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Abstract

Ceylon Electricity Board (CEB) as many other utilities uses breaker switched
capacitor banks for voltage support and reactive power compensation in grid
substations. At present it has a 320Mvar installed capacity and 70Mvar more to be
come in next few years. The main intentions of the use of capacitor banks is to give
voltage support at the substation level, reduction of losses in power transformers and

transmission lines, and to release the capacity constraints in transformers and lines.

CEB uses power factor regulation for switching these capacitor banks. The general
view of the system control center (SCC) who operates the network is that this
concept does not allow economical utilization of capacitor banks and sometimes they
need to manually switch on them overriding the auto controller and vise versa.
Underutilizing an economical reactive power source is a factor to consider.
Therefore, the objective of this research is to study the technical feasibility of
connecting maximum available capacitor banks in each sub station and by doing so,

to propose a better switching policy than the existing one.

The research was planned as a case study, selecting a typical grid sub station in CEB
and then, the results are expected to be extrapolated to a general concept, to suit the
whole CEB network. First, actual substation data was collected, logged and analyzed.
The possibilities of connecting more capacitor banks, under such real time system
characteristics were studied in a computer simulation model. PSCAD is the
simulation software used for the network simulations. The impacts due to additional
banks on the system conditions, technical constraints, non violation of general
standards and economics were studied using the results from the simulations. The
results were compared with actual data measurement by forcing the simulated

conditions for the maximum utilization, in the real system.
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The analysis revealed that the present switching concept does not fully fit for CEB
network. The possibilities of further utilization of already installed capacitor banks,
was identified. Instead of present switching criteria, reactive power based control and
voltage based control schemes were evaluated. Although the present criterion has a
comparatively high utilization factor, it also seems that banks are not utilized at
mostly required periods. As per the observations, reactive power controlled capacitor
bank switching criteria is more useful compared to loss reduction in the system.
When comparing the voltage control based switching, the switching pattern is similar
to the pattern with reactive power control based switching in the day time. -During
night time it gets closure to the requirement that SCC actually needs. However,
complex algorithms are necessary to coordinate the two control loops, AVR and
capacitor bank controller when-using such voltage control schemes. When two
independent controls try to control same parameter, it leads to an unnecessary
switching or simply, hunting the tap changer and capacitor banks.

Finally, as the conclusion of the research, multi functional switching scheme based
on voltage and reactive power was proposed for the switching policy of the capacitor
banks in the CEB network.
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Chapter 1

1. Introduction
1.1 Background

The nature ot all electrical loads connected to power system is such that they are inherently
inductive which consume reactive power and thercfore the system has to gencrate rcactive
energy. Although the rcactive power does not produce any usable output, cach network
operator has to live with it. Thereforc power utilitics around the globe havc to invest on
required rcactive cnergy which in turn does not give compensation. Not only the generators
have to produce this ineffective cnergy, the samc shall be transmitted to the end user as well.
The ultimate result of these is to introduce losses, capacity constraints in transmission and
distribution networks and voltage drops. That is why most of the power utilities around the
world are trying to generate its reactive power requirements as close as possible to the load
centres. In general, many utilities describe this as the concept of reactive power compensation
in the technical vocabulary.

Apart from generating rcactive power from the costly gencrators, compensation can be donc
with varicty of sources. Using static var compensators, synchronous condensers, breaker
switched capacitor banks are common among thcse. Breaker switched or fixed capacitor
banks, especially those at distribution level arc still most effcctive whereas the cost is
concerned. They are comparatively economical and installation is also easy. Retrofitting and
later additions according to match load characteristics arc comparatively flexible.

The application of eapacitor banks and its controlling philosophy is different from location to
location. For an end consumcr it is used as a power factor corrector that helps to reduce his
demand and avoid pcnalties from the energy supplier. For a distribution company, the
capacitors installed at intcrmediate locations on distribution line rcduce linc losses hence
incrcases line capacities and improve thc bus voltage. For a transmission company, the
intention is not only to reduce loses or increase line capacities but also to give voltage support
which is an inherent system problem under heavily loaded conditions and to further differ
investment costs on improving lincs and substation capacities. At generation buses, capacitor
banks also can be used for voltage support though it is rarc. Depending on the location and
requirement, the controlling philosophy of the capacitor banks will differ. Generally, as
mentioned earlier, the distribution capacitor banks are controlled for local requirements. In
many cases the control consists of switches that are opened and closed in a seasonal basis or
some other local requirement

Ceylon Electricity Board, also adopting to this general practice of using breaker switched
capacitor banks, at present has an installed capacity of about 320Mvar of Breaker switched
Capacitor (BSC) banks located at various substations in the system. BSCs’ of further 70Mvar
1s to be added by ycar 2010 at different ncw locations. Almost all the capacitor banks in CEB
network arc connectcd to the 33kV load bus in the relevant grid except Pannipitiya in which
capacitors arc connected to the 33kV tertiary winding of the 220 / 132 / 33 kV inter bus
transtormer. In all locations, the control philosophy of the switching of the BSC units is based
on the power factor regulation at 33kV transformer incoming feeder.

The capacitor banks installed at Grid sub station level in CEB arc controlled according to the
power factor regulation. This philosophy of switching the capacitor banks in grid substations
does not cither ease the distribution feeder capacity or reduce the feeder losses. If those were
expected then the capacitors could have been closer to the loads. However, lagging Var
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injection or in other words leading Var consumption at 33kV bus level improves the voltage
stability and releases the power transformers at the substation. If the utility cxpects latter two
cases, the switching of the capacitor banks shall be based on rcactive power or voltage. In
case of voltage, the banks should be switched considering the voltage measurements at the
point of interconncction. If rclease the capacity constraint or minimize losses are concerned,
then the capacitors shall fully utilized to minimizc drawing var from remote generation. If the
utility controls them in indirect way like power factor, then it should check whether the
requirements are best met with or the available resources arc fully utilized [1].

When analyzing the load profile, the data shows that the system load has an early morning
peak, a mid daytime peak and a night time peak. Power factor during morning and night peak
gets improved since the risc of load during those periods is mainly lighting loads. The
daytime load is mainly commereial and industrial therefore the power factor badly decreases.
Voltage at day time mainly decreascs due to reactive power and at night peak, due to 1Z drop
further to reactive power. Voltage improves in mid night till early morning but considerable
reactive base load exists. Power factor improves after around 17.00hrs leaving capacitor
banks gradually switching off. Frequent occasions of manual re-closing of banks shut off by
the capacitor controllers arc also observed and utilization sometimes drops to 50% ecven
before the night peak starts.

CEB’s switching criteria of those capacitor banks has not been evaluated in the past. The
system has grown up and whcther the present switching criteria is cconomical or not for CEB,
ts in question. CEB ncither has performed such a study nor they have checked the possibilities
of maximizing the usc of their capacitor banks. It is worth to discuss several factors in this
case. When controlled with power factor rcgulation, there are situations where some of the
capacitor banks on the distribution system are kept unused, while having an acute problem of
heavy reactive power requircment in transmission system. This happens mostly when power
across the company’s transmission system docs not coincide with load conditions in locations
wherc the capacitor banks are fixed. In some situations, thc power factor may be within
acceptable limits but the voltages are below the nominal or onload tap changer is forced on
higher taps to takc care of the voltage. The substation level capacitor bank can directly scrve
to give voltage support or var support, without depending on power factor regulation which is
an indirect measure of voltage or var requirement.

Addition of rcactive power at substation level has to be done without violating the system
regulations. The voltage rise due to recactive power injcction has to be considered. Such a
voltages rise at the bus bar at which the capacitors arc connected should not violate its’
continuous maximum rating. The On-load tap changer (OLTC) current switching capacities
have to be considered during negative var transferring conditions. lmpacts on voltage
distortion and harmonic rcsonance conditions have to be monitorcd and they should not
beyond the specified limits.

1.2 Objectives

Taking all thesc into Consideration, the main objcctive of the rescarch study is to look in to
the possibilities of exploiting thc maximum utilization of BSC banks already installed in the
system without violating the permitted regulations and other technical limitations. In this
regard following points will be studied in this study.

e To check the applicability of present switching criteria
e To check the possibility of connecting maximum capacitor banks installed without
violating technical constraints
2



e To check the possibility of optimizing thc present switching parametcrs, if present
switching criteria is acceptable.

e To design and propose a suitable switching critcria for the capacitors by mecans of
network simulation and practical implementation.

Scope of work

e Evaluation of extent of prescnt utilization of capacitor banks by précised data
collection using data loggers and using the daily data sheets by selecting a typical
substation.

e Studying the technical constraints of,

a. Voltage risc at 33kV bus bar due to addition of capacitor banks

b. Effects of rcsonance when adding capacitor banks to bus bars with load
harmonics

c. Effcets to voltage distortion caused by load harmonics, when adding more
capacitor banks

d. Capability of On Load Tap Changer to handle switching current during back
feeding the excess lcading reactive power to the system through power
transformers

by network modelling and simulating under the relevant operating conditions.
e Considering above tcchnical constraints, identify the possibilities of maximum

utilization ot the capacitor banks by maintaining them in switched “ON” condition as
much as possible during the periods when transmission system needs reactive power.



Chapter 2

2. Capacitor Banks in Substations

2.1 Shunt Capacitors

Usc of capacitor banks in utility substations as a source of reactive power i1s not new to
clectricity transmission and distribution. They are comparatively inexpensive, casy and quick
to install, and can be deployed at any location. Therefore, this is one ot the most economical
way of generating the reactive power requirement and maintaining the voltage stability in
power systems in comparison to the other similar devices such as static var compensators,
STATCOM deviccs etc.

Capacitor Banks consist of individual capacitor units where such a unit is a combination of
shunt or serics set of capacitor elements. Depending on the bank size, those units are again
connccted in series or parallel to give the required size. In medium and high voltage levels,
sizing of the capacitors in parallel combinations in banks generally has to consider the
discharge energy through a shorted parallel capacitor in the same group.

Thesc capacitors banks arc fixed or switched type according to a local requirement. The

switched type capacitor banks give a poor regulation due to step wise connections. Typical
applications of capacitor banks at different locations are shown in figure 1.1

Hvdstnibitse netwars

T

oI

|
1
®

1-banks at HV level

2-banks at bulk load level for group
compensation

3-banks at load level

4-banks at substation level

5-banks at cquipment level

v sehsenber

Figure 2.1 : Tvpical arrangement of Capacitor banks in a wtility systems

2.2 Different types of Capacitor banks

Diffcrent types of capacitor banks are available in the present market. Metal enclosed type,
pad mounted type, stack-rack banks and pole tip mounted types are the most common type in
utility applications. Metal enclosed type banks specifically made for indoor installations. Pad
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mounted capacitor banks arc also enclosed in a metal enclosurc and commonly used for arcas
wherc accessible to public.

Normally, metal enclosed and pad mounted units come with factory assembled and tested
henee the installation is very easy. Those banks significantly reduce unnccessary human
interference such as trespassing and tampering. They do not need a fence around it. However
their initial cost is high compared to other types and only available up to a certain voltage
level.

Figure 2.2: Tvpical pad mounted Capacitor bunk

Stack rack capacitor banks arc commonly used in the utility sub stations. The initial cost of
these is comparatively low and all components are visible. The components are easily
replaceable and also easily expandable.

Figure 2.3: Tvpical stacked rack Capacitor bank

The pole tip mounted banks are commonly uscd in distribution networks for improving the
voltage profile in distribution lines. Those arc available as smaller banks and eliminate the
need for space. The maintenance and component replacement is little difficult.




Figure 2.4; Tvpical pole tip mounted Capacitor bank

2.3 Controlling philosophy

The switching of the breaker switched capacitor banks in utility substations depends on the
local requirements of cach utility. Basic need for such a control is to regulate the bus voltage,
reducc the losses in lines and transformers and to avoid system constraints. Depending on
thosc, the controlling parameter may be different, and may be one of such as voltage, Var,
time, temperature or power factor. Some of these paramcters are dircctly represent the system
parameters but some, for example power factor can be used as an indirect measurement for
var, losses etc,.

2.3.1. Temperature control

This is not a true indicator of the system status and an indirect measure only. The
control effectiveness depends on how well the load characteristics are known. Not
useful in cases where those characteristics change often. Tempcrature control does not
require any current SEnsors.

8]

.3.2. Time control

Some what better parameter for controlling and has to be based on load characteristics.
Ever changing characteristics of the system load profiles does not allow the optimal
controlling when time based control is used. Time control does not require any current
scnsors. Both time and temperature controlling need only simple and inexpensive
controllers.

8]

.3.3. Current control

Current control is not an efficient control because it responds to total line current, and
assumptions must be made about the load power factor. Current controls require
current sensors.

2.3.4. Power factor control

The power factor is an indirect measure of the var load or the line or transtormer losses
of the system and always depends on the real power at the time of mecasurement. For
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2.3.6.

same powecr factor, the actual amount of var load depends or changes according to the
rcal power. Thesc mcasurements require both current and voltage sensors. Generally,
power factor regulation or control is advisablc for bulk consumer loads, to avoid low
load power factors which are pcnalized by the utility companies. Power factor
improvement by capacitor banks in the substation does not reduce the distribution linc
loses and neither climinates distribution line constraints. It will relcase the transformer
capacities, reduces transmission linc losses and improve the voltage profile. However
power factor is an indirect measure for all these. Therefore, power factor controlled
capacitor banks may not be fully utilized in most of thc time unless the setting
parameters arc carefully assesscd.

We have noticed occasions where the capacitor banks kept unconnected due to power
factor being within limits while the loads consume reactive power than minimum
switchable steps. Specially, during low voltage profiles, sincc the power factor does not
consider bus voltage, the capacitors may be kept unconnccted if power factor is within
the limits. This mcans that as a result of the switched capacitors they will reduce
transmission line losscs and improves the bus voltage, but power factor is not a measure
of the need tor the above. So, for a utility substation, power factor correction is not the
best control criteria for switching.

The above will be explained using system data in a later chapter.

. Var control

Var control is the natural means to control capacitors because the latter adds a fixed
amount of leading Var to the system regardless of other conditions, and loss reduction
depends only on reactive current. Since reactive current at any point along a feeder is
affected by downstream capacitor banks, this kind of control is susceptible to
interaction with downstrcam banks. In a system like CEB, therc are no switchable
capacitor banks along the distribution feeder so that this problem will not arisc. How
cver, in multiple capacitor feeders, the furthest downstream banks should go on-line
first and off-line last. Var controls require current sensors and typically costly.

Voltage control

Voltage control is used to regulate voltage profiles on the bus on which the capacitors
are connected to. However, while doing this it may not consider the reduction of system
losses since lagging or leading low power factors always increase the currents through
its components. Voltage control requires no current sensors.

Considering above parameters for switching the capacitor banks, we can define two concepts
of control philosophies. First is single variable switching that considers only one mcasuring
parameter. Second concept is multi variable and Boolean switching. In the latter casc multiple
paramcters arc measured and the decision for switching is done depending on the optimal
situation considering both parameters. The fact we have to consider is the cost of the
controllers.

2.4 CEB’s Present Configuration

Ceylon Electricity Board has installed number of breaker switched capacitor banks in various
Grid substations in the system. All of such capacitor banks arc installed at the 33kV level and
there are no capacitor banks at the transmission level. The reason for this is duc to lower costs

7



at low voltage levels than at higher voltage levels. The selection of locations has bcen done
considering the system planning studies done by CEB and considering the voltage, MW and
Mvar profiles at different locations in the system.

Generally, the banks are cquipped with the inrush limiting reactors as well as detuning
rcactors in most cascs. Howcver there are banks without those reactors as well. The banks
with detuning reactor are callcd as the filter banks because thcy are meant for eliminating the
switching inrush, reduce resonance effects and to filter 5 harmonics in the system loads. The
other banks are sometimes having inrush limiting reactors and sometimes there arc no such
rectors.

In the present system, the typical step size of each bank is SMvar. This may slightly changes
with the presence of the reactor. The Total capacity is changing from [0Mvar to 30Mvar. In
Pannipitiya, the bank size is 100 Mvar and thereforc 4 x 5 and 4 x 20 banks are available. In
Athurugiriya 2 x 10 Mvar banks arc available. The Appendix 1(a)  gives the details of
capacitor banks available in the CEB system.

CEB’s general concept in fixing the capacitor banks is such that it uses symmetrical banks for
each bus section in the 33kV bus sections. Each bus section has an individual controller to
switch the particular bank. This arrangement has been changed in some of the substations
later duc to new additions of transtormers. Appendix 1(b) shows the arrangement of capacitor
banks in Panaduara grid substation. Appendix 1(c) shows the CEB transmission network with
the connected capacitor banks. The figure 2.5 shows one SMvar stacked rack type capacitor
bank at Panadura GSS.

Figure 2.5: SMvar stacked rack tvpe capacitor bank — Panadura Grid sub station

For switching the capacitor banks, each bus section has an individual controller. This works
as an independent controller when the bus section is open and if the bus section is in ON
position, the set of controllers are arranged to work one as a master and the other as a slave. In
independent operation, the controller switches the banks assigned to it, typically two. First is
always the filter bank and compensator bank later. In the master slave mode, the master will
control all the banks it the communication between the controllers is established. If not cach
controller becomes independent. In master slave mode, the banks assigned to slave arc
identitied by the master and thosc units are switched once thc master’s own banks are
switched ON.



The switching criteria used in CEB are the power factor regulation. The controller evaluates
the power factor of the 33kV transformer incomer feeder using voltage and current analogue
signals and switches the first filter bank when the power factor is below a certain specified
limit. Generally, this limit is 0.9800. The next banks are switched on as per the same
condition considering the calculated power factor. Since there are two types of controllers in
CEB system switching off schemes is different. Onc type of controller switches off the banks
when the power factor becomes leading 0.98. The other type does not use power factor for
switching off. It calculates the reactive power calculated with power factor and the real power
at the time of measurement and reactive power with the set power factor and real power at the
time of measurement. 1f the ((1+hysterisis)* difference) is greater than minimum step of the
banks, then a bank is switched off. Thercfore in this kind of controllers, the switching off is
depends on a reactive power limit.

During all this period, the automatic voltage rcgulator of the transformer stays reacting
independently to adjust the LV side bus voltage. Therc is no coordination between the cap
bank controller and voltage regulator.



Chapter 3

3. Problems Due to Capacitor banks in Substations

Although the capacitor banks arc used by many of the utilities in their substations for local
requircments such as var control, power factor control, or voltage control, the presence of
same creates considcrable operational difficultics in the network. However thosc difticulties
are not rcasons for any utility to refrain from using them becausc their application gives more
benefits than those ditficulties. Although, a complete removal of them from the nctwork is
difficult, there arc ways to minimize them. The cost involved in minimizing them can be
justified with the savings.

Switching transients (voltage & current), harmonic resonance and increasing voltage
distortion at the point they are connected, are the most important factors to be discussed [2].
Switching of the capacitor banks into and out of the system crcates heavy switching
transients. The inherent quality of cnergy storing in the capacitors and inductors is the main
reason causing the oscillation in both voltage and currents in the system.

The other problems are created by the harmonics in the system loads. The harmonic currents
containing multiple frequency current components force the RLC networks to resonate at
certain frequencies creating unusual high currents through its components.

Voltage distortion is an impact going together with the resonancc. The high currents drawn at
resonance create heavily distorted voltage at all levels in the system. Even for very
insignificant harmonic current levels, the resulting distortion in the system is very high.
Distorted system voltages create severc mal tunctionalities causing adverse effects and
theretore, arc not acceptable by the standards and regulations.

3.1 Switching inrush

Switching of capacitors in power networks that consists of capacitive, inductive and resistive
components creatcs oscillator transients in the system. In such cases, the redistribution of
energy associated with circuit components take place to meet new system conditions. Since
such redistribution of energy in inductors and capacitors docs not happen instantaneously, this
will lead to oscillatory transicnts until the situation damps to the steady condition.

Capacitors switching transients are cxperienced during single bank switching (energization
inrush), back to back switching and during switching off. The transients are also caused
during the faults in other feeders while capacitors arc in service in the substations (out rush
transients).

The presence of such transients were studied during the simulations of the models developed
using PSCAD. With the theoretical calculation for single bank switching condition as given
below, acceptance ot developed model for such a transicnt study can be justified.

The tigurc 3.1 below shows a simplified model of a single bank capacitor switching where it
represents an equivalent voltage source and reactance. By considering the typical circuit
notations, the above simplificd circuit was analyzed as follows [3].
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Figure: 3.1 Model for a single bank switching

Assuming that Xsc is much less than Xc, the steady statc voltage across C can be
approximated to V., sin(wt+®). But capacitor voltage can not be changed instantaneously
therefore there must be a transient oscillation term to adjust the initial condition voltage
across C. This voltage across C 1s given as

Vdt) = Vi Sin(ot+d) — (V,,, Sind) Cos o, t
The associated current will be
I(t) = ©0CV,y Cos(ot+ D) + (Vo SIn®)V(C/Ly) Sin ot where 1L C) = ,

It can be shown that the maximum value of inrush current for switching at voltage maximum
can be approximated to

Iralcd (XC/XSC)/\O.S

Where I,qq is the rated rms current of capacitor, X is the short circuit reactance at the point
of application of capacitor

With these approximations, for the selected substation having,

e Xsc = 5.1ohm (equivalent source impedance)
e Inrush reactor of 0.003H (= 0.9425€2)
e Two transformers in parallel (=.05pu)

e Single capacitor bank ot 14. 6uF ( = 218.02Q2),

the per unit representation will calculates the maximum rms switching current at point of
maximum voltage can be high as cight times.

The figure 3.2 and 3.3 shows the simulation results for same conditions with no load
connected and gives same results as caleulations.

The sub station selected for the case study was modelled with PSCAD gives the following
transicnt results for current and voltages tfor single bank switching. This was simulated under
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no load conditions and for breaker closing at a voltage peak point. The peak switching
currents peak steady current ratio is around 10.

Steady state

Inrush peak 1.2kA current peak

‘Switching current for narmel bank when two transformers are parall

1(kA)

-0.50-

-1.00-

-1.50-

200~

Time (S) 020 040 060 080 100 120 140

Figure: 3.2 Inrush current in normal bank switching - Panadura GSS Simulation resulls

Pcak transicnt Steady state
voltage voltage peak

Voltage transiert for normrat bank whentwo fransformers are paraliel
b Ahio St e :

Voltage (Ph-E) kV

Mme 000 020  0& 080 08 100 120 14

Figure: 3.3 Voltage transient -Normal bank switching - Panadura GSS. Simulation results

The figure 3.3 shows the voltage transient during the same single bank switching instance and
we can see that it goes about to two times the steady state voltage peak.

In general, the degree of the transient may rise even up to 2.0p.u in voltage and 10p.u. in the
current [4]. The frequencies of these transients are in the order of 200 to 800Hz. The cxtent of
the transient depends on the fault level of the location of the capacitor, system impedance,
capacitance of the capacitor ctc. These conditions are clearly visible in the selected substation.
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Interestingly, the switching of the filter bank with a comparatively large reactor reduces these
impacts. The figurcs 3.4 & 3.5 show the switching transients of filter bank switching.

Switching current for Fiter bank when two transfonmers are paraiid

200~

é AL AR UL AL A LA A AAMAAAAAMAAAA AR AN,
-1.00-
-1.50-
200~
Time 0 040 080 080 100 120 140

)

Figure: 3.4 Inrush current in fitter bank switching - Panadura GSS -Simulation results

Voltage transiert for Fiter bank when two transformers are paralel

i A(PioE)
40-
w.
20_

Voltage (Ph-E) kV
3 o3
—

—

Tre o0 00 04 060 080 100 120 14
S)

Figure: 3.5 Voltage transient in filter bank switching - Panadura GSS -Simulation resutts

The above figures indicate that the rise in voltage and current are considerably reduced due to
the large inductor. This again raises a question to think about the suitability of the inrush
reactor in the normal bank. However CEB has a practice to first switch the filter banks so that
the impacts arc less.

Back to back switching is the incident wherc a capacitor bank is encrgized with already
energized capacitor bank. The above mentioned problem ot high valued high frequency inrush
current and over voltages is made more severe by the presence ot alrcady energized parallel
banks. The similar conditions arc modelled and simulated in the PSCAD model and results
are shown in figures 3.6 and 3.7
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Figure: 3.6 Inrush current in back to back switching - Panadura GSS -Simulation results
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Figure: 3.7 Voltage transients in back to back switching - Panadura GSS -Simulation results

All these transients with high amplitudes and frequencies adversely affect the life of the
brcakers and capacitors. The short time rating of breaker as well as the capacitor must be
sufficient to withstand this high frequency inrush current which may last for several a.c. cycle.
High frequency current flow in capacitor causes considerable thermal overloading in the
capacitors. Also, an cxamination of the voltage cquation will show that, in the extremc casc of
voltage maximum switching, the instantancous voltage of the capacitor may reach a
maximum of 2xVm in the first few a.c cycles. This will lead to severe strain on the capacitor
dielectric leading to a loss of'life of the capacitor.

The switching transicnts also can interfere in the others parts of the network and may causc
insulation damages, cquipment damages, mal tripping of protection relays, metering crrors,
tripping of equipment ctc.

The switching off transients, specially the voltages across the breaker tips also harmful to the
breakers and capacitors. The PSCAD model was run to see theses effects as well and the
figure 3.8 indicates how the voltage between breaker tips behaves during the capacitor
switching oft.
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; Transient recovery voltage across breaker tips
60- & Voltage Across Circutt Breaker

" T

T

Figure: 3.8 Voltage transients across CB during bank opening - Panadura GSS -Simulation results

High frequency transicnts occur during the switching causes problems for circuit breakers.
Specially, SF6 circuit breakers have considerable impact due to this. Then, during capacitive
switching, high voltage possible up to 2.0p.u may appear between the pole tips of the circuit
breaker. This may cause restrike if the breaker cannot bare such a high transient recovery
voltage.

All these effects in transients suggest that the regular or frequent switching of capacitor banks
is a problem to the network. In CEB system, in some of the banks, inrush limiting rcactors arc
fixed but in some cases it is not available. Thercfore, it i1s better if the ncetwork can be
operated with minimum switching operations of the capacitor banks.

3.2 Harmonic resonance

Presence of non-linear load that takes non-sinusoidal current from a sinusoidal supply voltage
creates multiple frequency current components in the system loads. Hence, the power network
currents can contain harmonics if there are nonlinear loads. Loads like saturated transformers
and machines, welding units, arc furnaces, rectifier and inverter units, battery charging
equipment, thyristor controlled power converters and motor control equipment, static VAR
compensators etc. are nonlinear and introduce harmonic currents into the distribution network
and clscwhere.

These harmonic currents flowing in the line impedance produces harmonic voltages along
with the fundamental frequency voltage at all points in the system. The effects due to tooth
ripple in generation & machines, variation in air gap reluctance in a synchronous machine,
non-sinusoidal flux distribution in a generator, magnetizing inrush of transformers etc. also
create harmonic voltages in the system [5] {6].

Irrespective to the reasons for them to be present, when they are close or equal to the order of
the resonant frequency of the network, then large harmonic currents may be circulated
between the supply and the capacitor equipment. These currents as same as switching
transients will do the same adverse effects to the equipment. The figure 3.9 shows a typical
frequency scan plot obtained by the PSCAD model run for two different cap bank transformer
configurations in Panadura substation.
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Figure: 3.9 Frequency scan obtained from PSCAD model for panadura GSS

The tigure clearly shows two distinct frequencies where one shows very high impedance and
the other like short circuit. Most system loads have harmonics closer to those frequencies.

3.3 Voltage distortion

The other severe problem due to these harmonics is the voltage distortion at the point where
the capacitors arc connected. As in figure 3.9 at the frequencies at which high impedances are
formed, very smaller harmonic current can introduce a high harmonic voltage. The result is
such that it distorts the system voltage at the point of capacitor connection.

Voltage distortion beyond critical limits will create un necessary mal funtions in the system.
Where the capacitors are concerned, the high voltage harmonics over stress the insulation of
capacitors and may cause even blowing them. To avoid such occurrences when installing
capacitor banks in sub stations, the utility has to invest on the detuning reactors as well. The
sclection of those reactors should be done following a study of the real system.

The figure 3.10 shows an example for measured distortion levels at Panadura GSS for station
maximum load with all banks are in ON position, under worst harmonic level content of the
substation (For around 16% THD). The initial high distortion is due to voltage source time
constant in the simulation and no need to consider.

Yoltage Distortion &t 33kY Bus
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Figure: 3.10 Voltage distortion at 16% Iryp at maxivnm average load and with all banks in ON position
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Chapter 5

5. System modelling, simulations and data analysis

Exploring the possibilities of maximizing the use of capacitor banks in an existing substation
has to be done in several steps. As discussed in the previous chapter, the first is to collect and
record the system data and analyze them. Then by considering thosc results, simulation of the
system under various operating scenarios and difterent capacitor bank combinations can bc
done. This needs a suitably developed computer simulation model. Using such a simulation
various cffects on the system duc to switched capacitor banks can be studied. Followings are
the areas that have to be studicd as mentioned above.

e Maximum voltage rise due addition of capacitor banks at the bus bar in which they
are connccted

e The capability of transformer OLTC and AVR to handle those voltage variations by
changing tap position, when necessary.

e The capability of OLTC to handle the current through it without exceeding it’s
current switching capacity during back feeding rcactive power into the system

e The effcct of resonance when adding more capacitor banks under various load
conditions and system harmonic levels

e Effccts on voltage distortion caused by load harmonics at 33kV bus, when adding
more capacitor banks

e (Cost analysis considering the reduction of losses due to power factor improvement,
release of system component capacities etc. and many others.

5.1 System modelling and simulation

One of the main aspects of the research is to model the substation for analyzing various
system conditions by simulation. Suitable computer aided simulation software with transient
as well as steady state analyzing capabilities was needed for this purpose. Thercforc, PSCAD
which is a tool used by many power system Engineers, was used for modelling and
simulations. PSCAD 1is a graphical user interface working along with an electromagnetic
transient analysis program called EMTDC and a widely used software by power system
cngineers for power system studies [9]. Power system Computer Aided Design abbreviated as
PSCAD schematically construct a circuit, run a simulation, analyze the results and manage the
data in a completely intcgrated graphical environment. PSCAD is mainly for transient
analysis but also equipped with all modules for the steady state analysis as well.

The difficulty faced in using PSCAD was that it is not free software and needs a license for
use. However, a free student version with limited nodes is available. Also a trail version is
available for limited time frame. The basic trials were done for simplest blocks with the free
student version and later the complete model was developed with the trial version.

35



5.2 The Basics in Substation model

Main substation components such as power transformers, grounding zigzag transformers,
circuit breakers, substation load, capacitor banks, tap changers, etc., are included in the
model. Most of the components are available with the master library in the PSCAD. Some has
to be approximated to the available modules in the main library.

The transformers arc sclected as two winding transformers with the tap changer on HV side of
the transformers. The real transtformer was approximated to the simplest form and percentage
impedance was considered as an inductance only. The magnctization circuit was
approximated with typical values.

The grounding zigzag transformer is represented with a typical star delta transformer with
delta winding unconnected to a load. This representation is sufficiently valid for this kind of
analysis [10]. The developed module for the transformer is as given in figure 5.1

Tap Pos

31.5 [MVA]
132 [k\] / 33 [kV]

T2HVCB 7 ro ) _T2LVCB
— .
5 ) umec E 33pus -

- 2

-2.868 [MVAR]
1111 [MW]

A #1 G0 | :
_5?_ bad -3.702 [MVAR]
1 10.91 [MW]

Figure 5.1 Transformer & Grounding (ransformer modute
8 Y § y

The tap changer 1s represented as a HV to LV ratio changer to suit the real tap changer ratios.
Nominal ratio of the transformer 1s 4 and this has to be taken as | in the PSCAD model. The
tap changer at Panadura is consisting of 18 taps with cach 1.5% voltage difference. The tap
changer ts arranged as to control manually or change step wisc in the multiple run mode, as
below.

Ta'i—m ‘Z"Eigher Ta“.).JF1 _2_1|6u~er Tept . Tap it Tap Ratio Tap Ratio
: ; i f: g Higher Lower. OFF  ON Position Position
L] 5 & & ’ \
L 4 L 5
. 3 3 ‘:2; | 1.105 10 0.970
=in 0955‘ e 1 1 1 o 2 1.090 11 0.955
i 3 1.075 12 0.940
4 1.060 13 0.925
Tp &2 Lower 5 1.045 14 0.910
S Mem= Aom 6 1.030 | 15 0.895
B | B, J; 7 1.015 16 0.880
Tap TF1 &2 Higher " e 8 1.000 17 0.865
I 9 0.985 18 0.850
Tap -+ Tap_multi
Tap Changer Controt

Figure 5.2 Tap changer control module 36



Representing the network beyond the substation basically depends on approximations.
Typically, in any approximated representation, if frequency response analysis at the bus bar
level is not expected then a simple Thevinin’s equivalent is sufficient.

1'he load 1s represented in two ways in the model and as a lumped load. One is specified with
real and reactive power but the input values arc rcal valucs so that input parameters from
outputs of others modules could not be used in this module. Therefore, during multiple run
functions, the sccond module with R and L values was used. R and L values are calculated as
per the MW and Mvar values at different time slots.

_
wl|S
O i .
~Va  load
o rey
18, £
'3 lload B>y
j = ?W 1 . ‘LN
oad| = ( lload A
L By | ad A joaga
| load A JioadA =W 2
2 |~ - load B e||
o -& lloadB
- lload B lloadB - |
load C jioadC lload C jpadc

Figure 5.3 Load & load current measuring module

("apacitor banks with inrush and detune reactors are represented with equivalent C and L
values as in the diagram. Though the recal capacitor bank configuration ungrounded double
WYE configuration, it is sufficient to represent it with a lumped star connected load for the

analysis.
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Figure 5.4 Capacitor bank & Inrush/Detuning reactor module

With all these main components and other measuring and recording modules, the complete
modcl developed for the Panadura Grid Substation in CEB system is shown in the Figure 5.4

5.3 Running the simulations

First the simulations were run for measured data, real and reactive loads, tap positions, and
voltage at source end and recorded data was compared with the actual measured data. This
was done with no capacitor banks connected to the LV bus. Further, the real measurements
were done with 10 minute interval but it was time consuming to run the simulations with the
same time intervals. Thercfore the simulations were run only for 30 minute interval
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Chapter 7

7. Conclusion and recommendations

7.1 Analysis and results

111.

V.

V1.

Vil.

Using capacitor banks at 33kV sub distribution lcvel to compensatce reactive power
rcquirement and therein, to maintain voltage stability at same level is cconomical and
cftective in the CEB system.

Occasions where the capacitor banks are switched ON and OFF manually by over-
riding the auto controller was frequently observed. This says that the switching criteria
are not fully fit to the requirements in CEB system. The observations also show that
present switching criteria at the selected substation neither maximize nor optimize the
utilization.

Simulations with PSCAD models prove the tcchnical feasibility of maximum
capacitor bank conncctions to the point at which they are fixed without violating the
standards. Voltage rise due to reactive power injection, effects to voltage distortion
and resonance due to harmonics with additional capacitor banks, switching capabilities
of the on-load tap changer and the capabilitics of AVR to handlc voltage variations
due to reactive power injection are the factors considered in the PSCAD simulations.
The results and analysis reveals that it is possible to achieve the purpose without
violating othcrwise maintaining below the recommended limits of all relevant
parameters.

PSCAD simulations indicates that the maximum voltage rise under different capacitor
bank combinations (with effective Tap control) for 21", 22" & 24™ are 77.57kV,
77.8kV & 77.17kV respectively. The maximum percentage rise for high voltage side
is .33% and that for low voltage side is 0.95%.

For the worst case of conditions (which will never be allowed by the network
operators),

e Maximum continues voltage at 132 bus bar is 145kV

e The minimum sub station load 17.2MW+9.6Mvar
PSCAD simulations indicatc that the maximum low voltage rise is 3.8% and that for
HV sidc is 0.56%.

In the case of eftccts due to resonance for the selected substation, PSCAD simulation
results shows that it occurs at an inter-harmonic condition in between 4™ and 5"
harmonics under any load condition or under any capacitor bank / transtormer
combination. Normally, the system does not have such inter-harmonics as per the
harmonic measurcments recorded for the sclected sub station. For other sub stations
also, such harmonics arc not present.

PSCAD simulation results indicate that the highest impedance points seen by the
harmonic currents somctimes fall at inter-harmonics and sometimes on harmonic
frequencies. Thc harmonics at which these happens slightly changes with the
configuration and load as well. However, the voltage distortion levels remains
marginally below 8% which is the accepted level [11].
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vill. Local voltage variation due to added reactive power can be handled by the AVR and
tap changer controls so that any combination of banks is feasible to connect.

ix.  The current through the tap changer does not exceed its switching capacity.

x.  Reactive powcr controlled based switching is a very much economical method of
capacitor bank controlling as far as the utilization, loss reduction and capacity relcase
is concerncd. Only problem a utility may face is that, some times especially in light
load conditions with long transmission lincs, there may be a nccessity to have some
reactive power to reduce the Ferranti effects. In such cases, minimizing reactive power
consumption is not desired.

xi.  In real sense, for a utility like CEB where most of the generation is concentrated to
certain areas, maintaining voltage stability may be a real challenge than reducing
losses using capacitor banks. In such a, voltage control based capacitor switching will
be a good solution.

7.2 Conclusion

Considering all these factors discussed so far, followings are the conclusions from this
rescarch study.

1.

iil.

Present capacitor bank switching philosophy based on powcr factor regulation
does not give maximum benefits to the CEB transmission network. This scheme
neither maximizes nor optimises the utilization.

Considering the installed capacitics and step sizes in each substation, it is
technically possible to utilize the full installed capacities in all substations without
violating the technical standards.

Therefore, it is technically feasible to back feed the excess capacitor bank capacity
for reactive power compensation in the transmission network.

iv. Usc of a switching policy based on reactive power control or voltagc control is

more useful as far as the CEB system is considered. Reactive powcr based
switching which is simple, is useful for loss minimization and voltage based
control is useful when voltage stability is concerned.

Considering the factors discussed in 7.1 viii and ix, for network like CEB, it 1s
usetul to consider the controllers with multi-parameter or Boolean switching
options. Reactive power and voltage can be the parameters to be considercd in the
switching decisions.

7.3 Recommendations for future studies

When introducing a switching criterion based on thc voltage, the co-rclation between AVR
loop and capacitor controller loop is an important factor and need to be studied in details.
Thercfore it is recommended to study an algorithm to correlate these two control loops who
trics to control the same paramcter at the same time, to avoid unnecessary pumping of
capacitor banks and hunting the tap changer.
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Appendix 1(b) — Substation arrangement — Panadura Grid sub station

PANADURA GRID SUBSTATION
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Appendix 2(b) - Comparison of measured tap with no capacitor banks and

all capacitor banks

With capacitors

Without capacitors

ime of day
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day9 | Day10 | Day11 | Day12
0.00 7 8 10 11 9 10 11 10 10 10 9
0.30 7 8 10 11 10 10 11 10 10 | 10 9
1.00 7 8 10 11 10 10 11 10 10 10 9
1.30 7 8 9 " 10 10 11 10 10 10 9
2.00 7 8 9 11 10 10 11 10 10 10 9
2.30 7 8 9 11 10 10 11 10 10 10 9
3.00 7 8 9 11 10 10 11 10 10 10 9
3.30 7 8 9 10 10 10 11 10 10 10 9
4.00 7 8 9 10 10 10 11 10 10 10 9
4.30 7 8 9 10 10 10 11 10 10 10 9
5.00 7 8 9 10 10 10 1" 10 10 10 9
5.30 8 9 9 11 10 10 11 10 10 11 10
6.00 9 9 9 11 10 11 11 10 10 11 10
6.30 9 9 9 1" 10 11 11 10 10 11 10
7.00 8 8 9 11 10 10 11 10 10 11 10
7.30 8 8 9 10 10 10 11 10 10 11 10
8.00 9 8 9 10 11 1" 11 10 11 11 10
8.30 10 9 10 12 12 12 12 10 12 12 10
9.00 10 9 11 13 12 12 12 10 12 13 10
9.30 10 10 1 13 12 13 12 10 12 13 10
10.00 10 10 i) 13 12 13 12 10 13 13 10
10.30 10 10 13 T2 13 13 12 13 13 10
11.00 10 11 13 12 13 13 12 13 13 10
11.30 10 11 13 12 13 13 12 13 14 10
12.00 11 10 11 13 12 13 13 12 13 14
12.30 11 10 10 13 12 13 13 12 13 14
13.00 10 10 10 13 12 12 13 12 13 13
13.30 10 10 10 12 12 12 13 12 13 13
14.00 1" 10 10 13 12 12 13 12 13 13
14.30 11 10 11 13 13 13 13 12 13 13
15.00 " 11 11 13 13 13 13 12 13 13
15.30 11 11 11 13 13 13 12 12 13 13
16.00 11 11 11 13 13 13 12 12 13 13
16.30 11 11 11 13 13 13 12 11 13 13
17.00 10 10 10 12 12 12 12 11 11 12
17.30 9 9 9 12 12 11 11 11 11 12
18.00 9 9 9 11 1 11 11 11 11 11
18.30 9 9 9 I 12 13 12 11 12 12
19.00 10 10 11 12 13 13 13 12 13 13
19.30 10 10 1" 12 12 13 13 12 13 13
20.00 10 10 11 12 12 13 13 12 13 13
20.30 10 10 11 12 12 12 13 12 13 12
21.00 10 10 10 12 12 12 12 12 12 12
21.30 9 9 8 11 12 11 12 11 11 11
22.00 8 9 7 1" 13 1" 11 10 10 1"
22.30 8 9 8 10 12 11 11 10 10 10
23.00 8 9 10 10 11 10 10 10 10 10
23.30 8 9 10 10 11 1" 10 10 10 9

0




APPENDIX 3(a) - Format for results on network simulation- PSCAD file for
21st January 2009

Simulation Data for 21.01.2009

| Multiple Run Output File 21_0000_0banks =
Tap ?psition HV Voltage LV Voltage Ph Ang_LV

.9850000000

“PhAng V"
2
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Appendix 5(a) - Format for Frequency-impedance simulation data - PSCAD

files for different loads

Z+|(ohms)| |Z+]{obms)} |[Z+|(ohms)| |Z+|(ohms)

F(Hzy [1Z+|(ohms)||Z+\(ohms)||Z+|(ohms)]| |Z+|(chms}| |Z+{(chms)

Load1 Load?2 Load3 Load4 Loadb Load6 Load7 Load8 Loadg
50 2.0765887 | 2 0974091 2 0938632 | 2.0824098] 2.0904169 2 0380374 |2.0166673|2.0358159] 2.0277524

440 |60 734608 :53 269008 | 44 459271 :39 999918 35.534858 | 28 528612' 26 706835 2:1_'::944206 ::2:0 91786%

18.374857| 1
17.35799

15.638068

620 14.904178 _14 687194 | 14.45825 | 14.28346 | 14.04884 | 13 635323 13486196 | 12.665485| 12. 476137

12.64666 |
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APPENDIX 6 - Data format for harmonic measurement ~ Panaduara grid sub station

Date Time

THD %
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3% ]
1

L2

02 2009
02.200

..?
23:30:00
23:40:00

02.07 200¢

6276000
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02022009
02.02.2009

030000 |

40

7th % 9th %

13th %

L2

0.20




APPENDIX 7(a) - Format o results - Reactive power control switching points
s tanuary 204

for 2

Ipanks

LV MVa T
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TTETHV Current
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-13



B

<o

L

! <

186 ¢€

63¢ ¢t
690 £€

901 €€

LE
L
L
LE
...... Y
14
L A
Tegs Ty
A o
Tee Y

uol
pezinn

syueg
40 ON

HOA €€

syueg

10 ON HOA €€

aWaYos |043u00 JeA pasododd

awayds |o43u00 wnwndo

2148}140 JUBSAI Japuf

awi] g 83eq

joJ3u02 Jomod aaioeal ® wnwndo ‘uasald - ejep uonenwis jo uosiiedwo) -syNsal jo Alewwng 1o jewsod - ()2 XIANIddVY

600z Aenuer 1siz 10} sowayos



APPENDIX 8(a) - Format for results — Voltage control switching points for 21st
January 2009

Muitiple Run Output File 21_0000_1banks

g 25675767
1770902881

18.46439190

735744088816
47 ’

598529010734 66952537




APPENDIX 8(b) Format for Summary of results- Comparison of simulation
Present, & voltage control schemes for 21st 22nd 24th January 2009

Under Present criteria Proposed voltage control scheme
Date & Time VO o U -
33} 132 Ph til 33 | 132 P
MW |Mvar of Utiliz) o a  tap | mw | mvar of ho itz a ] rap
Volt | Volt| angle|ation Volt | angle |ation

-16.971

01.2009 00:00:00

"21.012009 01.00:00

2009 02:00:00

2009 03:00:00

2009 04:30:00

2009 05:30:00

.2009 06:30:00

2009 08:00:00

.2009 09:00:00 6.985

2009 10:00:00

2009 11:00:00

.2009 12:30:00

2009 13:30:00

8.684

2009 14:30:00

.2009 16:00:00

.2009 17:00.00

2009 18:00:00

2009 19:00:00

2009 20:30:00

.2009 21:30:00

2009 22:30:00

2009 00:00:00 19.33

2009 01:00:00

2009 02:00:00

2009 03:30:00

2009 04:30:00

.2009 05:30:00
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