00	10	10	10		13	12	12	13	12	13	13	
13.30	10	10	10		12	12	12	13	12	13	13	
14.00	11	10	10		13	12	12	13	12	13	13	
14.30	11	10	11		13	13	13	13	12	13	13	
15.00	11	11	11		13	13	13	13	12	13	13	
15.30	11	11	11		13	13	13	12	12	13	13	
16.00	11	11	11		13	13	13	12	12	13	13	
16.30	11	11	11		13	13	13	12	11	13	13	
17.00	10	10	10		12	12	12	12	11	11	12	
17.30	9	9	9		12	12	11	11	11	11	12	
18.00	9	9	9		11	11	11	11	11	11	11	
18.30	9	9	9		11	12	13	12	11	12	12	
19.00	10	10	11		12	13	13	13	12	13	13	
19.30	10	10	11		12	12	13	13	12	13	13	
20.00	10	10	11		12	12	13	13	12	13	13	
20.30	10	10	11		12	12	12	13	12	13	12	
21.00	10	10	10		12	12	12	12	12	12	12	
21.30	9	9	8		11	12	11	12	11	11	11	
22.00	8	9	7		11	13	11	11	10	10	11	
22.30	8	9	8		10	12	11	11	10	10	10	
23.00	8	9	10		10	11	10	10	10	10	10	
23.30	8	9	10		10	11	11	10	10	10	9	

APPENDIX 3(a) - Format for results on network simulation- PSCAD file for

 21st January 2009| Simulation Data for 21.01.2009 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiple Run Output File 21 0000_0banks | | | | | | | |
| Run \# | Tap Position | HV Volitage | LV Voilage | Phing _LV | LV_M̄W | LV_MVar | Current |
| 1 | 970000000000 | 7700524558 | 33.48471654 | 28.9102039886 | 20.78008205 | 11.47616236 | 11650057576 |
| 2 | 985000000000 | 77.012423372 | 32.980508846 | -28.91024104 | 20.15900734 | 11.13316304 | 11302307792 |
| 3 | 1.000000000000 | 77.01928109 | 32.49117551 | -28.91024039 | 19.565526546 | 10.80525875 | 1096948103 |
| 4 | 101150000000 | 77.025883653 | 32.0160072699 | -28.910223964 | 18.997728158 | 10.491579776 | 1065197270 |
| 1 | 955000000000 | 75.183469666 | 33.18511965 | -28.903573332 | 20.40597652 | 11.268355132 | $77133549500 \mathrm{E}-01$ |
| | | | | | | | |
| Run\# | Tap Position | HV Volitage | ĽV Volialage | Ph Ang_LV | LV M MW | LVVMVara | C_Current |
| 1 | 97000000000 | 77.13063993 | 33.80064876 | -16.97142608 | 21.173829770 | 6.461996056 | 1074130153 |
| 2 | 98500000000 | 77.13405939 | 33.29007976 | -16.97142261 | 20.53903229 | 6.268262417 | 1042006975 |
| 3 | 100000000000 | 77.13732411 | 32.79464368 | -16.97142103 | 19.93228385 | 6.083089504 | 1011310896 |
| 4 | 1.01500000000 | 77.14044329 | 32.313688014 | -16.97141958 | 19.35196030 | 5.90598881935 | $98195875088{ }^{\text {c-0 }} 1$ |
| Mütiple Run Output File 211 Oodoó 2banks | | | | | | | |
| Rün\# | Tap Position | HV Volitage | UV Voltage | Phang_LV | LVMW | LVMuar | VCurrent |
| 1 | 9700000000000 | 77.2588323347 | 34.124348875 | -3.33800059034 | 21.57771560 | 12584868439 | 6794454748E\%-01 |
| 2 | 9850000000 | 77.257892039 | 33.607266631 | -3.3392223 2622 | 20.9299055232 | 12213100032 | $6591664180 \mathrm{E}-01$ |
| 3 | 1.000000000000 | 77.2575030380 | 333.10557528 | -3.337917828 | 20.308799510 | 1.1849352009 | |
| | 1.01500000000 | 77.257121711 | 32.618611369 | -3.3355088293 | 19715287735 | 1.149592704 | 62174876448E-011 |
| | 1.0150000000 | 77.25712171 | 32.61861369 | -3.335508293 | 1971528735 | 1.149592704 | $6211487648 \mathrm{E}-01$ |
| Müliple Run Output File 21 OOOOO 3 Bbanks | | | | | | | |
| Run\# | Tap Position | HV Voltage | LV Voilage | Ph Ang LV | LVMW | LVMVar TF | \checkmark Current |
| 1 | 9700000000000 | 77.388817778 | 34452300995 | 10.69121078 | 21799452264 | 4.151149007 | |
| | 98500000000 | 777384269927 | 33.928533348 | 10.68872963 | 21.330808859 | 40263310122 | $67080212760 \mathrm{E}-01$ |
| | 1.00000000000 | 77.380088298 | 33.42055259 | 10.685978005 | 20.69732342 | -39055589441 | $6510284018 \mathrm{E}-01$ |
| | 1.0150000000 | 777.37613631 | 32.92748610 | 10.68736488 | 20.09086688 | -3792102475 | $6320747924 E-01$ |
| 5 | 10300000000 | 77.3722292255 | 32.44874187 | 10.68637580 | 19.51109591 | -3681892354 | $6140103059 \mathrm{E}-01$ |
| Müliple Run Output File | | | | | | | |
| Rü\# | TTap Position | HV Voilage | LV Voltage | Ph Ang_LV | LV_MWW | LV_M Váa | \checkmark Cument |
| | 97000000000 | 77.52127304 | 33478613246 | 23.53346296 | 22.423095954 | -97655548278 | $7427919654 \mathrm{E}-01$ |
| 2 | 98500000000 | 77.51293442 | 34.255622904 | 23.535089001 | 2174406272 | -9470916070 | $72056088893 \mathrm{E}=01$ |
| 3 | 1.0000000000 | 77.50495217 | 33.74110889 | 23.53504725 | 21.09589055 | -9188312885 | $6991474587 \mathrm{E}-01$ |
| 4 | 1.0150000000 | 77.49730680 | 33.24172701 | 23.53789338 | 20.47591534 | -8918656265 | $6787006581 \mathrm{E}-01$ |
| 5 | 1.03000000000 | 77.489988281 | 32.75699467 | 23.533466724 | 19883822808 | -8.66002777677 | $65999941904 E-01$ |
| | 1.045000000 | 7748296363 | 3228621325 | 23535510204 | 19315788806 | -8.413063256 | 6405660403501 |
| Mülitiple Run Output file 21 0030 Obanks | | | | | | | |
| Run\# | Tap Position | HV Volitage | LV Voltage | Pthang LV | LVMM Miw | LVMMV̈ä | V-Curient |
| | 97000000000000 | 77.0005244558 | 33.486949984 | 289102303986 | 20.7800082005 | 11.476411623 \% | .76619138990E-001 |
| 2 | 985000000000 | 77.01242372 | 32.982711334 | 28.91024104 | 20.15900734 | 11.13316304 | $74328886575 \mathrm{E}-011$ |
| | | 77.019288109 | 32.403352525 | -28.910240039 | 19.56526546 | 10.805258875 | . $72140129665 \mathrm{E}-011$ |
| 4 | 1015000000 | 77.025836553 | 32018222255 | -28910223964 | 18.997281158 | 10.49157976 | 70047024748.01 |
| Mültipee Run Output iliee 211003001 banks | | | | | | | |
| Run\# | Tap Position | HV Volitage | LV Volitage | Phinng_LV | LVM MW | LVMVar TF | V Curient |
| | 9700000000 | 77130063993 | 33880286647 | -16.97142608 | 211:173822970 | 6.4619796056 | $7063815449 \mathrm{E}-01$ |
| | 98500000000 | 77134005939 | 332792266967 | -16.9714272゙11 | 20.5390032209 | 6.26882622417 | $68525731292 \mathrm{E}-011$ |
| | 1 OOOOOȮȮOOOO | 77113732411 | 32.796880637 | -16.97142103 | 19.93228385 | 6.083089504 | $6650712117 \mathrm{E}-01$ |
| 4 | 10150000000 | 7714044329 | 32.31581619 | -16.97141908 | 19.351906030 | 5.90598989935 | $64576887843 \mathrm{E}-01$ |
| Mültiple Run Output File $27-0030$ 20 2banks | | | | | | | |
| Run\# | Tap Position | HV Voltage | LV Volitage | Ph Ang_LV | L̇V MMW | | V Cürren |
| | 9700000000000 | 75.392778847 | 333278852734 | -2.67070068829 | 19.63244992 | 9154634266 | $633888087211 \mathrm{E}-01$ |
| | 985000000000 | 75.392223421 | 3277409036 | 2.669217346 | 19.04162845 | 8876354555 | 61490587331 E 01 |
| | 1.0000000000 | 75.39170817 | 32.28464290 | -2.668665422 | 18.47697173 | 8608543472 | . $59675004881 \mathrm{E}-011$ |
| | 1.015000000 | 75.39117052 | 3180967227 | -2670789836 | 17937881681 | 8367669027 | $5794394097 E$-01 |
| Mültiple Run Output File 2100030 - 3 banks | | | | | | | |
| Run\# | Tap Position | HV Voitage | LV Voltage | Phang LV | LV VMW | LVMVar M - | V Current |
| | 970000000000 | 75.520006321 | 33.59854148 | 11.95011566 | 2001172131 | 4.235325610 | $6478155760 \mathrm{E}-011$ |
| | 985000000000 | 75.51568776 | 33.087632000 | 11.950507773 | 19.40792785 | 4.41075813138 | . $6284484710 \mathrm{E}-01$ |
| | 1.0000000000000 | 75.51148304 | 32.5920028984 | 111.951212222 | 18.83061055 | -3.985746708 | . $6098139862 \mathrm{E}=01$ |
| 4 | 1.0150000000 | 75.50744840 | 32.11102547 | 11.95077679 | 18.279710791 | 3.868604512 | 5921 $3764496 \mathrm{E}-011$ |
| Mütiple Run Output File $21-0030-4 \mathrm{banks}$ | | | | | | | |
| Run\# | Tap Position | HV Voltage | LV Volitage | Ph Ang_LV | L̀̇MM | LV_MVa | Current |
| 1 | 970000000000 | 75.649771731 | 33.92456369 | 25.15776741 | 20.401690061 | -9.581636754 | .701333640773E-01 |
| 2 | 98500000000 | 75.64137957 | 33.40697012 | 25. 15464744 | 19.78399641 | -9.2908503538 | . $68032711481 \mathrm{E}-01$ |
| | 1.000000000000 | 75.63344434 | 32.00492621 | 25.156229669 | 19.1933822981 | -9.014038178 | 66012ัวั2 164 |
| | 1.01500000000 | 75.625815150 | 32.417827706 | 25.15851899 | 18.629985243 | -8.749207225 | $6408277049 \mathrm{E}-01$ |
| | | | | | | | |
| Rü\# | Tap Position | HV Voltage | LV Voltage | Ph Ang CVV | LV]MW | LV_M Var ${ }^{\text {TF }}$ | V Current |
| \cdots | 955000000000 | 7.27513202036 | 33.253882425 | -29.886454626 | 18.94153074 | 10.876336156 | $7224249489 \mathrm{E}-01$ |
| | 97000000000000 | .14556\%977 | | 37426187 | 0572067 | 0.641727559 | $1887836777 \mathrm{E}-01$ |

APPENDIX 4- Data format for measured data in Panadura Grid substation with all capacitor banks connected

APPENDIX 4- Data format for measured data in Panadura Grid substation with all capacitor banks connected

Dates sime																												
	vw				Volige e 3 3kv wis		Power factor			Pr voll 132 NV Bus			vw				Pome			Ph Voil 132 V Eus			vw		Noar		Power facerer	
					4		$\underline{11}$	12	L3									12	$\stackrel{\square}{ }$	4		-	L2]		12	L	4	-
	63	623625	0.50	265:072	33.	${ }^{325} 33380$	9525	59665	12.93			806		662		071025	-99989	0.960	C9900			53	5.35					
${ }^{8022209929809}$	505	612	0.55	662. 27.	${ }^{33} 933$	3288 $33 \times$	55322	99987	09					83: 832	10.0	26010:8	2000	20950	2030	74.35				1628 -29	0.22			8050, 50008
18.822059 .2258	-	609:	10×8	1052:068					10.9					6	,	257	O											
-902209523399	585	595.596	235	1.374 .045	3338	3362	226	598893	199		769	${ }^{7537}$	609		1205	03403	0000	0300		[7233	2499	75.3.	620	6:8 $0 \cdot 5$	026			8839 , 10000
8822209026009		597 [597	:33	1037. 0^{-1}	33363				\%			75.5			-	026.-2	000	2030	-	: 24.9		7553 5 S	58			0 \%		
8822099250.35	586	595.595	228	032.038.		2330.33	888				4997		592		-20	327	5002	0000		1292	85		655	60. 028	$0 \cdot$	20.5.	-200	200
-8222009308599		$555^{\text {P }} 5$	c2e	23: 035		330933, 31					75	7553	588			22	2003	0005					555	596, 032		322.	1088	c900:1080
882200913.208		555.598	c28	183, 0.35			12.98868	5993			-		590	599	1.23		-6033	0208						600.632		C22.		
8822 209 320050				2,56		284									022			0×0									2000:	.0000 00000
88.82099330308	59	$600 \cdot 60$	33	039							48	74.93 ${ }^{\text {5 }}$	597				cas0	0500									0200	case
8822009530208	Es				52	239.3595	c99				56					23.	008	500									: 203	.c000
22099.3595		62: 621	0.9	1256					299522			767		62282	O2	c69 0.3	2038	S00							029			
22009 45095	623	C29. 629	${ }^{1.56}$	\|063. 267			cosece					7268	-			0.9.0	5000	188					27					
829230994.4038						${ }^{89} 3$										0.57	0200											
${ }^{8625005} 420038$	6.6	65: 654	E72	280.985					0.5	S	73898		${ }^{6} 47$			1064.0		. 03			7397			6502.04				
88022009 : 3 3,00	66	67\% 569	078		3268	3235,229		99:888			${ }^{73917}$	272			${ }^{827}$	28: 6.33	1020	-9998			73.9			672				
88022099365000		669665	075	883, 089							78.8	24.32		68. 683	026	28.0		0988			7384					027		-298
880220991458080		${ }_{668} 8.18$	07	ces:		2286 ${ }^{3}$								578.682	026								673					
$8.022005 \cdot 560005$	5.5	654.650		073.38.		13309.13855				${ }^{3375}$.		685. 6.83	826	0.78 .2 .3	cose	2998						679				
22009 95000		$6.52 / 652$	068			30	O9946									265	0000	2990										
22099:52000	-	$6_{653} 653$	207	[078 885	327.	3295.3305	-	299892	1298	[13971		$7^{75} 5^{6}$		6.65. 686		07: 23		2993		8:	73						1305	1000
2209953808	6.37					32998; 33 33]			092233		33.	${ }^{1422} 6$		${ }^{6.559} 6.65$				-9593										
2209	. 336	8.4. 69	,	\%-..7	,	3350. 38.55	Co9652	dessa		38	720	1248		6.50 E52		066.020		109880									20	
2095-5508	637	$5_{655}^{6.658}$	072	$0^{0781.0 .85}$	$\left.\right\|_{2027} ^{327}$	3299, 3305				34.	${ }^{23} 37$												$\left.\right\|_{652} ^{65}$	${ }^{653}$ - 89				
22099-82089		6339637	068		3280	3304 33.8	- 54.22			7397]	1768	${ }^{73,55} 6$			028	,							Es					
22009 881009	625	6.38 638.	${ }^{\text {P88 }}$	[074.08.	${ }^{3289} 3$							${ }^{3464}$																
2009 6		623.62	257																									
8027099.63089	58	588																										
2209665	${ }^{5.5}$	${ }_{5 \times 9.550}^{550}$		P2:03	${ }_{3283} 3$	3368.3	299				667	75 [8	509	52: $5 \cdot 3$		$\int_{028.065}$	0.59							\|5:5 073				
22097308	${ }^{\text {S. } 38}$	5.27543	-02	1084.005	334	1335,3				<85	7690	/ 7384		553. 55.5	-62	. 882.04	-	8308	case	147			55	558.8	[0.8)		.2038	0
22099 71908	542	5.75546	0.3	1054.005	3322	-						759	536		0.5	-23	S893:	838	P9938	152	159		550					
22009.72003	${ }_{5}^{53}$	538.538	3.3	-.007 .005	${ }^{3323} 3$	3346, 3	C99669	O99598	209935	17589	7566	776	56	548.56	cas	1.007	$\underline{ }$	\cdots		${ }^{555}$	7572.		54.	568, 5	-22			
		5.8:5:8	- 225	-0.9.0.	,	${ }^{33} 3138$	C.998825		Co99985.	2768		${ }^{7655}$	526	${ }^{535}$ - 63	${ }^{68}$		29			594	$76: 7$	76.55525	${ }^{63^{\circ}}$					
	5:		-.25	-623-027												. 23.												
	${ }_{5}^{533}$		${ }_{\text {\% }}$	\|re.039							${ }_{7}^{76.35}$	${ }^{7} 788$			${ }^{678}$						$\begin{array}{\|l\|l\|l} 7642 & 76 \\ 7642 & 7 \end{array}$		E36		$\begin{gathered} 054 \\ 062 \end{gathered}$			
88.2508989 .008	$5: 8$	$623 / 522$	${ }^{3} 2$							${ }^{6} 5.3$	$5: 2$	1674	492		-	\%	-											
8022099.820 35	55	5.56: 588	O2	-22: 222							760:			526		. 44	0							[52 205	859	-. 83		
200 : 833		6.826														- $034-074$								568				

Appendix 5(a) - Format for Frequency-Impedance simulation data - PSCAD
files for different loads

| $\mathrm{F}(\mathrm{Hz})$ | \|Z+|(ohms)
 Load1
 2.076588 | Z-I(ohms) Load2 | $\|Z+\|$ (ohms) Load3 | $\begin{gathered} 1 Z+1 \text { (ohms) } \\ \text { Load } 4 \end{gathered}$ | $\begin{gathered} \|Z+\|(\text { ohms }) \\ \text { Load5 } \end{gathered}$ | IZ+\|(ohms) Load6 | (Z+1obims) Load7 | $Z+1(0 h m s)$ load8 | $\overline{Z+1 \text { (ohms) }}$ Loade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 2.0765887 | 2.0974091 | 20938632 | 2.0924098 | 2.0904169 | 20380374 | 2.0166673 | 20358159 | 2.0277524 |
| 60 | 2.5324908 | 2.5580873 | 25532651 | 2.5511371 | 25482138 | 24822916 | 24554765 | 24774542 | 2.4670118 |
| 70 | 3.0162483 | 3.0470377 | 30405371 | 3037462 | 3.0332319 | 2.9516432 | 2.9185768 | 2.9426786 | 5 |
| 80 | 3.5364887 | 3.5730226 | 3.5642736 | 3.5598639 | 3.5537925 | 3.4536223 | 34132049 | 34384057 | 3.421432 |
| 90 | 4.1049853 | 4.1480014 | 41361 | 4129873 | 4121186 | 3.9983713 | 3.9490821 | 39738656 | 3.9522605 |
| 100 | 4 | 4.7889353 | 4. | 4.7637661 | 4 | 46000412 | 45357269 | 4.5617876 | 8 |
| 110 | 54616 | 5.5 | 5 | 5. | 54675564 | 5 | 8 | 5.2204323 | 5 |
| 120 | 6.313534 | 6.3837841 | 63520728 | 6.3327479 | 6.3062025 | 6.0674403 | 5.9739428 | 7 | 7 |
| 130 | 7.3595296 | 74436187 | 7.3969111 | 7.367479 | 73271645 | 7.0157807 | 6.8954229 | 6.8754771 | 68114973 |
| 140 | 8.7194927 | 88219906 | 87491315 | 8.7018956 | 8.6374988 | 8.2133364 | 8.0522694 | 79881293 | 78981076 |
| 150 | 10 | 10 | 10 | 10 | 10 | 98299192 | 91 | 9.4465598 | 9.3123762 |
| 16 | 13 | 13 | 13 | 13 | 13 | 12.226899 | 11 | 11.504469 | 1128621 |
| 170 | 19 | 20 | 19.34241 | 18 | 18278965 | 16.260304 | 15599972 | 14650473 | 1 |
| 180 | 37.950898 | 36.802963 | 33.072782 | 30.915345 | 28 | 23.455769 | 9 | 62 | 18428301 |
| 19 | 37148986 | 33.897713 | 31 | 29.267838 | 27.233357 | 24 | 23.319389 | 19584215 | 31 |
| 200 | 12.372 | 12.10434 | 11.969455 | 11.860278 | 11.714053 | 11.70184 | 11.706542 | 11.016954 | 0.91408 |
| 10 | 4 | 4.822 | 481 | 4807 | 47979541 | 4.8344668 | 48511058 | 47788975 | 47755018 |
| 220 | 1 | 1.2 | 1. | 1 | 23 | 12377061 | 1 | 6 | 6 |
| 230 | 1.0498 | 105102 | 1. | 1 | 1 | 10476728 | 1.0464051 | 2 | 1 |
| 240 | 2.7516257 | 2.758 | 2 | 2.7551 | 2 | 2 | 2 | 8 | 4 |
| 250 | 4.1 | 41804 | 4. | 4.168822 | 4. | 4.1078978 | 4.0855856 | 4.0819208 | 40695309 |
| 260 | 5.4 | 5.4587562 | 54 | 54338296 | 5. | 53228248 | 5.2837336 | 52646531 | 87 |
| 270 | 6.6 | 66 | 6. | 6.6308 | 6.6056 | 6.4554109 | 63957629 | 6.3504241 | 6.3122625 |
| 280 | 7. | 7. | 7. | 7811 | 7.7709887 | 75549175 | 7.47038 | 73860644 | 7.3295131 |
| 290 | 908 | 9.124488 | 9 | 9. | 8 | 8 | 8.5402268 | 8.4015203 | 3 |
| 300 | 10.3 | 10.43 | | 10 | 10 | 9 | J. | 94168265 | 3 |
| 310 | 11.7 | 11 | 11 | 11 | 11 | 10951355 | 10 | 10.445516 | 3 |
| 320 | 13.3 | 13 | | 13.05 | 12.87382 | 12 | 11.93 | 11496195 | 11312963 |
| 330 | 15091855 | 15 | | 14 | 14.38 | 13.493189 | 13.172 | 12.57305 | 12.339779 |
| 0 | 17 | 17 | | 16.4112 | 16048968 | 14.888592 | 14483316 | 13675672 | 3.382861 |
| 350 | 19363542 | 19.3 | 18 | 18 | 17 | 16.37663 | 15 | 5 | 14435844 |
| 360 | 22.050869 | 21.925 | 21.1309 | 20 | 19 | 17 | 17 | 15929453 | 4 |
| 370 | 252 | 24.97982 | 23.830134 | 23.056 | 22 | 19.515551 | 18 | 17. | 7 |
| 380 | 29.0 | 28 | 26.89811 | 25 | 24 | 21.326394 | 20.3 | 18.133858 | 17.505988 |
| 390 | 33718426 | 32.78955 | 30 | 28 | 26 | 23.039317 | 21.881 | 19.147976 | 18.421663 |
| 400 | 39.269064 | 37.6 | 34.05546 | 31.9133 | 29.493543 | 24.67978 | 23318908 | 20.054701 | 19.233615 |
| 410 | 45.684875 | 42.8 | 37.82742 | 34. | 31.849006 | 26.150176 | 24.597344 | 20.815705 | 19.910797 |
| 420 | 52 | 47 | 4 | 37 | 33 | 27 | 25 | 21 | 5 |
| 430 | 58.116626 | 5183139 | 43. | 39 | 35 | 28.154837 | 26.351306 | 21.776488 | 20.764525 |
| 440 | 60.734608 | 53.269008 | 44 | | 35.5 | | 26.7 | 21 | 20.917864 |
| 450 | 59.267 | 51 | 43 | | 35 | | 266 | 21 | 20.893508 |
| 460 | 54.7 | 48 | 4 | 37 | 34061192 | 27 | 26343902 | 21.685997 | 20708729 |
| 47 | 49.1 | 44.3 | 38 | 358067 | 32.505447 | 27.1996 | 25721813 | 21.312829 | 20388199 |
| 480 | 43. | 40 | 35 | 33 | 30 | 20 | 24.901883 | 20.819 | 9 |
| 90 | 38.7 | 36 | 33 | 31 | 28.837307 | 25 | 23.956855 | 20 | 19452659 |
| 500 | 34.7 | 32.7 | 30. | 288149 | 27.01248 | 23.903527 | 22.94808 | 19. | 18.891628 |
| 510 | 31.3 | 29.774232 | 27 | 26.75389 | 25.293 | 22.731609 | 21.92221 | 18.942231 | 18.298912 |
| 52 | 28.4 | 27.2 | 25 | 24. | 23. | 21.595455 | 20.911746 | 18.268378 | 7.6921 |
| 530 | 26.089803 | 25.130025 | 24 | 232 | 22 | 20.514995 | 19.937501 | 17599207 | 17.084634 |
| 540 | 2406372 | 23.28767 | 22 | 21.76 | 20.953748 | 19500216 | 19.011535 | 16.94503 | 16.48632 |
| 550 | 22.32902 | 21.692 | 20 | 20 | 19.77027 | 18.554563 | 18.139739 | 16.312695 | 15.903973 |
| 560 | 20830007 | 20.300046 | 19703 | 19. | 18 | 17.677432 | 17.323909 | 15706387 | 15.342051 |
| 0 | 19.523275 | 19.07705 | 18 | 18 | 17. | 16.865876 | 16.563261 | 15.128356 | 14.803232 |
| 580 | 18.374857 | 17.995108 | 17.576682 | 17.2648 | 16.854492 | 16.115724 | 15.855478 | 14.579467 | 14.288878 |
| 590 | 17.35799 | 17.0 | 16.67618 | 16.4092 | 16055889 | 15.422288 | 15.19742 | 14.059634 | 13.799418 |
| 600 | 16.451409 | 16.16870 | 15.863993 | 15.633778 | 15.327384 | 14.780784 | 14.585571 | 13.568141 | 13.334626 |
| 610 | 15.638068 | 15.391242 | 15128046 | 14.928091 | 14.660757 | 14.18658 | 14.016335 | 13.103874 | 12893844 |
| 620 | 14.904178 | 14.687194 | 14.45825 | 14.28346 | 14.04884 | 13.635323 | 13.486196 | 12.665485 | 12.476137 |
| 630 | 14.238489 | 14.046559 | 13.846124 | 13.692431 | 13.485409 | 13.123006 | 12.991823 | 12251512 | 12.080404 |
| 640 | 13.631746 | 13.461025 | 13.28452 | 13.148645 | 12.965061 | 12.645977 | 12530113 | 11.86045 | 11.70546 |
| 650 | 13076275 | 12.923648 | 12767379 | 12.64666 | 12.483107 | 12.200942 | 12.098216 | 11.49081 | 11.350092 |

Appendix 5(b) - Format for Frequency-Impedance(ohm) simulation data - PSCAD files for different transformer/capacitor bank configurations

	For average day load						For maximum day load						For minimum night load					
$F(\mathrm{~Hz})$	1TF/1Cap bank	$\begin{array}{c\|} \hline \text { TF/2Cap } \\ \text { bank } \\ \hline \end{array}$	2TF/1Cap bank	$\begin{gathered} \text { 2TF/2Cap } \\ \text { bank } \\ \hline \end{gathered}$	$\begin{gathered} 2 \text { TF/3Cap } \\ \text { bank } \end{gathered}$	2TF/4Cap bank	1TF/1Cap bank	$\begin{gathered} \text { 1TF/2Cap } \\ \text { bank } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2TF/1Cap } \\ \text { bank } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2TF/2Cap } \\ & \text { bank } \end{aligned}$	$\begin{gathered} \text { 2TF/3Cap } \\ \text { bank } \end{gathered}$	$\begin{gathered} \text { 2TF/4Cap } \\ \text { bank } \end{gathered}$	$\begin{aligned} & 1 \text { TF/1Cap } \\ & \text { bank } \\ & \hline \end{aligned}$	$\begin{gathered} 1 \mathrm{TF} / 2 \mathrm{Cap} \\ \text { bank } \end{gathered}$	2TF/1Cap bank	$\begin{gathered} \text { 2TF/2Cap } \\ \text { bank } \end{gathered}$	$\begin{gathered} \text { 2TF/3Cap } \\ \text { bank } \end{gathered}$	$\begin{aligned} & \text { 2TF/4Cap } \\ & \text { bank } \\ & \hline \end{aligned}$
50	3.530260	3591255	2.016445	2.035243	2055395	2.074929	3.524365	3581632	2.016361	2035122	2.055281	2.074724	3779017	3.845555	2.092375	2.112594	2.134393	2.155489
75	5.	55	3.	3107011	3183534	3254573	5255470	5.447640	3024282	8072	3163514	3233115	5758072	5994559	3167987	3238324	321984	3.399629
100	7.1209	7744491	4.10599	4.265768	4.484816	4675830	7003480	7461877	404937	09	09	7521	11532	8.525269	88236	4.473812	4.717358	68
125	8.968542	10.505054	5265659	5600677	6177524	6.641357	8.895943	9826122	5140100	5454989	5.994782	6421034	10490014	0216	3742	87	846	7.123927
150	10.875430	14745388	22	93	9.020576	50	11330262	13.128408	6443683	7.048253	8523768	9.567186	14324683	17.708778	7141791	7910127	9912780	1457938
175	12.86716	25	9.146337	661300	18.693724	24698128	16	19	8	4775	5,907987	19495743	24527421	37517340	10015644	18874050	23.924537	6288834
200	14976218	18.551817	27.229516	36213069	9671190	8241301	22447167	17657433	20906112	25499368	9623860	8336056	25968217	17879006	42.081602	64233050	9.261599	42
225	1724300	2.166686	1.887790	1964931	1.065868	1090080	2049656	2140753	868376	1943815	1083532	1083864	2105339	01814	14168	1918392	. 074020	. 098615
250	19.716856	8.77987	52983	6.031	14747	4545774	5582	7618587	5114276	5787748	4017643	4413507	33596	8.679735	31610	6317856	4249488	712852
275	22.456639	11761127	6.76483	8.	6.005077	7077194	4007	10	6444826	$76718: 2$	5.763283	67245	9895121	13188902	7162076	874154	99	65
300	25	14897932	7.78	9.884352	7559317	9531297	9805664	13 4 49262	7344118	9154046	7.151852	8855633	1783752	174149	8323262	1081107	6108	97
325	2900693	17.991	8.515559	1556918	90	2280023	108066146	425295	8068965	539409	8419956	12353	3320506	05768	9.294211	1289117	72193	77
350	32.54717	212932	93	299837	10493612	: 5652772	3	7735598	8701908	11.963550	49	751300	66199	1483	10.6576	5156109	695	8431290
375	37.3	24.9890	10.02453	5.200462	2054919	20.688	12	20.205431	9278754	343456	0.963204	16.977953	$1588 \cdot 203$	34392081	0977037	-7749776	13517815	03
400	42.1	2925	065632	73	13	26254480	3067663	22934539	818198	50686	1234727	21103845	17017516	4370890	174804^{-}	20.84000	552:1	:8
425	46.92	342	257460	9815303	568999	350	13704057	260282	0.331370	03	3868626	26664678	8094950	56.8:05:6	24904*	26661623	18395051	59235736
450	51.02358	40.	83	22.744632	7909482	CE	14390263	29573	9825	9007863	5579121	3311827	928596	752629	11525	29576365	21614682	95372688
475	53491381	4653008	2395	26.290303	2053.549	53586688	8899	33	- 3049	2.46508	17.542041	39	2029	969	390637	36	25.684469	038
500	53	52974596	296076	30670715	23703096	48964812	15463985	378619	7384	2438300	9838783	4244098	210455	106.14002	0852	45	31	5:362739
525	$5:$	578285	3.474931	36	27629890	3¢ 25275	16021842	42368	2346	27897238	22577063	39263915	22059275	92.772252	29064	59630013	38457343	36227899
550	47	59	3.999560	4	,	32	6571538	46	2689	32.167	25.50117	33388963	22998756	7375176	5964740	8:749820	49393646	27.884247
575	$\angle 3.61362$	56823	6511633	5	39	25481	17	40.01658	3139308	37343605	30.0	27860186	23925892	58886276	16.832	28978	6667642	22698587
600	39.45893	5-875:45	502538	60.79:28	47342252	21413938	17655886	49436	35	43439704	35105280	23	24843262	48363700	1729487	27704	95.305034	99
625	35	46.87816	5.5	67.860850	6469	29040	8. 193454	47	40298	8629	1886	20.116535	25	96	7.953170	$03<538$	33	,
650	32	820	5039606	42	68	16.61	8729454	4419687	4472	96:9	48864733	17.528897	25656452	35262687	18.608092	76404502	28.40875	4
	29.	36	6.5393 .3	62933276	73596942	14384580	-9204668	40.71380	493	58230534	56427295	5497257	275552	31002685	60304	$584838:$	93006296	3.172135
	26.6	32.2	17.037653	54501372	6.	12955730	9799691	$36 \quad 74346$		66332872	61448699	13868775	28450237	27647105	19.910348	4588905	67.584813	$\bigcirc 941529$
725	24.412	28915403	753369	46462679	60509478	1178	20334978	32.523	5.79309	205827	6. 056825	12537637	29342387	24936958	20.558672	38	52109166	0.92315
750	22518469	26:149466	8.02834	35795924	50738096	7517	20.870872	$293 \leqslant 5439$	6.232	054015	55,709670	14330272	3023235	22701478	2120566	33	42180528	0064450
75	20	23	8.52	34483977	42661202	9960799	21407633	26.546324	667250	39274499	48490393	0.0494702	3:120709	20.824359	2:85:560	29092740	35371041	32912*
	19	2	190	30263566	36379588	9239403	5450	24.6402:	71125	6 C 2	4. 64437	9693450	32.007908	922402	22.496680	25796501	30.435310	8691060
825	18.05293	20	19507423	26	3	8610160	22	22.1117	17552934	30.255257	35902	8999135	2894327	441729	231420	23161624	26698711	8 $13: 107$
850	16	18.61092	9.999	24.112956	27702	8055739	23.024772	20335355	17993862	25.903102	31267252	8391057	33780273	63417	23785322	21 c05322	23.771086	7634865
875	15.845839	17304307	2049	218	24	7552	23566441	18.788095	18.435379	24135682	2754166	7853586	34665994	15.56879	24429159	92059	21413236	7191302
900	14	16	20.9	9	22	712	24.09511	17431275	188775	21.828746	24522008	7374599	35551694	1462061	25.072838	76795	104	6791818
	4	15	z'		20	22	24654003	6233	-9320404	9884 23	22042782	6394582	36437534	377020	25.6458	635648	286	6×9
950	13	14.202283	21.969249	16869959	18375530	6361010	25199922	15168525	19763985	8226445	19978888	6555971	37323647	13002202	26.360098	2233	16451925	$6.0992 \div 9$
975	12	13	22.	15	16	60	2574726	14216135	20.208308	6798223	18237	6202681	38210138	12.304326	27.003824	4217658	15251592	5.796221
000	119243	12.	22	14.570977	15620081	,	26296007	13.359181	20.653383	15.555461	16750	5.879760	39097090	11666619	2764769	3324762	1.20253	5516984
02	11325261	11.	23.4	617	14505393	44	6846	12.583789	21099214	14464220	154650	5583143	39984570	11080939	28.291740	2525557	33.276433	58500
-	10.77090	11	2394422	12766670	135230	518		11.878542	215458	49806	14343528	5309459	40872627	0540554	28936008	1805041	12.451627	5.018256
1075	10.256114	10.726823	24	12.00	12	494	27.950421	11.233984	21993135	12.636193	13355646	505589	41.761301	0.039856	29580522	151259	1171127	4794134
100	76477	10.19251	24.93	11.308079	11.8679	4724009	2850451	10.642236	22441208	11862052	124782	4820068	42650620	9574132	30.225304	0.554574	11.042092	584339
1125	9.3282	9696959	254308	10677277	11162862	513899	29059859	10096691	22890008	11.162347	11.693217	4.5999	4354060	9139394	30.87037	0007127	10.433443	4.38733
1150	8.908066	9235707	25927563	10100057	10523133	4316633	29616418	9591775	23.339520	10526294	10.985986	4.393903	44.431262	8732242	3151573	9502447	8876727	4201805
11	8513	8804965	26.42483	9,	9.939448	4130898	30174153	9122760	23789729	9945065	10344945	4200369	45322606	8349763	32161409	9035157	354909	026607
1	8.141112	8401475	26922	9079233	9404171	3955557	30733027	8.685609	24.240618	9411371	9760636	4018101	46214637	989441	32.807395	8600750	8892176	3860748
1225	77889676	8022424	21.42114	8624799	8910990	3789618	31.292999	8276863	24692169	8.919149	9225307	3845996	47107353	7649098	33453698	8195425	8453687	3703364
250	7456978	7665372	2792016	8.201867	3.454	3.6322	1854	89353 ?	25.144363	8463313	732	683087	48.000	73268	34.1003	8159	804	355

APPENDIX 6 - Data format for harmonic measurement - Panaduara grid sub station

Date	Time	THD \%			$3 \mathrm{dr} \%$			5th\%			7th\%			9th\%			11th \%			13th \%		
		L1	L2	L3	L1	L2	L3	11	12	L3	L7	L2	L3	L1	L2	L3	$L 1$	L2	L3	L1	L2	L3
01022009		120	140	13		U 60	05		060	0.80	030	02	030	010	020	020	0.30	0.30	0.70	0.20	010	0.20
01.022008		100				046		050	00	$\bigcirc 80$		060	0.40	0.10	020	020	040	040	0.40	030	260	030
0102.2009	172000	350	200	00	010	080	Om	030	08	10	040	06	030	0.60	0.50	:30	0.40	060	C 50	040	050	0.10
01.022009	173000	1.30	120	150	030	040	30	090	月0	110	080	060	040	030	0.20	$\bigcirc 20$	0.40	010	040	0.30	30	0 30
01022009	174000	130	1.10	a	03	040	00^{0}	0.0	080	1 10	030	03.	030	0.20	10	:10	040	c 40	040	0.30	030	0.30
01027009	17	120	10	110	0.0	0.4		¢\%	-			31	$0 \times$	020	010	10	0.40	030	750	c 30	$\bigcirc 20$	030
01.022009	180000	130	120	1 do		04		1	50	170		030	030		10	10	040	040	050	040	20	030
0102	18.10:00	: 30	35						095	120	030	040	030	0.2	010	10	040	0.10	010	030	220	0.30
01022009	18	130	130	140		08	$3+$	00	0	4.10	030	A 40	c30	020	010	$\therefore 10$	041	040	040	020	020	030
31022009	:83000	130	130	14					0	1%	030	30	-30	10	0.10	0	040	0.40	40	030	020	020
01022009	18	+ 10	4	-					039	00	03.	0	030	040	10	10	0.10	050	040	020	20	0.10
01022008	18.5000	110	110	1 \%	060		0 O	080	Od	080	020	030	O30	020	0.10	¢ 10	030	0.40	0.40	0.20	0.10	020
01022009	19.0000	110	160	1.6		0	000	\%/b	060	0.0	0.20	030	030	020	20	0	30	0.30	0.30	0.20	010	020
01022009	191	120	110	1.36	0.40	0.0	040	070	060	0.0	020	330	030	c. 20	0.1	01		030			20	
31022008	18.	0.80	U 8	000	Q30	0.3	0%		0.60	010	070	030	030		010	${ }^{0} \mathrm{y}$		03	020	020	020	20
01.022009	193	1.20	120	1.20	0.6	00	40		06	O8		030	O.	C. 10	0	11	020	020	020		20	
01.0	19	160	05	10	080	On	03	080	0.	80	0.3	03	030	0 10	0.10	010	030	030	0.20		02	
31022	195		110	120		0 de	0		0		020	030	020	010	010	¢ 10	0.20	020	0	0.20	020	020
01022	200	- ic	:10	i 20	O 30	124	0	09	Q0	090	02	030	Q	C	010	10	0.20	0.20	020	0.30	020	030
01022	20	110	000						¢ 4 \%	080	3	08		012	10	1110	020	020	010	0.30	20	
010220	20	1.10	130						080			020		010	010	C: 10	020	020	020	030	Q30	030
01027009	20	130	120	130				4	C3	10	02	030	030	010	0.10	$\therefore 10$	070	0.30	020	030	430	-30
9102	20	130	1.0					\square		100	:n	190	9\%	010	010	$\square 10$	030		070	030	030	0.30
01022009	20								0	¢		S0	030	020	010	10	0.30	020	020	30	-30	C30
01022009	21	130	140	140					050	1					010	. 10				030	030	
01022009	21	-30	$1: 0$	30				I	18	i 00		0.9	$\square 30$		010	010	- 030		020	030	330	
0102	21		\square		00			100				\% 30	070	a 10	010	010		0.30	020		30	
0102	21		$!$	130		0			100	120	0	030	03	:20		O20				30	030	
0102								16		-10		030	030		010	is 10	030	0.30		0.30	O 30	
210220	$21: 5000$; 40			00	0 co	110	110	30		O	030	020	020	20	0.30	030	020	020	030	
01022	22		1.10		0										019	020		0.30	030		0.30	
31.02	22															020			030	020	03	
01028009	27	150													$\square 16$	10		10.			020	
01022006	223	650													020	20			040		0.20	
0¢ 02.2005	22														010	b	040	() 40	0.52	020	020	
01022009	22	150	45								030			016	010	10	0.30	050	040	020	0.2	-10
01022008	23	160		,							a.			020	010	120	050	0.40	060	030	020	030
0102	23	16			¢at					12		Ont	0.	0.0	-	-20	0.50	0.5	060	0.30	0.10	30
01.0220	232	140	1.40	80	340	0.		1 it		150	Q8	Of	0.	02	020	120	0 O	060	0	30	010	
01022009	$23: 30$	14	- 30	110		04	Q 0	10	T80	130		040		0.30	020	-	050	070	070	020	030	
01022009	23.4		i40	180		060		120	080	13	030	340			0.10		0.60	0.60	060	0.20	030	
01022009	23								0.	140						© 10			070		20	
02022009	00			$1 / 0$		C.		119		30									070	$\bigcirc 30$. 20	
02022009	00		140	80																		
02022009	00															O30					010	
02022009	003															20			060			
02022009	-0		1.										\checkmark									
0202	00								3							60			050	030	020	
020,2005	01.0	1 c					-					\square				(?		060	0 20	020	220	
02022009	011000	1.80	120										a	130	020		040	0 b0	0.0	20	030	
02022009	012000		120						03	明	On-	150	06	030	020	\cdots	0	03	06	020	020	
02022009	013000	270	$\cdots 10$		3 3				080		04			0		-2	060	0.50	070	030	- 30	
0202	01	50	140		Qub		\cdots		10		04	040	060	030	0.10	U		$0 \cdot 10$	0.50	0.2	030	22
02.022009	015	200	1	210	0 ¢	04		1,9	100	T\%	U	Q	066	030	010	020	050	050	0	030	40	030
02022009	0200	\bigcirc	140	$?$ ¢	040	\bigcirc	0		U	180	0	0.5		030	010	¢	0.6	0.5	0.10	0.30	0.30	0.30
02022009	02:1000	200	9	20	-	-4		18	13	0	0	30	0.50	03	0	020	060	0.4	0.0	0.3	-3	0.30
02022009	022000	19	1.00			040				C	C	$\bigcirc 6$	060	03	0	020	0.60	040	06	0.30	03	020
02022009	$\bigcirc 30$	9	200						1	8		Uo	$3=0$	-80	0.10	-10	0.	0.4	6	03	0,30	020
02022009	024000	200	$\bigcirc 50$			d	,			ρ		\%		07	01	P?	060	040	070	030	43	0.3
02022003	02	1.90	.		4.0	\square			110	18	240	08	060	0	$\square 10$	020	0.6	0.40	. 5	03	030	020
02.02	030000	1.	1.0	$\bigcirc 13$	04	3	B		7 \%	18	03	0	08	020	010	20	010	0.40	07	0.30	04	030
02022009	03:1	180	1.9	? 10	am	U40	08		10	1	030	is	05	Q 3	01	020	0.6	0.40	0.	0	0.40	-30
02022009	U3.20	260	21 Lj	280	$0 \leq 01$	00	\%	711	120	10	0	as	0.0	03	D. 20	प2	0	040	060	0	0.40	020
0202	03	1.	146	200	U0	3	3	4	100	160	030	060	8.	020	0.10	620	O	0.30	060	030	030	020
02.0220009	034	110	4.60	± 0	06	23		1.	10	160	03	Q 50	0.50	020	010	¢	0.6	0.40	0.70	0.30	040	Q30
02.022009	03.5000	1.80	140	200	CSO	0.01	\%	moud	00	16	0%	\% 5	cot	030	010	01	060	03	0.70	030	0.40	030
02.022009	04:00:00	80	12	15	\%	- 3	0	m	080	18	¢ 4	36	0.60	030	010	010	060	040	070	030	030	030
02.022009	041000	180	160	20	1	430	0	18	00	17	$0 \cdot$	040	U.	-3	010	010	0.6	059	0	030	030	030
02022009	042000	210	410	\%	. 0	10		! 4.	U3	16	$0 \cdot 6$	$0+10$	060	0.30	010	C10.	0.50	0.40	060	$\square 30$	020	030
02027009	043000	170	120	14.8	C	-30			0	1.	8	23	30	030	02	$\because 10$	0.50	050	0.60	030	0.20	03
02022009	044000	10	- 30							1	0.	0×5	0×1	$0 \cdot$	18	. 30	040	050	0.5	0	03	J30

APPENDIX 7(a) - Format fo results - Reactive power control switching points
for 215 , tanuary 2003

\qquad

 गo:

 \&:

\qquad
-

 - ! ! ! ! ! ! ! ! ! ! ! ! ! !

 amimimimimimimimimimimim

APPENDIX 8(a) - Format for results - Voltage control switching points for 21st

 January 2009| Multiple Run Output File 21_0000_1banks | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run \# | Tap Position | HV Voltage | LV Voltage | Ph Ang LV | LV MW | LV MVar | Current |
| 2 | 97000000000 | 7532032959 | 32.95212067 | -15.97142769 | 20.12217291 | 6.141043122 | . 1047113926 |
| Multiple Run Output File 21 10030-1banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Vollage | PhAng LV | LVMW | LVMVar | Current |
| 1 | 9550000000 | 75.21847399 | 33.47533637 | -16.94190492 | 19.86611170 | 6.051709766 | 6802097942E-01 |
| 2 | . 9700000000 | 75.22181367 | 32.96183462 | -16.94190555 | 1926131684 | 5.867473396 | . $6595553861 \mathrm{E}-01$ |
| 3 | 9850000000 | 75.225000017 | 3246378621 | -16.94190212 | 18.688365389 | 5.691501514 | $6398320272 \mathrm{E}-01$ |
| Multiple Run Output Fiie 210100 1banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voltage | PhAng LV | LV MW | LV MVar | Current |
| 1 | 9700000000 | 7526806369 | 32.96479330 | -16.94190500 | 19.26428807 | 5.868377580 | . $696144284 E-01$ |
| Multiple Run Output File 210130 1banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voitage | PhAng_LV | LVMW | LVMVar | V Curent |
| 1 | . 9550000000 | 75.33975274 | 33.56966090 | -1706118669 | 9.30297751 | 5.924090953 | $6600264148 \mathrm{E}-01$ |
| | 97000000000 | 75.34301194 | 33.05457463 | -1706118815 | 18.71512794 | 5.743697131 | . $6399891474 \mathrm{E}-01$ |
| 3 | . 98500000000 | 75.34612162 | 32.554997576 | -17.06118760 | 18.15371636 | 5.571397652 | $6208551477 E-01$ |
| Mül̃tiple Run Output File 21_0200 1 banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voltage | Ph Ang_LV | LV MW | V MVar | Current |
| 1 | . 9550000000 | 75.54250393 | 3357812582 | -17.33496814 | 18.83022689 | 5.877619917 | . $6451673569 E-01$ |
| | 970000000000 | 75.54578537 | 33062885366 | -17.33497183 | 1825675767 | 5.698618796 | 6255815411E-01 |
| 3 | . 98500000000 | 7554891640 | 3256309713 | -17.33497103 | 17.70902881 | 5.527650678 | . $6088787675 E-01$ |
| Muiltiple Run Output Fiie 210230 1banks | | | | | | | |
| Run \# | Tap Position | HV Voitage | LV Voltage | PhAng LV | LV MW | LVMVar | Current |
| 1 | 9550000000 | 75.00497902 | 33.52216989 | -16.93347210 | 18.46439190 | 5622082896 | . $6324867465 E-01$ |
| 2 | 97000000000 | 75.00804202 | 33.00761454 | -16.93347404 | 17.90194482 | 54507827972 | $6132872243 E 01$ |
| 3 | 98500000000 | 75.01096455 | 32.50855941 | -16.93347556 | 17.364750726 | 5287260902 | 5949536663 E-01 |
| Multiple Run Output File 2110300 - 1 banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voitage | PhAng_LV | LVMW | LV MVar | Current |
| 1 | 9550000000 | 75.90109064 | 33.84294285 | -16.92201339 | 1842760865 | 5606849017 | $6255860327 E-01$ |
| 2 | 9700000000 | 75.90414073 | 33.32339579 | -1692201635 | 1786619611 | 5.436032398 | . 6065976283 E-01 |
| 3 | 9850000000 | 75.90705096 | 32.81950240 | 1692201786 | 17.32999512 | 5.272885465 | $5884658142 \mathrm{E}-01$ |
| Multiple Run Output File 210330 -1banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voilage | Phing LV | LVMW | V MVar | Cumrent |
| | . 95500000000 | 75.86849210 | 33.83353801 | -16.61935838 | 18.04434053 | 5.386254666 | . $61204341500 \mathrm{E}-01$ |
| 2 | 97000000000 | 75.87140424 | 33.31403313 | -16.61936219 | 17.49449001 | 5.222124801 | . $59346688393 E-01$ |
| 3 | . 9850000000 | 75.87418280 | 32.81018523 | -16.61936621 | 16.96933888 | 5065366413 | . $5757284996 \mathrm{E}-01$ |
| Multiple Run Output File 21_0400 - 1 banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LV Voltage | Ph Ang LV | LVMW | LVMMar TF | Current |
| 1 | . 970000000000 | 75.92617638 | 33.33151717 | -14.22361782 | 18.90438914 | 4.792162635 | . $6318681102 \mathrm{E}-01$ |
| | | | | | | | |
| Run\# | Tap Position | HV Voitage | LV Voltage | PhAng LV | LV-MW | LVMVar | - Current |
| 1 | 97000000000 | 75.74177229 | 33.17630620 | -1285747252 | 2145423309 | 4897249474 | $7138815892 \mathrm{E}-01$ |
| Mültiple Run Output File 21050001 Oanks | | | | | | | |
| Fun \# | Tap Position | HV Volitage | LV Voltage | Ph Ang_LV | LVMWW | LVMVar ${ }^{\text {TVİ }}$ | \checkmark Current |
| 1 | 9700000000 | 75.57298566 | 3311012492 | -1206841827 | 25.32822954 | 5.415673900 | 839003706010 |
| Multiple Run Output File $21-0530$ 2banks | | | | | | | |
| Run \# | Tap Fosition | HV Voltage | LV Voitage | Pi Ang LV | LVMW | LVMVar Ti | -Current |
| 1 | . 9700000000 | 75.04648866 | 33.05597185 | -2.612171566 | 28.92370518 | 1.319655005 | $.9346826979 E-01$ |
| Mültiple Run Output File 210600 2banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LVVoltage | Ph Ang LV | LV MW | LVMVar | V Current |
| | . 9700000000 | 74.99777837 | 33.07051170 | -3.181594168 | 30.52001494 | 1.696788084 | 9858560644E-01 |
| Muitiple Run Output File 210630 - 2 banks | | | | | | | |
| Run\# | T'ap Position | HV Voltage | LV Voltage | PhAng LV | LVMW | LVMVar ṪF | V Current |
| | 9700000000 | 75.34385170 | 33.32343345 | -2.817409575 | 27.38916608 | 1.348083358 | . $8788404974 \mathrm{E}-01$ |
| Müütiple Run Output File 21 - 7000 2banks | | | | | | | |
| Run\# | Tap Position | HV Voltage | LV Voltage | Phang LV | LVMVW | LVMVar TFF | V-Current |
| 1 | 9700000000 | 7585386478 | 3347984741 | -3.943799468 | 2271247403 | 1.565581332 | .7286512791E-01 |
| Multiple Run Output File 21 - 0730 - 2banks | | | | | | | |
| Run \# | Tap Position | HV Volage | L V Voltage | Phang LV | LVMW | LVMVar İ | V Current |
| | 9700000000 | 76.74923297 | 33.80157573 | -6.484790083 | 2272838980 | 2583984272 | $72622962575-0$ |
| Multiple Run Output File 210800 2banks | | | | | | | |
| Run \# | Tap Position | HV Voltage | LVVoltage | Ph Ang_LV | LV-MV | LV MVar TF | C Curent |
| | 9700000000 | 76.88595292 | 32.99559032 | -1734466904 | 30.0685999 | 9.389611834 | 1022231954 |
| Multiple Run Output File 210830 - 4 banks | | | | | | | |
| Rư \# | Tap Position | HV Voitage | LV Voitage | PhAng_L | 'LV MW' | IV MVar | V Curent |
| 2 | 95500000000 | 75.58171719 | 33.51361661 | -5.052056071 | 3544088816 | 3134357449 | 1149228845 |
| 3 | 97000000000 | 75.58218932 | 33.00049060 | -5,058583212 | 34.36479316 | 3041532095 | 1114264387 |
| 4 | . 9850000000 | 75.58274682 | 32.50264486 | -5.056520483 | 33.33562303 | 2.949488175 | .108808882473 |
| Multiple Run Output File 21 - 0900 4banks | | | | | | | |
| Run \# | Tap Position | HV Volage | LV Voitage | PhAng LV | LV-MW | LV MVar ${ }^{\text {Ti }}$ | \checkmark Current |
| 2 | 9550000000 | 7471888288 | 3342002071 | -6.985022028 | 3606457614 | 4417823240 | 1777050762 |
| 3 | 97000000000 | 74.72026921 | 32.90868176 | -6.985290101 | 34.96952537 | 4.284032841 | 1141195589 |
| 4 | 9850000000 | 74.72163075 | 3241267731 | 6.981955176 | 33.92328505 | 4.155193095 | 1107202854 |

APPENDIX 8(b) Format for Summary of results- Comparison of simulation Present, \& voltage control schemes for 21st 22nd 24th January 2009

