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Abstract 

 

Koslanda, in Sri Lanka is an area that remains in the memories of people due to 

frequently occurring landslides as the area is made vulnerable by both climatic and 

geomorphological settings. Additionally, the aftermath of the landslide, i.e. the debris 

flow, causes more damages when compared to the landslide itself. As such, this study 

focuses on the integration of radar and optical remote sensing for landslide 

investigation with inclusion of debris flow. The significance of the data types derived 

from radar and optical images are examined in terms of sensor characteristics and 

spectral information.  

 

Radar and optical images before and after the event, geometrically registered and 

radiometrically normalized, are used to delineate the landslide area by different change 

detection techniques. Detected landslide areas are compared with the area determined 

by GPS field surveying. At the comparison stage, landslide detection capacity of the 

optical images was 76% while it was 86% with the radar images. This is mainly due 

to inherent nature of radar being able to collect data under any climatic condition. 

 

The Information Value method uses bivariate analysis without radar induced factors 

(BiNR), and bivariate analysis with radar induced factors (BiWR), while the Multi 

Criteria Decision Analysis based on AHP uses multivariate analysis without radar 

induced factors (MNR), and multivariate analysis with radar induced factors (MWR). 

When utilizing the multivariate method, an increase in the area showing high and 

moderate susceptibility to landslides was observed as 5% and 3% from the total area, 

respectively. With the inclusion of radar induced factors (surface roughness, near 

surface soil moisture from delta index, and forest biomass), high and very low 

susceptible regions to landslide increased by 7% and 4% when using the bivariate 

method, while it was 3% for both cases when using the multivariate method. Landslide 

prediction analysis is enhanced by incorporating debris flow analysis with DEM 

derived factors, as appropriate for a country like Sri Lanka, where data scarcity of 

acceptable accuracy is high for smaller scale studies. 
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CHAPTER 1 : INTRODUCTION 

 

This research focuses on developing a versatile approach for predicting and detecting 

landslides through the integration of radar and optical satellite data. It should be 

pointed out that both optical and radar data have their own advantages and 

disadvantages, and integrating the two would complement each other, especially 

within the context of landslide studies. The current research first generates the 

prediction model for landslide using landslide failure map from the study area, then 

moves onto a detailed study of the recent Meeriyabedda landslide (in Sri Lanka), and 

concludes with analysing the debris flow path of the landslide in order to define the 

consequential damages. 

 

"One generation goeth (disappears/goes), and another generation cometh (comes); and 

the earth abideth (waits/stays) forever. The sun also ariseth (rises), and the sun goeth 

(sets/goes) down, and hasteth (hastens) to his place where he ariseth (arose). The wind 

goeth (goes/blows) towards the south, and turneth (turns) about unto (towards) the 

north. It turneth (turns) about continually in its course, and the wind returneth (returns) 

again unto (into) its circuits. All the rivers run in to the sea, yet the sea is not full; unto 

(towards) the place whither (where) the rivers go, thither (there) they go again...... That 

which hath (has) been is that which shall be........ Is there a thing whereof men say, see 

this is new? it hath (has) been already, in the ages which were before us" (Ecclesiastes). 

Although this had been written several thousand years ago, it confirms current 

geologic thinking that "the Past and Present are the keys to the Future" (James Hutton 

Circa, 1800 A.C.). 

 

“Nature has its ways in the mountains, building them up and planning (bringing) them 

down, but rejuvenating them again in geologic time. Landslide forms as part of this 

process. The hills and valleys are sculptured by exposure to weathering, erosion, gully 

formation, instability, rock falls, creep and landslide etc. leading to peneplanation, 
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sedimentation and maturity before mountain building gets repeated again, with 

igneous activity and metamorphism occurring at different times in between. 

Landslides have therefore gone on for millions of years, but naturally there have been 

no readily available records for our use” (Sithamparapillai, 1994). 

 

1.1 Problem Statement 

 

Landslides are unexpected momentary geographical events that consists of the rapid 

downward motion of soil and rock materials on sloping terrains. The triggering system 

may include extreme precipitation or rain, deforestation or earthquakes which affect 

the natural stability of the slope. The result would be falling, sliding or flowing of soil 

and rock materials under gravity, destroying human lives and property (Singhroy and 

Mattar, 2000). The immediate priority after a landslide disaster is to carryout relief and 

rescue operations, which are often disturbed by lack of timely information on the 

location, number and size of landslides, particularly in inaccessible mountainous areas. 

Even afterwards, for monitoring and mapping of the landslide, the role of a remote tool 

would be of utmost importance. Every level of disaster management process requires 

specific landslide maps that must match their objectives since larger scales require 

quantitative maps, whereas at smaller scales, qualitative maps are more suitable. With 

the absence of historical records and a complete landslide inventory system, predicting 

and studying landslide hazards is a challenging task (Abella et al., 2008). Though field 

surveys can provide accurate and reliable data, it is not capable of satisfying all of the 

requirements of landslide studies at a smaller scale, and for active sliding.  

 

Presently, remote sensing technology has been used extensively to provide landslide-

specific information for emergency managers and policy makers in terms of disaster 

management activities in the world (Martha et al., 2011). In recent years, there is an 

increasing demand for high resolution satellite data to be used for extracting geometric 

object information and mapping. The spatial resolution of space-borne optical data is 

now less than 1m in panchromatic images, and at the same time, the interest in 
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Synthetic Aperture Radar (SAR) sensors and related processing techniques has also 

increased. Radar is considered to be unique among the remote sensing systems, as it is 

all-weather, independent of the time of day, and is able to penetrate into the objects 

through the atmosphere. 

 

Additionally, radar images have been shown to depend on several natural surface 

parameters such as the dielectric constant and surface roughness. The dielectric 

constant is highly dependent on soil moisture due to the large difference in dielectric 

constant between dry soil (having typical dielectric constants in the range of 2-3) and 

water (dielectric constant in the range of 80) (Kseneman et al., 2012). Estimating soil 

moisture from radar has received much attention in the scientific community and it has 

proven that quantitative analysis of soil moisture estimation of radar is possible 

(Dubois et al., 1995). 

 

Since this research is based on the steep slope terrain areas in Koslanda, Sri Lanka, in 

order to reduce geometrical disturbances in radar and optical images, terrain correction 

has to be performed. In addition, since data is coming from different data sources as 

radar, optical and other available data in raster and vector formats, accurate geometric 

co-registration for pixel-based analysis is most important. Hence, there is a necessity 

of producing high resolution DEM (Digital Elevation Model) for optical image ortho-

rectification and terrain correction of radar images with the available data and required 

accuracy concerns.  

 

Radar and optical data present many differences and similarities at the same time. 

Although in the past, one side-lined the other, nowadays the usefulness and the 

effectiveness of both of them are fully appreciated. Today, the idea of complementary 

use of radar and optical data for mapping and monitoring applications has emerged 

(Ioannidis and Vassilaki, 2008; Stramondo et al., 2006). Hence, the main focus of this 

research is to examine the real contribution of the integration of radar and optical 

remote sensing techniques in landslide prediction and detailed landslide studies. The 
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purpose is to present improved landslide prediction and detection procedures using 

different native characteristics of radar and optical satellite images before and after the 

landslide event. 

 

1.2 Koslanda 

 

Koslanda is one of the most beautiful valleys in Sri Lanka, being the home for the 

breath-taking waterfall of Diyaluma at 210 m being the sixth highest waterfall in the 

world. Koslanda is situated in the Haldummulla DS Division, Uva Province, in Sri 

Lanka, and geographically located at 06° 44' 00" North and 81° 01' 00" East 

coordinates. Koslanda is a remote, hilly area, with geographically difficult access, 

facing many hard weather conditions. Badulla, which is the capital of the Uva 

province, is located about 28 km away from Koslanda. The air displacement from 

Koslanda to Colombo, the capital of Sri Lanka, is approximately 131 km and the route 

distance is 195 km.  

 

During the period of colonial rule, British planters found that the climate of the hill 

country to be too cold and the low country to be too hot most of the time. Yet, between 

the high hill country of Bandarawela and the low country of Wellawaya and 

Hambantota, they found that Koslanda at 700 m elevation has a climate that is most 

suitable for plantations. As a result, during British times, tea and rubber estates came 

up in the Koslanda region, along with good roads and other government facilities.  

 

1.3 Research Objectives 

 

The main objective of this research is to examine the integration of radar and optical 

remote sensing for landslide prediction through a detailed study of landslides.  
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The sub-objectives are: 

 Conducting a detailed study of the recent Meeriyabedda landslide using different 

change detection techniques inherent to radar and optical data sources. 

 Identifying the most prominent landslide pre-disposing factors from remotely 

sensed sources, i.e. DEM, Optical and Radar. 

 Building landslide prediction models from bivariate and multivariate statistical 

methods. 

 Investigating the performance of the landslide prediction model, with the 

integration of landslide causal factors derived from radar remote sensing. 

 Comparing the performance of the differently built landslide prediction models. 

 Investigating the post disaster effects from debris flow due to landslide failures. 

 

1.4 Outline of Approach 

 

This study focuses on the integration of radar and optical remote sensing approaches 

for landslide studies and to investigate the radar performances for landslide prediction 

and detections. Hence, it involves the landslide predictions with and without radar 

induced factors (12 factors derived from optical images, DEM and other auxiliary data 

with 3 radar induced factors as soil moisture index, surface roughness and forest 

biomass) using (i) bivariate, information value method, and (ii) multivariate, MCDA 

(Multi Criteria Decision Analysis) based on the AHP (Analytic Hierarchy Process) 

technique. The landslide inventory map was then separated into two parts as (i) 

‘training sample’ for prediction analysis, and (ii) ‘validating sample’ for the validation 

of results. Fifteen spatial factors (elevation, slope, aspect, planar, curvature, profile 

curvature, surface roughness, distance to hydrology, TWI (Topographical Wetness 

Index), rainfall, surface soil moisture, soil moisture index, land use, forest biomass, 

geology and lineament) for prediction analysis are generated with radar, optical, DEM, 

field data and other available data sources.  
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All spatial factors are then converted to the thematic maps and the landslide 

susceptibility weights assigned using the training samples from the landslide inventory 

map. Prediction analysis is then performed in bivariate and multivariate environments. 

Prediction models are evaluated with the separate validation sample from the landslide 

inventory map, and prediction performances are investigated through success rate and 

prediction rate curves of the landslide susceptibility analysis. Though landslide studies 

are wider in the discipline of geology at a larger scale, this research attempts to point 

out the possibilities of working at a smaller scale with different accuracy levels.  

 

This study investigated, in detail, the Meeriyabedda landslide in the study area. The 

landslide area is detected by using change detection analysis inherent to radar and 

optical data sources. In order to incorporate debris flow analysis for landslide 

predictions, as well as to introduce a low cost and rapid method for landslide prediction 

better suited for a country like Sri Lanka, terrain failures and debris flow susceptibility 

analysis are performed using DEM in a GIS (Geographic Information System) 

environment. Four main terrain factors, which contribute to the terrain instability, are 

extracted from DEM as slope, aspect, planar curvature and profile curvature. Debris 

flow analysis is performed using the TauDEM (Terrain analysis using DEM) open 

source software as an external tool in the ArcGIS environment.  

 

This work consisted of three main tasks; (i) generating the prediction model for 

landslide using landslide failure map from the study area, (ii) performing a detailed 

study of the Meeriyabedda landslide with area delineation using change detection 

techniques, and (iii) analysing the debris flow path in order to define the damaged 

regions from the land failures using all the susceptible areas extracted from DEM 

derived parameters as slope, aspect, planar curvature and profile curvature [Figure 1-

1]. 

 

Land use, slope, elevation, aspect, planar curvature, profile curvature, distance to 

hydrology, geology, rainfall, soil moisture, soil roughness and forest biomass were 
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selected as major causal factors of the land failures, and were extracted from DEM, 

radar, optical images and available data. Ultimately, this approach aims to introduce a 

methodological enhancement to the landslide susceptibility analysis through the 

integration of radar remote sensing and debris flow analysis. Hence, in developing an 

enhanced technique by means of remote sensing as a tool for predicting and detecting 

areas subjected for sliding, its possible causes will assist the current national landslide 

inventory and hazard mapping in mountainous areas in a small-scale domain. The 

radar and optical images before and after the event had been pre-processed so as to 

minimize the radiometric and geometric errors. Since this study focuses on a 

mountainous area, working with temporal data in different data formats presented a 

challenge due to the complexity of the co-registration procedures.  

 

Once data processing is completed for analysis, the selected major causal factors are 

generated as thematic maps from the DEM, radar and optical images. The presented 

method combines the landslide inventory map with each thematic map to determine 

the weight of influence on terrain instability for each parameter class, and the Log 

function is used to control the large variation of weights in calculations. The weights 

are then added to bivariate and multivariate environments to obtain the terrain failure 

susceptibility index for each pixel. Based on these values, landslide susceptibility 

regions are delineated into four classes as very low, low, moderate and high. All the 

analyses are performed with and without radar induced factors in order to examine the 

performance of predictions with radar image sources. Prediction performances are 

investigated using success rate curves and prediction rate curves.   
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Radar and optical images 

for Landslide Detection 

i. Landslide area extraction using 

change detection techniques 

ii. NDVI, PCA, image 

correlation + difference (for 

radar analysis)  

iii. Validation - field data 

collected from GPS 

Terrain failure & debris flow 

susceptibility analysis in GIS 

environment 

i. DEM derived factors (slope, aspect, 

planar curvature & profile curvature) 

ii. Generate terrain failure areas from 

Info value method (use landslide 

inventory map)  

iii. Debris flow path analysis using 

TauDEM open source software 

Landslide Susceptibility Analysis 
(with and without radar induced factors)  

 

i. Land use, slope, aspect, elevation, planar 

curvature, profile curvature, distance to 

hydrology, lineament, geology, rainfall, 

SMI, TWI, Delta index (soil moisture), 

surface roughness, forest biomass (radar 

induced factors) 

ii. Landslide inventory map (training / 

validation) 

iii. Bivariate and Multivariate methods 

Model Validation 

Use part of failure map (validation 

sample), Generate prediction and 

success rate curves  

Landslide Susceptibility Maps 

(Four susceptibility classes as very low, 

low, moderate and high) 

Analyse four landslide susceptibility maps with 

the inclusion of radar induced factors in 

bivariate and multivariate nature 

Integration of Radar and Optical Remote Sensing for Landslide 

Investigations _ Case Study of Koslanda in Sri Lanka 

Optical (Worldview II & Geoeye, Landsat-8, Sentinel- 2), 

Radar (TerraSAR-X, Sentinel-1), DEM and GPS 

Figure 1-1 : Conceptual methodology for radar and optical remote sensing for landslide investigations 
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Finally, four landslide susceptibility maps obtained with and without radar induced 

factors in bivariate and multivariate statistical nature are compared in order to analyse 

the performance of radar induced factors in landslide susceptibility analysis. 

 

1.5 Thesis Organisation 

 

This thesis consists of seven chapters, with Chapter2 describes the study area, 

Koslanda in Badulla District, the probability of landslide occurrence due to its 

geomorphological, geological and climatic nature and the types of radar, optical and 

other auxiliary data used. Chapter 3 describes the related work and scientific literature 

including an introduction to landslides and landslides in global and regional context, 

modes of landslide investigations, landslide prediction models, statistical analysis in 

landslide susceptibility analysis and their validations, change detection techniques for 

landslide extraction, and finally, debris flow analysis for landslide prediction 

modelling. Chapter 4 develops an empirical model using data pre-processing, 

selecting, generating and weighting spatial factors, to predict the landslide and 

ultimately validating the model with the recent landslide that occurred in 

Meeriyabedda area. Chapter 5 analyses the detection of Meeriyabedda landslide from 

change detection techniques with the combination of radar and optical images. 

Chapter 6 investigates the terrain failure regions derived from the four main terrain 

factors identified as slope, aspect, planar and profile curvature, and the analysis of the 

debris flow susceptibility regions in Koslanda area. The final chapter of the thesis, 

Chapter 7 provides conclusions of the research and recommendations for future work. 
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CHAPTER 2 : STUDY AREA AND DATA USED 

 

This chapter describes the basis for selecting Koslanda (in Sri Lanka) as the study area 

for landslide prediction, and detailed landslide studies. The natural formation of the 

area itself, based on topographical and geological context, makes it most vulnerable 

for landslide disasters. Previous landslides experienced in this area are described 

including damages to both human life and property. Many primary data types derived 

from radar and optical images, DEM generated from aerial photogrammetric 

techniques, and other auxiliary data used in this analysis are described. GPS (Global 

Positioning System) surveying is carried in order to obtain GCPs (Ground Control 

Points) for image pre-processing as the method is better suited for pixel-based analysis, 

and to demarcate the margin of the damaged area due to landslide for validation of the 

results from change detection analysis. This chapter ends with a detailed discussion on 

the selection of radar images, optical images and other auxiliary data. 

 

2.1 Introduction 

 

Sri Lanka is the pearl of the Indian Ocean and is known for her beauty, as well as being 

gifted with some of world’s most beautiful gems and quality teas fulfilling about a 

quarter of the tea requirement of the world. It is located between northern latitudes of 

05°55' and 09°51' and eastern longitudes of 79°42' and 81°52', approximately 24 km 

to the southeast of India. The country occupies an area of nearly 65,000 km2, stretching 

to 435 km from north to south and 224 km from east to west. The country, as a whole, 

has experienced extensive land degradation primarily due to soil erosion, existing 

geology, unsafe land use practices and denudation processes. These factors, together 

with the common triggering factor, intensive and prolonged rainfall due to the south 

west and north east monsoonal and inter monsoonal rains, increases the incidence of 

landslides in the central hilly region and abutting sloping terrain of the country. From 

the land extent of Sri Lanka, an area of nearly 20,000 km2 encompassing 10 districts 

is prone to landslides. These districts are Badulla, Nuwara Eliya, Kegalle, Ratnapura, 
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Kandy, Matale, Kaluthara, Matara, Galle and Hambantota. NBRO (National Building 

Research Organization), is the organization responsible for landslide studies in Sri 

Lanka. Their studies indicates that haphazard and unplanned land use, inappropriate 

construction methods, and wanton human intervention have led to an increase in 

landslide susceptibility.  

 

According to the statistics from NBRO, it has been revealed that the landslide 

frequency has been increased in the Badulla district with the increases of human 

activities, forest degradation and unplanned developments in hilly areas. Parallel to 

this, unplanned land clearing for tea and other plantations, changing the existing 

natural drainage patterns and dramatically reduced vegetation covers, make for far 

larger areas to be more vulnerable to landslides (Bandara, 2005; DMC, 2010). 

 

2.1.1 Climate in Koslanda 

 

The climate is tropical in Koslanda, with a significant rainfall during most months of 

the year, with a short dry season. The annual rainfall in Koslanda is 1,500 mm, with 

an annual average temperature of 20°C. April and May are the warmest months of the 

year with an average temperature of 21.5°C while January is the coldest month, with 

the temperatures averaging at 19°C (CLIMATE_DATA_ORG 2016). The average 

minimum and maximum monthly temperatures from year 2000 to 2012 in Koslanda 

area are described in Figure 2-1.  

 

The highest temperature is observed during the months of February, March, April and 

May, with April being the warmest month and October and November being the 

coolest months with high precipitation. The data presented in Figure 2-1 has been 

obtained from the weather station covering Nuwara Eliya (Sri Lanka), which is the 

nearest to Koslanda, at a distance of 54.6 km.  
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The precipitation (in mm) and average rainfall (30 days) from year 2000-2012 are 

shown in Figure 2-2, for the weather station at Nuwara Eliya. It is observed that the 

driest month is February with the lowest precipitation. Most of the precipitation falls 

during October and November, averaging to 200 mm. 

 

2.1.2 Geomorphology of Koslanda 

 

The geomorphology of Koslanda area has been described as “the area is a gently 

inclined talus slope, where a thick, loosely compacted colluvium deposit is observed 

at the foot of the near vertical rocky scarp and is situated at the middle part of the slope. 

The lower area shows a fairly steep surface as well. The composition of the colluvium 

deposit includes a randomly arranged mixture of weathered clayey and sandy products 

and organic material that can act as a sponge with high water content. The area was an 

abandoned tea cultivated land in which the properly maintained surface drainage 

Figure 2-1 : Average minimum and maximum monthly temperature from year 

2000 to 2012 in Koslanda 

Source:http://www.worldweatheronline.com/koslanda-weather-

averages/uva/lk.aspx, accessed on 06th February 2016.  

http://www.worldweatheronline.com/koslanda-weather-averages/uva/lk.aspx
http://www.worldweatheronline.com/koslanda-weather-averages/uva/lk.aspx
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system has been neglected. This colluvium deposit is underlain by garnet biotite gneiss 

bedrock, which is highly foliated and jointed” (Somaratne, 2016). Such geological 

formation, together with improper land use management practices, has made the 

Koslanda area extremely vulnerable to landslide events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Landslides in Koslanda 

 

Generally, landslides occur in slopes with gradients over 300 in lands that had been 

made unstable by clearing for various cultivations such as tea and homestead gardens 

with improper land use practices, including soil management. Especially in tea estates, 

due to non-maintenance of contour drains and blockage of natural water courses in 

steep areas, the area is highly vulnerable for terrain failures. With prolonged heavy 

rain, the soil covers get saturated, ultimately resulting in a mass movement comprising 

of mud and debris (Somaratne, 2016). 

Figure 2-2 : Precipitation and average monthly rain fall from year 2000-

2012 in Koslanda 

Source:http://www.worldweatheronline.com/koslanda-weather-

averages/uva/lk.aspx, accessed on 06th February 2016.  

 

Average Rainfall (mm) Graph for Koslanda 

http://www.worldweatheronline.com/koslanda-weather-averages/uva/lk.aspx
http://www.worldweatheronline.com/koslanda-weather-averages/uva/lk.aspx
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Koslanda has been the site for of several massive landslides over the years, and both 

the Naketiya landslide in the year 1997, and Meeriyabedda landslide in the year 2014, 

are very distinct [Figure 2-3]. As the name suggests, “Naketiya” is landslide-prone, 

and within two years, major landslides have occurred three times at the same location, 

destroying the road from Beragala to Wellawaya. NBRO has recognized this area as 

highly vulnerable to landslides, with many studies being carried out for identifying 

potential mitigatory measures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 : Locational map for Koslanda, Sri Lanka with historical landslide experiences 

from Google earth. 
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2.1.4 Meeriyabedda Landslide 

 

On 29th October 2014, at around 7.30 am, a severe landslide occurred in Meeriyabedda 

area [Figure 2-4] in Kotabathma Grama Niladhari division within the Haldummulla 

Divisional Secretariat Division in Badulla District. Rainfall data from the Poonagala 

gauging station, which is closer to the area revealed that the amount of precipitation 

that poured into the area for three consecutive days from 26th to 29th October, 2014, 

has exceeded 500 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 : Nature of Meeriyabedda Landslide in 29th October, 2014 

 

The impact of the landslide affected around 330 people of 57 families in Ampitikanda 

tea estate. 16 deaths were confirmed, and 192 persons went missing. The total number 

of buildings destroyed were 63, including houses, Kovil, community center, dairy 

collection centers, boutiques, telecommunication center, and 3 estate bungalows. 

[Figure 2-5]. Out of the total number of children who attended the school, 75 children 

were orphaned.  

Head scarp 

Debris fan 

Deposition 

zone 
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Usually, almost all landslides indicate advanced warning signals via the appearance 

and expansion of tension cracks on the ground, floors and walls of buildings located 

in upper slope areas, disappearance of springs and drying up of wells on the upper 

slopes, appearance of springs and increase of water levels of wells located at lower 

Figure 2-5 : Meeriyabedda landslide disaster and its damages 

Source: Prepared by Survey Department of Sri Lanka, Data Source: DMC, NBRO, 

Google Earth, 31-10-2014 
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slope areas, muddy water out-pouring from springs at lower slope areas, ground 

subsidence of the upper slopes, tilting of poles and trees, and so on, prior to the main 

movement (Bandara, 2005). In the case of Meeriyabedda landslide, some of these 

warning signals like appearance and widening of tension cracks on the upper estate 

road, floor and ground cracks of line houses, and small local ground subsidence, 

happened at times in the middle part of the damaged area. Moreover, water seepage 

out of the ground surface at elevated locations on the slope have been observed prior 

to the incident. 

 

As short-term mitigation measures, surface drainage control, application of erosion 

control measures can be applied. Simultaneously, if the risk is high, the vulnerable 

community must be evacuated and proper temporary shelters must be provided 

immediately. When providing permanent resettlement, new places should comprise 

more facilities than the original place. If such a system is available, any community 

will not resist resettling in a more comfortable location (Bandara, 2005). 

 

2.1.5 Debris Flow 

 

Most of the destructions from landslides occurred due to the combined effect of terrain 

failures and debris flow. According to the definition of Iverson and Denlinger (2001), 

debris flows consist of a mixture of fine material (sand, silt and clay), coarse material 

(gravel and boulders), with a variable quantity of water, which flow rapidly down a 

slope under the influence of gravity. Three distinctive elements are distinguishable in 

a debris flow: the source area, the main track (transportation area) and the depositional 

fan. Debris flows are of primary concern due to their long run-out and the resulting 

destructive impacts.  

 

Meeriyabedda landslide was the worst natural disaster after the tsunami in 2004 that 

killed over 38,000 people along the coastal belt of Sri Lanka. A thirty-foot mudslide 

http://www.gsslweb.org/challenges-to-overcome-an-overview-of-koslanda-landslide/
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buried approximately 200 human lives and their properties, with the area becoming a 

pool of mud that was unapproachable. About 500 military personnel were involved in 

the rescue operation, and heavy machinery had been deployed to speed up the rescue 

efforts. 

 

2.2 Satellite Images and Auxiliary Data 

 

As this research focuses on the integration of radar and optical remote sensing for 

landslide prediction and detailed landslide studies, the types of radar, optical and other 

auxiliary data used in the research are explained. Since the study area is undulated, all 

the satellite images had to be corrected for the terrain before doing any analysis. Thus, 

DEM plays a significant role in both image pre-processing and final data analysis.   

 

2.2.1 DEM from Aerial Photogrammetry 

 

Topography influences both initiation of sliding and movement of mass due to 

landslides. DEM data can be used to derive most prominent causative factors for 

landslide as elevation, slope, aspects, hill shading, slope curvature and qualitative 

classifications of landform, including hydrological parameters as flow direction, flow 

path, basin and river network and so on (Bonachea et al., 2009; Yawen, 2011).  

 

The DEM for this study is generated using aerial photogrammetry. Automatic 

procedures for DEM extraction using photogrammetric techniques produce high 

precision terrain models within a short time, thereby reducing manual editing. The 

accuracy of the DEM is strictly related to the image quality and terrain features. A 

DEM of 7 m resolution is derived from aerial triangulation, using stereo aerial 

photographs from year 1993. The Imagine photogrammetry tool in ERDAS Imagine 

2014 (Earth Resource Data Analysis System) software is used to generate the DEM 

from aerial photographs [Figure 2-6]. Camera calibration, interior orientation, and 
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exterior orientation are performed in order to generate the DEM from aerial 

triangulation, by using 25 GCPs obtained from a GPS survey of the study area.  

 

 

 

Figure 2-6 : DEM Generation from Imagine photogrammetry tool from ERDAS Imagine 

2014 
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2.2.2 Radar Images 

 

Due to their inherent characteristics, the significance of radar images for disaster 

studies have been proven by the scientific community. The capabilities of day and 

night observation, under all weather conditions, offer quick responses in all phases of 

disaster management studies.  

 

Sentinel-1 

This study uses a series of Sentinel-1 images in landslide detection, with soil moisture 

and surface roughness parameters used in the landslide prediction analysis. All images 

are level-1 GRD (Ground Range Detected) products consisting of focused SAR data, 

multi-looked and projected to ground range using an earth ellipsoid model. The 

resolution is dependent upon the amount of multi-looking performed. Hence, the study 

uses a 10 m resolution, multi-looked, square pixel images calibrated for radar 

backscatter in decibels, filtered for speckle using the enhanced Lee filter, and corrected 

for terrain using the SRTM (Shuttle Radar Topographic Mission) 30 m DEM data.  

 

Sentinel-1 is a space mission funded by the European Union, and carried out by the 

ESA (European Space Agency) within the Copernicus Programme, consisting of a 

constellation of two satellites. The Sentinel-1 is a Synthetic Aperture Radar in C band 

that provides continuous imagery in day, night, and all weather conditions. Sentinel-

1A was launched on 03rd April 2014, and Sentinel-1B was launched on 25th April 2016 

with an operational lifespan of 7 years (Sentinel_1, 2016). 

 

Sentinel data products are made available systematically and free of charge to all data 

users including the general public, scientific and commercial users. Radar data are 

delivered within an hour of reception for emergency response, within three hours for 

priority areas and within 24 hours for systematically archived data. All data products 

are distributed in the SAFE (Standard Archive Format for Europe) format. Sentinel-1 

https://en.wikipedia.org/wiki/European_Space_Agency
https://en.wikipedia.org/wiki/Copernicus_Programme
https://en.wikipedia.org/wiki/Synthetic_Aperture_Radar
https://en.wikipedia.org/wiki/C_band_(IEEE)
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification
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productions are at SAR Level-0, Level-1 SLC, Level-1 GRD, and Level-2 OCN 

(Ocean). Data products are available in single polarisation (VV or HH) for Wave mode 

and dual polarisation (VV+VH or HH+HV) and single polarisation (HH or VV) for 

SM (Strip Map), IW (Interferometric Wide swath) and EW (Extra Wide swath) modes. 

The Sentinel-1 mission is sun-synchronous, near-polar, and circular, with an orbit 

height of 693 km at an inclination of 98.18°, with a repeat cycle of 175 orbits in 12 

days (Sentinel_1, 2016).  

 

TerraSAR-X 

TerraSAR-X, a radar earth observation satellite, is a joint project between the German 

Aerospace Center (DLR), and EADS Astrium. TerraSAR-X was launched on 15th June 

2007 and has been in operational service since January 2008. TanDEM-X was 

launched on 21st June 2010 as its twin satellite, and together acquire the data for 

generating the World DEM, which is available from 2014. TerraSAR-X contains a 

phased array Synthetic Aperture Radar antenna with X-band (wavelength 31 mm, 

frequency 9.6 GHz), circles the earth in a sun-synchronous polar orbit with a temporal 

resolution of 11 days, at an altitude of 514 km (TerraSAR_X, 2016).  

 

Spot Light mode (up to 1 m resolution) has a 10 × 5 km2 scene size, while Strip Map 

mode (up to 3 m resolution) contains a 30 × 50 km2 scene size. Scan SAR (up to 16 m 

resolution) covers an area of 100 × 150 km2 for one scene of the earth. Depending on 

the desired application, TerraSAR-X provides data products at different processing 

levels as SSC (Single look Slant range Complex), MGD (Multi look Ground range 

Detected), GEC (Geocoded Ellipsoid Corrected), and EEC (Enhanced Ellipsoid 

Corrected). The TerraSAR-X spotlight image, GEC product, with 2 m resolution taken 

on 02nd November 2016, just after the Meeriyabedda landslide, is used for forest 

biomass estimation, by taking forest biomass as radar induced causative factor for 

landslide prediction modelling (TerraSAR_X, 2016).  

 

https://en.wikipedia.org/wiki/Polar_orbit
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2.2.3 Optical Images 

 

High resolution and free medium resolution optical satellite images are used in various 

parts of the analysis. Several causative factors for landslide prediction analysis are 

derived from the free Landsat -8 and Worldview -2 images. Detailed landslide 

detection using different change detection techniques are done using WorldView -2 

and GeoEye -1 satellite images. 

 

WorldView II 

WorldView-2 is a commercial earth observation satellite possessed by Digital Globe. 

WorldView-2 provides panchromatic imagery of 0.46 m resolution, and eight-band 

multispectral imagery with 1.84 m resolution. It was launched on 08th October 2009 

and takes images of any place on Earth every 1.1 days. WorldView -2 comprises of 8 

Multispectral bands with four standard colors (Red, Blue, Green, Near-IR) and four 

new colors (Red edge, Coastal, Yellow, Near-IR2) (WorldView_2, 2016).  

 

Red edge band aids in the analysis of vegetative conditions and is directly related to 

plant health revealed through chlorophyll production. The coastal band supports 

vegetation identification and analysis, and supports bathymetric studies based on its 

chlorophyll and water penetration characteristics. Further, this band is subjected to 

atmospheric scattering and can be used to investigate atmospheric correction 

techniques. Yellow band is used to identify "yellow-ness" characteristics of targets, 

important for vegetation applications. Also, this band will assist in the development of 

"true-color" hue correction for human vision representation. NIR 2 band overlaps the 

NIR 1 band but is less affected by atmospheric influence and supports vegetation 

analysis (WorldView-2 2016). This research uses the WorldView –2 image with four 

standard colors from 16th May 2013 as the pre-image for the landslide prediction and 

detailed landslide detection analysis. 
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GeoEye-1 

GeoEye-1 is very high-resolution satellite that was successfully launched on 

September 6, 2008 with a 0.46 m resolution. The GeoEye -1 satellite sensor features 

the most sophisticated technology ever used in a commercial remote sensing system 

and is owned and operated by Digital Globe. This sensor is optimized for large 

projects, as it can produce over 350,000 km2of pan-sharpened multispectral satellite 

imagery every day (GeoEye-1 2016). The GeoEye -1 satellite image with four standard 

colors taken on 06th November 2014, covering the Koslanda area, was used as the post 

landslide image in the landslide detection analysis. 

 

Landsat-8 

On 23rd July 1972, the first Earth Resources Technology Satellite (ERTS) was 

launched from Vandenberg Air Force Base in California. In 1975, it was renamed as 

Landsat 1 and since then, six more Landsat satellites have followed, collectively 

capturing millions of images of Earth, and creating an impressive archive that has been 

available at no charge since 2008. Over the past five decades, the Landsat program and 

other international Earth-observation programs have matured. Landsat satellites 

monitor forest health, mobilize food resources to drought-stricken areas, observe 

climate change impact on polar ice caps, monitor crop health and stress, measure the 

impacts of carbon escaping into the atmosphere, and map rates, causes, and 

consequences of land cover changes and so on (Landsat– 8, 2016). Table 2-1 describes 

the sensor characteristics and band information of WorldView -2, GeoEye-1 and 

Landsat -8. The research uses the Landsat – 8 images taken on 03rd July 2015 for 

analysing the soil moisture index by using Red, NIR and Thermal bands.  

 

Landsat -8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) were 

launched on 11th February 2013, and consists of nine spectral bands with a spatial 

resolution of 30 m for Bands 1 to 7 and 9. The new band 9, ultra-blue, is useful for 

coastal and aerosol studies, and cloud detection. The resolution for Band 8 

(panchromatic) is 15 m. Thermal bands 10 and 11 are useful in providing more 
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accurate surface temperatures and are collected at 100 m resolution. Approximate 

scene size is 170 km north-south by 183 km east-west (Landsat–8, 2016).  

 

Table 2-1 : Sensor characteristics and spectral information for WorldView -2, GeoEye-1 and 

Landsat -8 Satellite images 

 WorldView -2 GeoEye -1 Landsat -8 

Resolution 0.46 m PAN +1.85 

m MS 

0.41 m PAN + 

1.65 m MS  

15 m PAN + 30 m and 

100 m MS  

Swath width 16.4 km 15.2 km 190 km 

Average 

Revisit 

1.1 Days 2.1 Days 16 Days 

Orbit Type Sun-synchronous Sun-synchronous Sun-synchronous 

Orbit 

Altitude 

770 km 681 km 705 km 

Orbit Period 100 minutes 98 minutes 98.9 minutes 

Spectral 

Bands 

PAN + 8 MS 

Bands  

PAN + 4 MS 

Bands 

PAN + 10 MS Bands 

Spectral 

Range 

Red(630-690 nm), 

Green(510-

580nm),Blue(450- 

510 nm), Near 

Infar Red 1(770- 

985 nm), Near 

Infrared 2 (860- 

040 nm), Coastal 

Band (400- 450 

nm), Yellow Band 

(585-625 nm), Red 

Edge Band (705-

745 nm) 

Panchromatic 

(450-800nm), 

Blue (450 – 

510nm), Green 

(510-580nm), 

Red (655-

690nm), Near 

Infrared (780-

920nm) 

Coastal aerosol (430–

450nm),Blue (450-510 

nm), Green (530–590 

nm), Red (640– 670 

nm), NIR (850– 880 

nm), SWIR 1 (1570–

1650nm), SWIR 2 

(2110– 2290 nm), PAN 

(500–680nm),Cirrus 

(1360–

1380nm),TIRS1(10600–

11190 nm), TIRS 2 

(11500– 12510 nm).  

 

Sentinel-2 

Sentinel-2 is an Earth observation satellite developed by ESA which consists of 13 

multispectral bands in visible, near infrared, and short-wave infrared regions of the 

spectrum. Four bands at 10 m resolution (490 nm (nano meter) (B2)), 560 nm (B3), 

665 nm (B4), 842 nm (B8)), six bands at 20 m resolution (705 nm (B5), 740 nm (B6), 
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783 nm (B7), 865 nm (B8a), 1610 nm (B11), 2190 nm (B12)) and three bands at 60 m 

resolution (443 nm (B1), 945 nm (B9) and 1375 nm (B10)) (Sentinel_2, 2016). 

 

In order to achieve recurrent revisits and data availability, two identical Sentinel-2 

satellites (Sentinel-2A and Sentinel-2B) are planned to operate simultaneously. The 

first satellite, Sentinel-2A was launched on 23rd June 2015 and Sentinel-2B was 

scheduled to be launched in March 2017. The most important aspect is the free and 

open data policy for data dissemination (Sentinel_2, 2016). Free Sentinel-2A image 

dated 10th October 2016 is utilized for the production of the land cover map, and the 

lineament density map of the study area for landslide prediction modelling. 

 

2.2.4 Auxiliary Data 

 

Many data types produced from radar and optical remote sensing techniques are used 

in all analysis within this research work. However, there are some data types that are 

really important for landslide prediction analysis that are obtained from available data 

sources as (a) landslide failure map, (b) geological map, (c) soil map, (d) monthly 

average rainfall data, and (e) GCPs coordinate and Meeriyabedda landslide boundary 

from GPS survey.  

 

The Geological map of Sri Lanka at 1:100 000 scale from GSMB (Geological Survey 

Mines Bureau)), Sri Lanka, Soil map of Sri Lanka for the intermediate zone (Mapa et 

al., 2005) and average rainfall data interpolated for the study area are used for 

preparing causative factors for landslide prediction analysis. Since the study area is 

highly undulated, all the satellite images were corrected for the terrain for better 

registration of the images. Hence, a GPS survey was carried out for obtaining the GCPs 

covering the particular area, and for the accurate boundary demarcation of the 

landslide damaged regions, especially for the Meeriyabedda landslide. All prediction 

analysis and validation are based on past landslide experiences in the chosen area, 
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thereby minimizing bias and errors from human intervention. Hence, producing the 

landslide failure map using the landslide data-base for the study area is of utmost 

importance. 

 

(a) Landslide Failure Map 

The landslide failure map shows the landslide locations, dimensions and geographical 

extent of each landslide. One of the main clues to the location of future landsliding is 

the distribution of past movement. Hence, the maps that show the location and size of 

landslides are helpful in predicting the landslide hazard for the entire area [Figure 2-

7].  

Figure 2-7 : Landslide failure map of the Koslanda area with two different 

training and validating samples with Google image as background 
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A landslide inventory is a data set that may represent a single event, a regional event, 

or multiple events. Small-scale maps may show only landslide locations, whereas 

large-scale maps may distinguish landslide sources from deposits and classify different 

kinds of landslides and show other pertinent data. Hence, this work generates the 

landslide failure map by considering the past movements from the landslide database 

from the NBRO, Sri Lanka. Mapping was depended on the aerial photographs obtained 

in 1993 and 1997, WorldView -2 and GeoEye – 1 image, and a series of temporal 

google earth images. Basically, the landslide failure map was separated in to two 

samples as training and validating for the landslide susceptibility analysis through the 

entire research [Figure 2-7]. 

 

(b) Geological Map 

A geological map is a special purpose map made to show the geological features of 

the Earth. Rock or geologic strata are shown by colour or symbols to indicate where 

they are exposed at the surface. Bedding planes and structural features such as faults, 

folds, foliations, and lineation are shown with symbols describing the three-

dimensional orientations of the features. Contour lines may be used to illustrate the 

surface of a selected stratum that describing the subsurface topographic trends of the 

strata. It is not always possible to properly show this when the strata are extremely 

fractured, mixed, in some discontinuities, or where they are otherwise disturbed. A 

geological map with 1:100,000 scale (Sheet No 17) from GSMB, Sri Lanka is used. 

There are 21 geological maps of 1:100,000 scale covering the entire land mass of the 

country. Required geological boundaries of the study area were extracted and made 

use of as a causative factor for the landslide prediction analysis. 

 

(c) Soil Map 

Soil map is a geographical representation which shows the diversity of soil types and 

soil properties (soil pH, textures, organic matter, depths of horizons and so on) in the 

area of interest. It is typically the end result of a soil survey inventory. Sri Lanka is 

basically divided in to three climatic zones as Wet, Dry and Intermediate zones. The 

https://en.wikipedia.org/wiki/Map
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soil maps at smaller scale (1:400,000) for these three climatic zones are accomplished 

by monitoring the long-term changes of the morphological, physical, chemical and 

other important properties of the soil. Basically Koslanda is in the high-land 

intermediate zone comprising soil type as Badulla-Mahawalathenna complex (Mapa 

et al., 2005). When considering the extent, and the location of study area, the soil type 

could not be considered as a causative factor for this landslide prediction analysis 

because the study area consists with one soil type. However, it should be noted that 

the soil type is one of the most prominent factor in landslide susceptibility analysis.   

 

(d) Monthly Average Rainfall Data 

Rainfall is the most common causal factor for the landslide occurrence and the 

majority of landslides are triggered by heavy and prolonged rainfall. Especially in Sri 

Lanka, the atmosphere is extremely dynamic due its location closer to the equator. The 

basic wind system over Sri Lanka is mostly the monsoons which seasonally alternate 

between northeast (December–March) and southwest (May – September). The inter-

monsoonal periods are also there from March to April and October to November. The 

Koslanda area is located in the intermediate zone and receives rainfall from southwest 

monsoon and inter-monsoonal period from October to November. According to the 

historical landslide record in Koslanda area, most of the rainfall induced devastating 

landslides and mass movements occurred during October to November. 

 

The study uses monthly average rainfall data in year 2014 from 10 nearby stations to 

Koslanda as Buttala, Konketiya, Diyatalawa, Badulla, Gangeyaya, Gleanore, Haputale 

factory, Poonagala, Suriyawewa, Thenamalwila and Wellawaya. All the monthly 

rainfall data from the 10 rain gauge stations are averaged, and the average rainfall map 

for the study area is generated using the IDW (Inverse Distance Weighting) 

interpolation method from ArcGIS environment. 
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(e) GPS Survey 

A GPS survey was carried out for obtaining 40 GCPs covering the whole study area, 

and the accurate boundary for landslide damaged regions in Meeriyabedda. GCPs and 

the boundary points extracted from the GPS Survey were most important for image 

pre-processing and validation of the final results. The GPS survey was carried out for 

three days starting from 17th October 2015. Leica Handheld GPS and RTK GPS (Real 

Time Kinematic GPS) units had been used with a reference station in order to achieve 

more accuracy with DGPS (Differential GPS) techniques. During the first two days, 

three survey groups collected all the GCPs with 30 minutes of observation, and on the 

third day, all groups collected location data on the boundary of the landslide damaged 

area from Meeriyabedda landslide. 

 

2.3 Chapter Summary 

 

This research study is based on the integration of radar and optical remote sensing for 

landslide prediction and detailed landslide detection. This chapter discussed the 

justifications of selecting Koslanda as the study area for the research. The climatic and 

geomorphological settings of the area that are most vulnerable to landslides were 

discussed, using the recent devastating landslide that occurred in Meeriyabedda area. 

Significance of each data type derived from radar and optical remote sensing for the 

analysis were investigated in terms of sensor characteristics and spectral information. 

Other auxiliary data available, along with their processing stages in order to apply 

them for enhancing the ultimate results for these analyses, were described. A GPS 

survey was carried out in order to obtain the GCPs for satellite image pre-processing 

and to extract the landslide damaged boundary from Meeriyabedda landslide for 

validating the results from change detection analysis.  
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CHAPTER 3 : RELATED WORK - SCIENTIFIC 

LITERATURE 

 

This chapter focuses on viewing landslides as a disaster, and discussing the importance 

and contribution of previous scientific work that motivated the successful 

accomplishment of the work discussed in this thesis. The chapter starts with the 

importance of remote sensing for landslide investigations, which comprises mainly of 

landslide susceptibility analysis and post landslide detections. It is followed by a 

discussion on the integration of radar, with its inherent characteristics, in natural 

disaster studies for landslide susceptibility analysis and landslide detections. The 

different landslide prediction models with different causative factors, and statistical 

analysing techniques for modelling and model validation that are currently available 

are investigated next. Then the various change detection techniques that are presently 

available to detect the geographical and geomorphological changes due to landslides 

are presented. Finally, the inclusion of the concept of debris flow path for reliable 

landslide susceptibility zonation is investigated. This chapter also discusses gaps in the 

theoretical capabilities between radar and optical remote sensing for landslide 

prediction and detection with diverse causative factors of different nature.  

 

“Destructive outcomes of landslides in relation to human life and the overall 

economic system of many nations around the globe are very severe. Accurate 

susceptibility mapping can be key information for a large variety of users from both 

private and public sectors, from governmental departments and the scientific 

community on both local and international levels. Recently, landslide susceptibility 

mapping has been made possible due to the accessibility and variety of remote 

sensing data and thematic layers as causative factors data using GIS. Most of these 

landslides are referred to as significant geomorphic processes which usually form 

an important landscaping aspect in humid tropical mountain surroundings. Records 

have shown that in Asia, steep hill slopes, seasonally dry periods, excessive rainfall 

intensities, and unstable soils are the main causes of frequent landslides. Landslide 



31 
 

investigation is difficult since the landslides are generally covered by dense 

vegetation and the cloudy and rainy weather conditions are often undesirable for 

optical remote sensing. Consequently, it is necessary that new techniques and 

accurate data are used in landslide susceptibility mapping in the tropical 

environment. In recent years, radar which has the capability of data collection day 

and night under all weather conditions has added a new dimension to disaster 

management research by providing real-time and precise information. " 

-Extracted from – Himan Shahabi and Mazlan Hashim, Scientific Report, 22nd April 

2015- 

 

3.1 Landslides 

 

A frequently used definition for a landslide is "a movement of mass of rock, earth or 

debris down a slope" (Cruden, 1991). They may occur in many types of terrain with 

the right conditions of soil, rock, land use/ cover, moisture conditions and slope. Soil 

material can experience a reduction in shear strength due to ingress of water causing 

increase of pore water pressure and subsequently a mass of soil can slide down due to 

shear failure along a surface inside the soil mass. This movement can occur as a fall, 

topple, slide, spread or flow. The speed of the movement may range from the very 

slow to rapid, and the mass of moving material can destroy property along its path of 

movement and cause death to people and livestock (Kumar and Tapas, 2007).  

 

A landslide classification had been proposed by (Varnes, 1984b), based on the types 

of movements and materials. The landslide classification was described by two nouns; 

the first describes the material and the second describes the movement. The materials 

can be rock, debris, earth or a mix of them. The movements can be a fall, topple, 

subsidence, lateral displacement or flow. Thus, a landslide can be named as a rock fall, 

or debris flow. Falling occurs as the soil or rock materials on a higher elevation falls 

down freely as fragments or splinters. Toppling occurs when the rock boulders 

separated from the bedrock along joint lines are subjected to toppling. They may drop 
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directly on to the ground, or may roll over along slopes. Subsidence is the process 

where a portion of the terrain subsides, or dips, from its natural topographic relief level 

with reference to its surrounding. Lateral displacement is a slow, gentle, circular 

movement of a soil mass laterally or downwards along the slip surface. The flow is the 

downward motion of muddy water and soil of different particle sizes and stone, which 

occurs mostly on escarpments with a rapid speed causing much destruction (Bandara, 

2005).   

 

Figure 3-1 is a graphical illustration of a landslide with the commonly accepted 

terminology describing its features and geometry. Although landslides occur mostly 

in mountainous regions, they can also be seen in areas of generally lower reliefs. 

Landslides happen as cut and fill failures in road and building excavations, river bluff 

failures, collapses of mine-waste piles, and a wide variety of slope failures (e.g. slides, 

falls, topples, and flows) in low relief terrain (USGS, 2004).  

 

Figure 3-1 :Block Diagram of a Landslide showing commonly used nomenclature, Source 

: (USGS, 2004) 
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The upper most part of the sliding terrain, or where the landslide originated, is known 

as the crown, and this region is usually subjected to subsidence and cracking. The body 

of the landslide is the middle part of the sliding mass below the crown. This area is 

usually wide, and contains most of the sliding materials (USGS, 2004). 

 

Areas vulnerable to landslides can be identified with some general indications given 

by nature itself. If any area is vulnerable to landslides, subsidence of the ground and 

tension cracks could be seen towards the upper region of the slope, while tall trees may 

slant towards the hill. Additionally, if cracks are observed on the wall and floors of 

houses located in down slopes, and if these cracks enlarge progressively, it is an 

indication that a landslide is active in the area. Furthermore, water springs may appear 

suddenly, while at the same time, the water in the wells become muddy. Small streams 

or water courses may also disappear suddenly before the occurrence of landslide in the 

area (Bandara, 2005; Weerasinghe et al., 2008). 

 

3.1.1 Landslides in the World 

 

Landslides are significant geological hazards that can destroy human life and property, 

and are recognized as the third worst type of natural disasters. Mostly, people living in 

mountainous areas, and their properties, face critical danger from landslide disasters. 

Landslides are triggered due to unsustainable anthropogenic activities such as mining, 

road cutting, urbanization, as well as natural causes like earthquakes and rainfall 

(Cruden and Varnes, 1996; Klose et al., 2014; Singhroy and Mattar, 2000). The recent 

statistics of landslide disasters per continent, from year 2000 to 2016 are summarized 

in Table 3-1. During this period, landslides caused around 14,000 deaths while 4 

million people were affected worldwide. 
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Table 3-1: World Statistics for Landslides. Source: EM-DAT Database for the period 2000-

2016 (OFDA/CRED, 2016)  

Continent 
Disaster 

type 

Disaster 

sub type 

No of 

Events  
Total deaths Total affected 

      

Africa Landslide Landslide 24 738 43091 

Americas Landslide -- 2 43 379 

Americas Landslide Landslide 56 2387 256705 

Americas Landslide Rock fall 1 33 0 

Asia Landslide -- 2 48 330 

Asia Landslide Avalanche 29 1305 46244 

Asia Landslide Landslide 168 9310 3739969 

Asia Landslide Rock fall 1 12 55 

Asia Landslide Subsidence 1 287 2838 

Europe Landslide Avalanche 4 164 0 

Europe Landslide Landslide 7 40 2852 

Oceania Landslide Landslide 7 143 11095 

 

Abella et al., (2008) are of the opinion that most of the damages to human life, as well 

as manmade and natural features associated with earthquakes and meteorological 

events, are caused by landslides. Such damages are attributed to major events, leading 

to considerable underestimation of the available statistical data on the landslide impact. 

Figure 3-2 illustrates the chain of natural events causing landslides, and their reporting. 
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Many recent detailed studies illustrate that the catastrophic nature of landslides in the 

world has mismatches with the official Emergency events data base (EM-DAT). This 

is due to the manner in which events were recorded, and the adopted minimum 

threshold for deaths and economic impacts. Consequently, statistical data about 

landslide impacts vary considerably among the records of different organizations. 

Thus, there is a basis to assume higher losses for both humans and economy by 

landslides than reported, due to the following reasons (Abella et al., 2008): 

 

• Most landslides are secondary phenomena, and their statistics appear under the 

principle disaster, as Earthquakes or Hurricanes. 

• Landslides occur recurrently, and they do not cause significant level of damage 

per event as compared with the minimum threshold of disaster impact. Hence, 

most landslides are not recorded in the EM-DAT database. 

• Even under similar natural conditions, landslide records from different 

countries have large variations. 

Figure 3-2: Chain of natural events causing Landslides and their reporting 

Source: (Abella et al., 2008)  
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• Landslides in mountainous areas with low risk, but high hazard vulnerability, 

may not be recorded. 

 

3.1.2 Landslides in Sri Lanka 

 

Sir Lanka is a tropical island with a mountainous central region. The combination of 

geology, unsafe land use practices, and heavy rainfall due to two monsoons have 

caused irregular landslides throughout the hill country. Landslide causal factors can be 

identified as preparatory and triggering. A particular factor may perform either or both 

functions, depending on its amount of action. However, globally rainfall and 

earthquakes have been identified as the two main causes.  

 

Many studies have been more concerned about the statistical relationship for creating 

correlation models and producing forecasting models based on the rainfall threshold 

values for landslides (Jakob et al., 2006; Lee et al., 2017; Yilmaz, 2009; Zezere et al., 

2005). In Sri Lanka, almost all reported landslides are associated with the intense or 

prolonged rainfall. According to the statistics of NBRO, the nodal governmental 

agency engaged in landslide studies in Sri Lanka, the annual average number of 

landslide records did not exceed 50 until 2002. However, there was a sudden increase 

in the occurrence of landslides from 2003 to 2010 as shown in Figure 3-3. 

 

The most recent devastating incident was recorded from Meeriyabedda area in Badulla 

District on 29th October 2014. Meeriyabedda Landslide in section 2.1.4 describes, in 

detail, the impact of the landslide with damages for human life and property 

(Landslide, 2014). 
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Sri Lanka gets a significant amount of precipitation during the months from October 

to march due to the northeast monsoon. The climate is tropical in Koslanda, and the 

rainfall is significant throughout the year, where the short dry season has little effect. 

Especially from October to December, due to a long spell of rains, the number of 

landside occurrences increases as shown in Figure 3-4. 

 

NBRO has revealed that the landslide frequency has increased in the Badulla District 

with the increase of human activities, deforestation and unplanned developments in 

hilly areas. Hence, a detailed study about the landslide as a disaster, and its causes for 

disaster mitigation with improved zonation mapping could be more beneficial for fast 

and reliable landslide management activities in Sri Lanka.  
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Figure 3-3 : Annual distribution of Landslides in Sri Lanka from year 2000 to 2015. 

(Source: www.desinventar.lk, accessed on 10th January 2016) 
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Figure 3-4 : Monthly distribution of Landslides (Source :www.desinventar.lk, accessed on 10th 

January 2016) 

 

3.1.3 Present Landslide Studies in Sri Lanka 

 

NBRO is a premier research and development institution in Sri Lanka that was 

established in 1984. The aim of this institution is to create a disaster-free built 

environment for the nation by providing better technical services, research, and 

development. NBRO focuses mainly on landslide disaster management, and is 

continuously engaged in landslide hazard identification, risk evaluation, appropriate 

construction and land use practices, cost effective mitigation measures, and real time 

landslide early warning and forecasting. 

 

Landslide Research and Risk Management Division of NBRO has implemented a 

landslide hazard zonation mapping programme within the 10 landslide prone districts 

of Kalutara, Galle, Hambantota, Nuwara Eliya, Matale, Kandy, Kegalle, Ratnapura, 

Matara and Badulla. Mapping is carried out at 1:50,000 scale and at 1:10,000 scale, 

but 1:10,000 maps are still in progress. 1:50,000 scale maps covering the entire 
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districts of Kalutara, Galle, Hambantota, Nuwara Eliya, Matale, Kandy, Kegalle, 

Ratnapura, Matara, Badulla, Moneragala and Kurunegala are available for the use of 

planners, developers, decision makers, and general public. Available geographical and 

geomorphological data from mapping organizations are used in this programme. 

However, the necessity of the most recent data at a smaller scale, with sufficient 

accuracy, has arisen through the current technological developments. Moreover, there 

is a need for landslide inventories to be detailed and to be up-to-date than the present 

situation. Hence, there is a necessity for NBRO to refresh the routine work with the 

current technological enhancement in order to reach its objectives (NBRO, 2011). 

 

3.2 Integration of Radar and Optical Remote Sensing for Landslide Studies 

 

The use of radar and optical satellite images for remote sensing applications has a 

history longer than three decades. At the very beginning, the low resolution of images, 

and the limited processing capabilities had restricted the use of such data for a wider 

range of applications. However, with the recent developments of satellite images with 

high spatial and temporal resolutions, the situation has changed, increasing the variety 

of applications using remote sensing as a tool (Ioannidis and Vassilaki, 2008). In the 

event of natural disasters, remote sensing is a valuable source of spatial information 

whose utility has been proven on many occasions around the world (Joyce et al., 2009). 

 

The significant differences between the characteristics of the radar and optical data 

structures have not encouraged their combined use. In most cases, optical remote 

sensing technology has been used in obtaining landslide specific information for 

disaster management activities, while radar sensors have been used in detecting soil 

moisture and surface roughness. Yet, their combined use could provide 

complementary information and better results in remote sensing applications 

(Ioannidis and Vassilaki, 2008). In this work, the combined use of radar and optical 

images assumes special interest. (Singhroy et al., 1998) integrated the RADARSAT 

(RADAR Satellite) and TM (Thematic Mapper) images with InSAR (Interferometric 
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SAR) techniques to characterize landslides in both high and low relief areas. Martha 

et al., (2011) recommended the use of radar data for landslide studies, as landslide 

studies are greatly benefitted from radar remote sensing with its rapid response system 

providing landslide specific information. However, the removal of geometric 

distortions in this instance is quite challenging. 

 

Advantages of the combined use of radar and optical satellite data for other 

applications have been highlighted. For example, Bignami et al., (2004) studied the 

combined use of ERS1 (European Remote Sensing 1), ERS2, ENVISAT-ASAR and 

IRS (Indian Remote Sensing)) satellite images for extracting the earthquake damages 

from the earthquake in Izmit in (Turkey) 1999 and the earthquake in 2003 in Bam 

(Iran). A similar study was conducted by Stramondo et al., (2006), with the 

combination of ERS1, ERS2, IRS, TERRA-ASTER and ENVISAT-ASAR for 

earthquake damage detection. Multi-temporal ENVISAT-ASAR and Quick Bird 

images were integrated by Orsomando et al., (2007) to extract the urban changes. In 

addition, instances are available in the literature of feature extraction from high-

resolution InSAR data and optical images (Soergel et al., 2007; Sportouche et al., 

2009; Stilla et al., 2005; Tupin and Roux, 2003), ortho image production (Cheng, 

2007), and coastal zone management (Raouf and Lichtenegger, 1997). 

 

3.3 Landslide Investigations 

 

Landslide studies are widely documented in literature and comprehensive reviews, and 

in these, landslide investigations are classified into three main groups as; (i) landslide 

recognition, classification, and post landslide analysis, (ii) landslide monitoring (i.e., 

monitoring the activity of existing landslides), and (ii) landslide susceptibility and 

hazard assessment, even though these classes have some fuzziness at their borders 

(Mantovani et al., 1996; Metternicht et al., 2005; Scaioni, 2013; Scaioni et al., 2014). 
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Landslide recognition includes all the activities aimed at recognizing past or active 

landslide events in a specific region. All the techniques available for landslide 

recognition can be used for building and updating the landslide databases or 

inventories. The landslide inventory map is a spatial distribution of landslides 

represented at a predefined cartographic scale in a given area. Landslide maps prepared 

by collecting historical information on landslide events are called ‘Geomorphical 

Inventory Maps’ (Malamud et al., 2004; Mantovani et al., 1996). Landslide 

monitoring engages in both ground deformation measurement, and the analysis of any 

other changes in land use and vegetation cover with the time. Monitoring is necessary 

in predicting the behavior of physical processes of landslides and their movements. In 

addition, multi-temporal landslide inventories can be used for landslide monitoring, as 

they show the evolution of landslides over time. 

 

The capabilities of remote sensing techniques with their data sources, spatial, spectral 

and temporal resolutions, and availabilities for landslide investigations are being 

studied for more than two decades Landslide susceptibility analysis investigates the 

probability of a potentially damaging phenomenon or areas in a given region, with the 

use of predisposing or causal factors related to landslide occurrences. Most landslide 

hazard maps are of qualitative nature, providing relative indicators for spatial 

probability of landslide occurrences. Remote sensing techniques represent a powerful 

tool for all the phases in landslide investigations. (Mantovani et al., 1996; Metternicht 

et al., 2005). 

 

3.4 Remote Sensing for Landslide Investigations 

 

Remote sensing techniques have greatly aided in the investigation of landslides, at both 

local and regional scales. Remote sensing techniques for landslide studies in terms of 

landslide detection, monitoring, and susceptibility analysis are exploited in several 

research studies. The advantages and limitations of conventional methods for landslide 
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investigations, and the capability of different remote sensing techniques within the 

context of disaster analysis, are discussed here.   

 

3.4.1 Remote Sensing for Landslide Detection 

 

In order to study landslides and their behaviour for the detection and classification, it 

is important to examine the size and contrast of landslide features and the 

morphological arrangements of the topography within and around the landslide. Some 

of the pertinent parameters might be the type of movement that has occurred, the 

degree of present activity of the landslide, and the depth to which movement has 

occurred. 

 

Most popular conventional methods for landslide detections are geomorphological 

field surveys and aerial photo interpretation. Advantages and limitations of these two 

methods were comprehensively discussed by Guzzetti et al., (2012) and Malamud et 

al., (2004). The difficulty of using field survey arises due to multiple causes as; (i) the 

size of the landslide, often too large to be seen completely in the field, (ii) the 

viewpoint of the landslide investigator, frequently insufficient to see all parts of a 

landslide (e.g., the scarp, lateral edges, deposit, toe), (iii) landslide boundary is often 

indistinct or fuzzy and the old landslides are partially or totally covered by forest, and 

so on (Cardinali et al., 2006; Santangelo et al., 2010). 

 

Landslide detection through the visual analysis of aerial photography is a pragmatic 

and uncertain technique that requires experience, training, a systematic methodology, 

and well-defined interpretation criteria (Antonini et al., 2002; Speight, 1977). The 

methodologies do not contain any standards. The interpreter detects and classifies the 

morphological formation of the landslide based on his experience, and set of 

characteristics or signatures of land failures that can be identified on the aerial 

photographs. These include shape, size, photographic colour, tone, texture, pattern of 
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objects, site topography, and morphological setting. Yet, due to the large inconsistency 

of landslide occurrences, landslides will not be clearly and easily recognizable in the 

field, from the aerial photographs or the satellite images. Individual landslides, 

immediately after an event, are fresh and usually can be clearly identified. The 

boundaries between the failure areas and the unaffected terrain are usually distinct, 

making it relatively simple for the landslide investigators to detect the landslide areas 

(Fiorucci et al., 2011; Santurri et al., 2010). 

 

Now a days, landslide investigations are mainly carried out by using the integration of 

remote sensing techniques. There are four main remote sensing data sources that are 

commonly used in landslide recognition as; (i) optical, (ii) thermal, (iii) microwave 

radar images, and (iv) laser scanning data. Optical and thermal remote sensing 

techniques are usually based on airborne and spaceborne platforms and rarely from 

ground-based platforms. Microwave sensors are mounted on airborne, spaceborne and 

ground-based platforms. Laser scanning is basically employed on airborne and 

ground-based platforms (Baroň et al., 2014; Pesci et al., 2011; Vohora and Donoghue, 

2004). Hence, remote sensing techniques are more advantageous than field-based 

techniques especially in landslide investigations in smaller scale domain. 

 

3.4.2 Remote Sensing for Landslide Monitoring 

 

Landslide monitoring is typically conducted via the comparison of landslide 

conditions over time, including the extent of the landslide, speed of movement, and 

the change in the surface topography. On the other hand, remote sensing techniques 

measure quantitative changes on the surface of the slopes. This is because the slope 

change is one of the primary indicators that is available to understand the progress of 

a landslide (Farina et al., 2006). 
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There are several remote sensing techniques that are generally used for landslide 

monitoring as; (i) optical images from any available platform, (ii) spaceborne and 

ground-based microwave data, and (iii) airborne laser scanning and terrain laser 

scanning data (Delacourt et al., 2007). In optical remote sensing, measurement of 

deformation requires a series of temporal optical images, which are geometrically co-

registered for accurate change detection. If 3D deformation monitoring is required, at 

least one pair of stereo images for one temporal observation of a particular scene is 

needed. In the case of a large landslide, monitoring has to be done through computation 

of the earth volume (Baker et al., 2011; van Westen and Lulie, 2003). Microwave 

remote sensing, coupled with the Differential Interferometric SAR (DInSAR) 

technique, has been widely used for monitoring slow moving landslides in millimetre 

scale (Colesanti and Wasowski, 2006; Wasowski and Bovenga, 2014). Monitoring 

landslides through laser scanning is beneficial, given that it contains data on the 

complete displacement of the landslide body. However, laser scanning is limited for 

measuring the velocity of the landslide (Akbarimehr et al., 2013). 

 

3.4.3 Remote Sensing for Landslide Susceptibility Analysis 

 

Landslide susceptibility is the probability of a landslide occurrence, in a given area 

within a specific period of time. Landslide susceptibility mapping performs the 

division of a particular area into homogeneous regions by using ranks or weights of 

influences of landslide occurrences (Varnes, 1984a). These homogeneous regions 

represent the different hazard zonation or classes, and for the derivation of these zones, 

analysis of causative and triggering factors is required. Most landslide susceptibility 

maps are of qualitative nature with a relative indicator of the spatial probability of 

landslide occurrence (van Westen et al., 2008). 

 

Many research studies investigated the role of remote sensing and GIS for landslide 

susceptibility analysis. It is accepted in the scientific community that remote sensing 

techniques do offer an additional tool for extracting the information on the causes of 
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landslides and their occurrences. Especially for deriving various parameters related to 

the landslide predisposing and triggering factors in global and regional scales, remote 

sensing plays a vital role (Corominas et al., 2014; Muthu et al., 2008). Most 

importantly, landslide susceptibility analysis has greatly aided the prediction of future 

landslide occurrences and it is important for humans who reside in areas surrounded 

by unstable slopes. Hence, remote sensing techniques are more valued in order to 

extract the landslide susceptibility regions by providing most suitable landslide 

predisposing factors in smaller scale.   

 

3.5 Integration of Radar and Optical Remote Sensing for Landslide 

Investigations 

 

Remote sensing data sources play a vital role in all phases of disaster management 

studies by providing remotely sensed data on space, where physical measurements are 

restricted. Especially in disaster situation, rapid investigations on very large area with 

prevailing bad weather conditions are complicated. Promising alternatives are the use 

of optical and radar images acquired from the space. Applicability of optical sensors 

with high resolution data sources is still limited because their acquisition depends on 

solar radiation. High resolution SAR are active sensors that produce their own incident 

radiation and thus are able to acquire images regardless of the weather and illumination 

conditions. The wavelength they use is also longer than the one of the optical sensors, 

allowing measurement of different characteristics of the imaged area. Thus, the 

integration of optical and radar remote sensing provide different but complementary 

capabilities for disaster management studies (Scaioni et al., 2014).  

 

This concept is proven with the incorporation of optical and radar satellites, or through 

a simultaneous existence of optical and radar sensors in the same satellite. For 

example, the ALOS (Advanced Land Observation Satellite) satellite consists of three 

remote sensing instruments as; (i) PRISM (Panchromatic Remote-sensing Instrument 

for Stereo Mapping) for digital elevation models, (ii) AVNIR-2 (Advanced Visible 
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and Near Infrared Radiometer type 2) for precise land coverage observation, and (iii) 

PALSAR (Phased Array type L-band Synthetic Aperture Radar) for day-and-night and 

all-weather land observation and enabled precise land coverage observation. The most 

famous example of cooperation of satellites is the joint CNES/ASI Orfeo program, 

where the optical component of this programme is developed by France and consists 

of two optical satellites with sub-meter accuracy; the radar component is developed by 

Italy and consists of four SAR satellites with meter accuracy. The Brazilian SAOCOM 

constellation, which consists of four satellites, is also planned to be synchronized with 

the Cosmo-Skymed constellation (Ioannidis and Vassilaki, 2008).  

 

The way for this recently announced cooperation at sensor level has been opened with 

scientific studies about the integrated use of optical and SAR data. It has been shown 

that not only is it possible to combine optical and radar products, but it is also efficient. 

Nowadays, it is being examined what specific needs can be covered with a combined 

use of SAR and optical data (Ioannidis and Vassilaki, 2008). Hence, the present 

research explores the integrated use of radar and optical data sources for landslide 

investigations. This work is mainly focused on the landslide detections and 

susceptibility analysis in a smaller scale domain.  

 

3.6 Landslide Susceptibility Analysis 

 

Landslide susceptibility analysis is a valuable information source for disaster 

mitigation activities and creating awareness among the local authorities on potential 

unstable and hazard prone areas. Additionally, such information can be better utilized 

in decision making for helping the general public, planners, and engineers to reduce 

losses to lives and property in particular areas. The results of the landslide 

susceptibility assessment can help to identify the degree of susceptibility for potential 

landslide risk zones. Production of accurate, up-to-date and reliable landslide 

susceptibility maps is very important for landslide-related studies. In recent years, 

many qualitative and quantitative methods have been applied and evaluated in the 
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literature for producing landslide susceptibility maps (Bui et al., 2011; Kouli et al., 

2010). 

 

Landslide susceptibility analysis depends on a rather complex knowledge of slope 

movements, and other causal factors like land use, geology, soil moisture, etc. The 

reliability of landslide susceptibility analysis relies mostly on the amount and quality 

of available data, the working scale, and the selection of the appropriate methodology 

of analysis and modelling. The process of creating these landslide susceptibility maps 

involves several qualitative (e.g. geomorphic and map combination) or quantitative 

(e.g. bivariate and multivariate) approaches (Aleotti and Chowdhury, 1999; Guzzetti 

et al., 1999; Soeters and van Westen, 1996). 

 

3.7 Landslide Prediction Models 

 

There are inherent limitations and uncertainties in landslide susceptibility analysis. 

Several methods for landslide prediction modelling have been utilized and 

successfully applied in the past. Such methods implemented have been of qualitative 

and quantitative nature. Generally, qualitative methods are based on expert opinions 

while the quantitative approaches, such as statistical and probabilistic approaches, 

depend on the past landslide experiences (Kanungo et al., 2009). 

 

3.7.1 Qualitative Methods 

 

Qualitative methods simply make use of landslide inventories to identify areas with 

similar geological and geomorphologic properties that are susceptible for land failures. 

These methods can be divided into two groups as geomorphologic analysis, and map 

combination. In geomorphologic analysis, the landslide susceptibility is determined 

directly either in the field or by the interpretation of images trough geomorphologic 

analysis (Bui et al., 2011; Kouli et al., 2010; Rupke et al., 1988). Map combination is 
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based on combining a number of predisposing factor maps for landslide susceptibility 

analysis. However, map combination analysis comprises of a semi-quantitative nature 

by integrating the ranking and weighting of landslide susceptibility (Ayalew et al., 

2004; Barredol et al., 2000; Kavzoglu et al., 2014; Onagh et al., 2012; Saaty, 1980; 

Soeters and van Westen, 1996). 

 

3.7.2 Quantitative Methods 

 

The analyses based on the quantitative approaches depends on numerical data and 

statistics, expressing the relationship between instability or predisposing factors with 

landslides (Bui et al., 2011). These methods are categorized into two groups as 

bivariate and multivariate statistical analysis. Within the context of this work, popular 

bivariate and multivariate methods are compared with respect to their performances in 

landslide susceptibility modelling. 

 

(a) Bivariate Method 

 

In bivariate analysis, each predisposing factor, obtained as a thematic map, is 

combined with the landslide inventory map, and weights for each factor are calculated 

based on landslide densities. There are several methods in using bivariate statistics for 

the landslide susceptibility assessment as; (i) FR (Frequency Ratio), (ii) InfoVal 

(Information Value method) or SI (Statistical Index), and (iii) WOE (Weight of 

Evidence) based on the Bayesian probability model.  

 

(i) FR Method 

Frequency Ratio calculates the probabilistic relationship between dependent 

(landslides) and independent variables (e.g. slope, aspect, land use, geology.). FR 

analysis estimates the densities of landslide occurrences within each predisposing 

factor, and generates the weight of index based on the landslide density in class 
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distributions (Akgun et al., 2008; Demir et al., 2013; Sarkar et al., 1995; Yilmaz, 

2009). Greater the weight index, higher the landslide susceptibility, and vice versa. 

After calculating the weight of indices for each predisposing factor, they are 

aggregated for generating the LSI (Landslide Susceptibility Index). 

 𝐿𝑆𝐼 =  ∑(𝐹𝑅)i(𝑖 = 1, 2, … . 𝑛) (1) 

 

Where FR is the Frequency Ratio of each factor and n is the number of predisposing 

factors. 

 

(ii) InfoVal or SI Method 

Information Value Method (InfoVal or SI) is another bivariate statistical algorithm that 

has been employed to determine landslide susceptibility (Bui et al., 2011; Cevik and 

Topal, 2003; Saha et al., 2005; van Westen, 1993, 1997; Yalcin, 2008; Yilmaz et al., 

2012; Yin and Yan, 1988). This method overlay all individual predisposing factors as 

thematic maps with the landslide inventory map to calculate the density of the 

landslide detachment zones for each class of the selected factors. The density of 

landslide pixels represents the weight of influence of each predisposing factor. 

 

 𝑊𝑖 = 𝐿𝑜𝑔 (
𝐷𝑒𝑛𝑠𝑐𝑙𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑚𝑎𝑝
) =  𝐿𝑜𝑔 (

𝑁𝑝𝑖𝑥(𝑆𝑖) 𝑁𝑝𝑖𝑥(𝑁𝑖)⁄

∑ 𝑁𝑝𝑖𝑥(𝑆𝑖)
𝑛
𝑖=1 ∑ 𝑁𝑝𝑖𝑥(𝑁𝑖)𝑛

𝑖=1⁄
) (2) 

 

Where, 𝑊𝑖is the weight given to the parameter class, 𝐷𝑒𝑛𝑠𝑐𝑙𝑎𝑠𝑠 is the landslide 

density within the parameter class and 𝐷𝑒𝑛𝑠𝑚𝑎𝑝 is the landslide density within the 

entire map. 𝑁𝑝𝑖𝑥(𝑆𝑖) is the number of landslide pixels within parameter class 𝑖, and 

𝑁𝑝𝑖𝑥(𝑁𝑖) is the total number of pixels in the same parameter class. It means that, if 

the parameter class contains no landslide occurrence, it will have no correlation with 

the landslide inventory map (Bui et al., 2011; Conforti et al., 2011; Kavzoglu et al., 

2015). 
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(iii) WOE Method 

Bayesian probability model, using the WOE approach, has been applied for many 

studies in landslide susceptibility assessment (Armas, 2012; Nandi and Shakoor, 2009; 

Regmi et al., 2010; Schicker and Moon, 2012; van Westen et al., 2003). This method 

is applied when ample data are available to estimate the relative importance by 

statistical means. The basic theory behind the WOE method is the concept of prior and 

posterior probability. The research studies mentioned before have described the 

applicability of this method for landslide prediction modelling. A pair of weights, 

𝑊+(positive weights) and 𝑊−(negative weights), is calculated for the predisposing 

factors using the following equations; 

 

 𝑊+ = ln ⌊

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑒𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑎𝑟𝑒𝑎
𝑆𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎

⌋ = ln ⌊

𝑤1

𝑤1+𝑤2
𝑤3

𝑤3+ 𝑤4

⌋ (3) 

 

 𝑊− = ln ⌊

𝑤2

𝑤1+𝑤2
𝑤4

𝑤3+ 𝑤4

⌋ (4) 

 

Where, 𝑤1is the number of landslide pixels present in the selected factor class, 𝑤2 is 

the number of landslide pixels not present in the same factor class, 𝑤3 is the number 

of stable pixels within the same factor class and 𝑤4 is the number of stable pixels not 

present in the same factor class. The positive weights (𝑊+) represent the positive 

correlation between the presence of the landslide in each predisposing factor, while 

the negative weights (𝑊−) indicate the absence of the landslide probability in same 

predisposing factor class (Dahal et al., 2008; Kavzoglu et al., 2015). 
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(b) Multivariate Method 

 

Multivariate models integrate all the independent predisposing factors and historical 

landslides occurred in a particular area for landslide susceptibility analysis. However, 

the multivariate model, unlike the bivariate model, evaluates the relative contribution 

of each factor by assigning more emphasis on the variables known to contribute to 

landslide occurrence (Kavzoglu et al., 2015; Nandi and Shakoor, 2009). Several 

methods based on multivariate theory are suggested and applied by the scientific 

community for landslide susceptibility assessment. Here, the most popular 

multivariate methods, namely (i) AHP (Analytical Hierarchy Process), (ii) SVM 

(Support Vector Machine), and (iii) DT (Decision Tree) analysis are discussed with 

their robustness for the multivariate analysis. 

 

(i) AHP  

AHP (Analytic Hierarchy Process) is a semi quantitative method, and a flexible tool 

for analysing complicated problems on site selection, suitability analysis, urban and 

regional planning, and landslide susceptibility analysis. AHP is a multi-criteria 

decision making and multi-objective approach, allowing expert opinions to derive the 

scale of preferences of each predisposing factor. All the factors are arranged in a 

hierarchical order, and numerical values are assigned based on the relative importance 

of each factor. Each factor is then synthesized based on the assigned proprieties, and 

the reciprocal pair-wise comparison matrix is generated for utilization in AHP (Park 

et al., 2013; Sar et al., 2016; Shahabi et al., 2013; Shahabi and Hashim, 2015). In the 

preparation of pair-wise comparison matrix, each factor is rated against all other 

factors by assigning relative dominant values between 1 and 9 [Table 3-2].   
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Table 3-2 : Fundamental scale of absolute number between two parameters in AHP (Saaty, 

2000)  

Intensity of 

Importance 

Degree of 

preference 
Explanation 

1 Equally Contribution to objective is equal 

3 Moderately Attribute is slightly favoured over another 

5 Strongly Attribute is strongly favoured over another 

7 Very Strongly 
Attribute is very strongly favoured over 

another 

9 Extremely 
Favouring one attribute is the highest degree 

possible for an affirmation  

2,4,6,8 Intermediate values When compromise is needed 

Reciprocals Opposites Used for inverse comparison 

 

 

In pair-wise comparison matrix, when the factor on vertical axis is more important 

than the factors in the horizontal axis, relative values vary between 3 and 9 and 

conversely, the values vary between the reciprocals as 1/3 and 1/9. Finally, all the 

values in pair-wise comparison matrix are normalized, in order to obtain the relative 

weights for each predisposing factor. Weights calculated for each factor from AHP 

technique are incorporated for performing the weighted overlay for generating the final 

landslide susceptibility analysis. For the AHP model, final results include the weights 

of the derived factors and a calculated CR (Consistency Ratio). The CR can be 

described as an index of inconsistency, and is generally used to indicate that the matrix 

judgments were randomly generated (Saaty, 1980). 

 

 𝐶𝑅 =  (
𝐶𝐼

𝑅𝐼
) (5) 

where, RI is the average of the resulting consistency index depending on the order of 

the matrix given by Saaty, (1980) and CI is the Consistency Index that can be 

expressed as;  
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 𝐶𝐼 =  (
𝑌𝑚𝑎𝑥 −  𝑛

𝑛 − 1
) (6) 

where, 𝑌𝑚𝑎𝑥 is the largest or principle eigen value of the matrix, and can be easily 

calculated from the matrix of order n. Since the CR is a ratio between the matrix’s 

inconsistency index and random index, it ranges 0 to 1. A CR of 0.1 and less is a 

reasonable level of consistency, and above 0.1 requires revision of the pair-wise 

comparison matrix due to an inconsistent rating of some factors.   

 

(ii) SVM 

SVM (Support Vector Machine) is a kernel based, advanced learning algorithm that 

can be used for complex classification and regression analysis. The basic idea behind 

the SVM for binary classification is to find an optimal separation by considering the 

nearest training data. SVM plots the original input space into a higher dimensional 

feature space and consequently, in the feature space, the optimal hyper plane is 

determined by maximising the margins of class boundaries. The training data that are 

closest to the optimal hyper plane are support vectors. Once the decision space is 

confirmed, it can be used for new data for the same classification (Kavzoglu et al., 

2014; Peng et al., 2014; Pourghasemi et al., 2013).  

 

There are two main concepts inspiring the SVM classification. One is establishing an 

optimum linear separating hyper plane that separates data patterns, while the second is 

the use of kernel functions for converting the original non-linear data patterns into a 

linearly separable higher dimensional feature space [Figure 3-5] (Ballabio and 

Sterlacchini, 2012; Kavzoglu et al., 2015; Lee et al., 2017; Pradhan, 2013). 
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Figure 3-5 : Hyper-planes for (a) linearly separable data and (b) non-linear separable data 

(Kavzoglu et al., 2014). 

 

(iii) Decision Tree 

A DT (Decision Tree) is a supervised learning method composed of decision rules that 

performs the recurrent splits of independent variables into homogeneous zones 

(Breiman et al., 1984; Bui et al., 2012; Niuniu and Yuxun, 2010). The structure of DT 

is similar to a flow chart tree structure, comprising of root nodes containing all the 

data, and a set of internal nodes with terminal nodes. Each node of the tree structure 

generates binary decisions based on the training data for either one class or for some 

other class [Figure 3-6]. DT is involved in the binary repetitive partitioning of whole 

data into a set of homogeneous subsets on the basis of test data (Cho and Kurup, 2011; 

Kavzoglu et al., 2015; Myles et al., 2004; Pradhan, 2013). 
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Many research studies examined the performance of bivariate and multivariate 

techniques for landslide prediction analysis (Bui et al., 2011; Kavzoglu et al., 2015; 

Park et al., 2013; Pradhan, 2013; Saha et al., 2005; Sar et al., 2016; Shahabi et al., 

2013; Yalcin, 2008; Yilmaz et al., 2012). When considering the results from the above 

studies, it was observed that the accuracy level reached from multivariate methods, 

when compared with the bivariate methods, was statistically significant. However, the 

accuracy level is dependant not only on the technique applied, but also with some other 

factors such as the quality of data, and distribution of training and validation samples. 

 

The main drawback of the statistical methods is their dependence on the data structure. 

Statistical methods require assumptions that the statistical properties of samples are in 

a normal distribution. In addition, the size of the training data set is also very important 

if statistical estimates are to be reasonable. In the case of a limited training set size, it 

is difficult to define decision boundaries in the feature space. Therefore, the 

effectiveness of statistical methods depends on the size of the dataset, and its 

distribution.  

Figure 3-6 : Distributed decision tree learning for mining big data 

streams,  (Murdopo, 2013)  
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3.8 Predisposal Factors for Landslide Susceptibility Analysis 

 

It is generally believed that landslides may occur as consequences of complex 

predisposing and triggering factors. Topographical and geological factors, together 

with local climatic conditions, lead to landslide occurrences. The selection of these 

factors, and preparation of corresponding thematic data layers, are vital for models 

used in landslide susceptibility analysis (Lee et al., 2017; Sarkar and Kanungo, 2004). 

There are no universal guidelines regarding the selection of predisposing factors in 

landslide susceptibility analysis. Some parameters may be important factors for 

landslide occurrences in a certain area but not for another one. van Westen et al., 

(2003) stated that every study area has its own particular set of predisposal factors, 

which condition landslides.  

 

Determining of appropriate causal factors is a difficult task, and no specific rule exists 

to define how many factors are sufficient for a specific landslide susceptibility 

analysis. Hence, the selections of predisposing factors are dependent on the nature of 

the study area, opinions of the experts, and the availability of data for generating the 

appropriate spatial and thematic information (Kavzoglu et al., 2015; Shahabi and 

Hashim, 2015). The instability factors responsible for landslide occurrences include; 

lithology, geological structure, slope steepness, seismicity, morphology, climate, land 

use, stream evolution, ground water conditions, vegetation cover, and human 

activities. Among these basic factors, the predisposing factors that have been selected 

in most popular research studies are tabulated in Table 3-3.   

 

The effect of landslide predisposing factors for the accuracy of landslide susceptibility 

analysis has been investigated by several researches. (Costanzo et al., 2012) analysed 

the relationship between prior ranking of predisposing factors, and their predictive 

performances. Results indicate that the slope angle, surface roughness, land use, and 

TWI are the major causative factors for that landslide prediction analysis.  

 



57 
 

Table 3-3 : Number of causative factors used for Landslide susceptibility analysis in recent 

literature 

Study and Year 

No. of 

Predisposal 

Factors 

Predisposal Factors 

(Conforti et al., 2011)  7 

Lithology, Land use, Slope, Aspect, Planar 

curvature, Distance to fault, Distance to 

stream 

(Pradhan, 2013)  8 

Altitude, Slope, Soil type, Planar 

curvature, Distance from drainage, 

Distance from road, TWI, NDVI 

(Pradhan et al., 2013)  14 

Slope, Aspect, Altitude, Planar curvature, 

Profile curvature, Tangential curvature, 

Surface area ratio (SAR), Lithology, Land 

use, Distance from faults, Distance from 

rivers, Distance from roads, Topographic 

wetness index (TWI) and Stream power 

index (SPI) 

 

(Chalkias et al., 2014)  

 

7 

Elevation, Slope, Aspect, Lithology, Land 

cover, Mean Annual Precipitation and Peak 

Ground Acceleration  

(Shahabi and Hashim, 

2015) 
10 

Slope, Aspect, Soil, Lithology, NDVI, 

Land cover, Distance to road, Distance to 

drainage, Precipitation, Distance to fault 

(Kavzoglu et al., 

2015) 
16 

Slope, Lithology, Land cover/use, Aspect, 

Soil depth, NDVI, Elevation, TWI, 

Distance to lineaments, Slope length, 

Distance to road, Distance to drainage, 

Planar curvature, Profile curvature, 

Topographic Position Index, Relative relief 

 

(Lee et al., 2017)  17 

Slope, Aspect, Planar curvature, SPI, TWI, 

Geology, Distance from fault, Soil depth, 

Soil drainage, Soil material, Soil texture, 

Soil topography, Timber type, Timber 

diameter, Timber age, Timber density, 

Land use.  
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Hasekiogullari and Ercanoglu, (2012), examined the effect of causative factors for 

landslide susceptibility analysis using AHP techniques. For the modelling process, 7 

combinations of 9 parameters were tested, starting from 3 factors and by adding each 

new factor till all the factors were included. The best performance was obtained when 

all the factors were considered. In the study of (Suzen and Kaya, 2012), they found 

that 10 causative factors out of 20 of all contributing parameters  provided the best 

performance for landslide susceptibility analysis. (Pradhan, 2013) explored 5 

combinations of 8 causative factors (commencing with 4 factors while adding a new 

factor till all factors were included) by using decision tree and support vector machine 

for landslide susceptibility analysis, and determined the most suitable factors as 

elevation, slope, planar curvature, distance from drainage, distance from road, soil type 

and NDVI (Normalized Difference Vegetation Index). 

 

3.9 Evaluation of Landslide Prediction Models 

 

The validation is of utmost importance in any prediction analysis. Once the landslide 

prediction analyses are performed, the overall performance of the prediction model 

can be investigated by using the ROC (Receiver Operating Characteristics) curve. In 

statistics, ROC is a graphical plot that illustrates the performance of classification, and 

this analysis is considered as a powerful method for the validation of landslide 

susceptibility analysis.  

 

There are two types of plots in ROC curve, the success rate and prediction rate curves, 

and these have frequently been used in landslide susceptibility analysis (Chung and 

Fabbri, 2003). The success rate assesses how many landslides are successfully 

captured by the susceptibility map, and the prediction rate calculates the percentage of 

the independent landslides captured with the susceptibility map of the validation 

dataset (Neuhäuser et al., 2012). Hence, the prediction performances and validation 

performances can be calculated with the use of training and validation samples 

separately [Figure 3-7].  
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Figure 3-7: Prediction performance of multiple factor combinations. (a). success rate curve 

from the training data set; (b). prediction rate curve from the validation data set (Che et al., 

2012). 

 

In practice, the AUC (Area Under Curve) is a good indicator and performs very well 

for measuring the prediction performance analysis [Figure 3-8]. The AUC of the 

success rate and prediction rate curves measure the prediction performances and 

validation performances respectively (Chalkias et al., 2014; Fawcett, 2006; Frattini et 

al., 2010; Jaafari et al., 2014; Kavzoglu et al., 2014; Naghibi et al., 2015; Nandi and 

Shakoor, 2006; Pourghasemi et al., 2012; Youssef et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-8 : Success rate and prediction rate curves for the 

landslide susceptibility map (Jaafari et al., 2015)  
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The AUC value ranges from 0.5 to 1.0 and values closer to 1.0 are considered as a 

perfect fit, whereas a value closer to 0.5 indicates a random fit. The higher the AUC, 

i.e. the steeper the curve’s slope, the better is the prediction (Kamp et al., 2008). Here, 

the AUC of the success rate and prediction rate is 0.8304 and 0.8169 respectively. 

Hence, it can be concluded that the predicted susceptibility levels are in good 

agreement with past landslide occurrences, and therefore that the map is trustworthy 

for susceptibility analysis. 

 

3.10 Landslide Detections 

 

Landslide detection is an important prerequisite in pre and post disaster analysis. In 

the past, landslide detection was done through time consuming, cost-intensive, field 

surveys and visual orthophoto interpretation. Recently, with the advancement of 

satellite remote sensing technology in spatial, spectral and temporal domain, they offer 

new opportunities for fast, reliable, and accurate landslide identification at smaller 

scales. Especially SAR data proves to be useful in the aftermath of an event, as radar 

sensors are mostly independent of illumination and weather conditions, and therefore 

the data is more likely to be available. However, more research is needed to make the 

best integration of optical and radar data for landslide detection in different 

environments. 

 

With the increase of earth observation satellites in the constellation, revisit time has 

been reduced significantly for detecting landslides by visual interpretation. However, 

the accuracy of landslide detection from visual interpretation using remote sensing 

images depend on the contrast of images, size of landslide, interpretation method, and 

professional experience of the interpreter (van Westen et al., 2003). Thus, many 

researchers investigated the automated processes using spectral information for 

extracting the spectral signature of the landslide. Change detection is the most 

commonly used automated process for the detection of landslides. 
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3.11 Change Detection Techniques for Landslide Detection 

 

Change detection is defined as the process of identifying differences in the state or 

nature of an object or phenomenon by observing it at different times. The main 

objective of change detection in remote sensing is in identifying the geographical 

location, and recognizing and quantifying the type of changes due to some reasons 

(Devi and Jiji, 2015). Change detection techniques are mainly interrelated with remote 

sensing data as any change to a geographical phenomenon modifies the spectral 

behaviour. The factors that are considered in change detection analysis using remote 

sensing data includes spatial, spectral, thematic and temporal constraints, atmospheric 

conditions, radiometric resolution and soil moisture conditions (Im and Jensen, 2005). 

 

There are some steps to be followed before using remote sensing data for change 

detection analysis; 

 

(i) Use of data from the same sensor, radiometric and spatial resolutions, and 

frequent acquisitions to remove the effects of seasons and sun angle difference 

(Song and Woodcock, 2003). 

(ii) Precise geometric registration between multi-temporal images to avoid false 

changes being detected due to image displacement (Devi and Jiji, 2015). 

(iii) Performance of radiometric corrections to rectify errors caused by the 

variation in sensor characteristics, atmospheric condition, solar angle, and 

sensor view angle (Chen et al., 2005).  

(iv)  Data collection for suitable time period as the data collected ahead of time fail 

to cover slower change process, whereas data collected in a delayed manner 

leads to excessive omission errors, which significantly impact the 

completeness of change detection (Lunetta et al., 2004). 

(v) Selection of proper change detection techniques in order to extract the required 

change (Devi and Jiji, 2015). 
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Change detection techniques can be categorized as pixel based and object based, 

grounded on the unit of image analysis. A brief summary of some selected change 

detection techniques related to the pixels-based analyses are as follows.  

 

(a) Image Differencing 

In this technique, two images from the same area from two different times have to be 

used. Image differencing is performed by subtracting the DN (Digital Number) value 

of one band from the DN value of the same pixel for the same band of another image. 

The difference image represents the intensity difference of two images. 

Mathematically, image differencing is given by; 

 

 𝐼𝑀𝐺𝑑 =  𝐼𝑀𝐺𝑡1
− 𝐼𝑀𝐺𝑡2

 (7) 

 

where, 𝐼𝑀𝐺𝑡1
is the image at time 𝑡1and 𝐼𝑀𝐺𝑡2

is the image at time, 𝑡2. 𝐼𝑀𝐺𝑑is the 

difference image that extracts the changes of the images from time 𝑡1 to time 𝑡2. As 

changes seem to occur in both directions, the analyst has to decide the order of the 

image to be subtracted (Singh, 1989). 

 

(b) Image Rationing 

Image rationing is similar to the image differencing as images are compared pixel wise. 

Change results are expressed as a ratio between two co-registered images and 

unchanged areas would theoretically have 1 as its value. 

 

 𝐼𝑀𝐺𝑟 =
𝐼𝑀𝐺𝑡1

𝐼𝑀𝐺𝑡2

 (8) 

where, 𝐼𝑀𝐺𝑡1
is the image at time 𝑡1and 𝐼𝑀𝐺𝑡2

is the image at time𝑡2. 𝐼𝑀𝐺𝑟is the ratio 

image that extracts the changes of the images from time 𝑡1 to time 𝑡2     (Rignot and 

van Zyl, 1993). 
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(c) Normalized Difference Vegetation Index (NDVI) 

NDVI investigates the data that is related to the green biomass of vegetation. NDVI is 

calculated by using spectral response from near-infrared and red bands. The main 

reason for selecting these bands is the high reflectivity of near-infrared band, and the 

low reflectivity of red band from green vegetation. Two types of pixel-based 

approaches are integrated in NDVI calculation as image differencing and image 

rationing.  

   

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (9) 

 

Where, 𝑁𝐼𝑅 is the near-infrared band and 𝑅 is the Red band of the image (Lu et al., 

2004). 

 

(d) Principle Component Analysis (PCA) 

PCA performs the data redundancy by transforming multivariate data in to a new set 

of components by assuming that components are not highly correlated. Covariance or 

correlation matrix is used to arrange the data to uncorrelated components. The first 

principle component consists of the highest variation of data. The next largest amount 

of variation consists of the succeeding principal component. Once the appropriate 

components are selected, change detection techniques, such as image rationing or 

image differencing, can be applied in order to extract the change (Lillesand et al., 

2008).  

 

(e) Change Vector Analysis (CVA) 

CVA is a technique that considers multiple image bands simultaneously to detect the 

change. CVA is not only a change detection method, but also performs the 

classification of changes. Each pixel value is considered as a vector, and change 

vectors are computed by subtracting the vectors for all pixels of different images on 

different dates. The type of change can be investigated from the direction of the change 
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vector, and the length corresponds to the magnitude of the change. This method is most 

suitable when the change of interest, and their spectral appearance, is not well 

recognised. The main limitation of using this method is that it requires the acquisition 

of remotely sensed data from perfect image registration and radiometric normalization 

(Ilsever and Unsalan, 2012). Change vector analysis is similar to a multi band version 

of the image differencing. The direction of the change gives additional information 

about the type of the change. This information is more valuable than the amount of 

change as most applications expect some specific type of the change (Chen et al., 

2003).  

 

(f) Post Classification 

In the post-classification of change-detection technique, each image is pre-processed 

and classified separately using supervised or unsupervised classification techniques. 

Then each classification is compared to generate the change matrix that can be used to 

measure the changes. In order to compare similar classes, the classifications of all 

images have to be identical. This method provides a complete matrix of change by 

reducing the impact of atmospheric, sensor and environmental effects. The main 

limitation of this technique is that the accuracy of the final image is entirely dependent 

on the classification accuracy of individual image. Thus, accurate, complete, and high-

quality training datasets are inevitable to produce an accurate classification. However, 

acquiring such training datasets, especially for historical image classification, is both 

a time-consuming and difficult task (Lu et al., 2004).  

 

Developing change detection techniques and tools in remote sensing is an ever-

growing research schema. When considering the vast range of applications in change 

detection analysis, it is a complicated process with no single optimal approach 

applicable for all the cases. Moreover, with the technological advancements over the 

last few decades, most applications are allowed to exceed the traditional limits, and 

attempt new ventures for more robust change detection techniques (Vieira et al., 2012). 
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3.12 Post Disaster effect from Debris Flow 

 

In the field of natural disasters, landslides receive little attention as they often seem so 

unexpected. A landslide is simply the sudden movement of terrestrial material with 

any combination of soil, rocks, mud and water. These materials move slowly and cause 

damage over a period of time, or move rapidly, destroying property and taking lives 

suddenly (Canuti et al., 2004; Guinau et al., 2007; Rosso et al., 2006; Schuster, 1996). 

The danger from debris flow has been recognized by Japanese residents in the 

mountainous regions, and have used evocative names to debris flows to warn future 

generations of their danger as “Ja-nuke” (the runoff of the king snake), “yama-

tsunami” (mountain tsunami), “yama-shio” (mountain tide) and “phantasmal disaster” 

(characteristics and mechanisms of debris flows remained poorly understood) 

(Takahashi, 2007, 2009). 

 

The term ‘susceptibility’ detects the location of potential landslide failures in a given 

region based on a set of predisposing factors. Susceptibility analysis investigates the 

potential of landslides occurring under the same conditioning factors as landslides in 

the past. Even though these analyses provide information on potentially unstable 

slopes, they do not offer the information about the debris flow path of the landslide 

from the failed locations. With the past experiences of damages from landslides, it is 

obvious that most damages occurred due the debris flow than within the mass failure 

region. Hence, integration of debris flow path for landslide susceptibility analysis are 

of utmost importance.  

 

Debris flow investigations within the scientific community started from 1950s with 

qualitative analysis of debris flows. According to the literature in Japan from 

(Takahashi, 2009), the debris flow was defined as the gravitational motion of a mixture 

of sediment and water as a porridge where the volume is much larger than the volume 

of water. The debris flow behaviour is controlled by several parameters as topography, 

soil type, land use, debris volume, and so on. With the difficulty of characterising these 
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parameters for future landslide debris flow analysis, it is hard to determine the runout 

and the distance reached. However, this situation can be simplified by synthesising 

that under intense rainfall, debris flow tend to follow the steepest path and merge with 

drainage network (Parise, 2002). 

 

The open source TauDEM software developed by (Tarboton, 1997), which can be 

executed as an ArcGIS extension, is used to determine the area prone for landslide 

debris flows. TauDEM consists of a set of tools to investigate hydrologic processes by 

using topographical information derived from DEM. Three simple tools can be 

employed as Pit remove, D-∞flow direction and D-∞ avalanche runout, in order to 

extract the debris flow path from DEM.  

 

3.13 Chapter Summary 

 

The exploration of previous landslide studies was performed through three basic 

categories as landslide recognition/classification, landslide monitoring and landslide 

susceptibility analysis. Landslide recognition identifies the damaged areas from past 

or active landslides that occurred in a particular area. Landslide monitoring includes 

the measurements of earth deformation and land use or cover changes along the time. 

The probability or the potential of land mass failures are determined through the 

analysis of landslide predisposal factors in landslide susceptibility analysis. Especially 

in a disaster situation with prevailing bad weather conditions, rapid investigations are 

really complicated at smaller scale. The promising alternative is the integrated use of 

radar and optical satellite images for landslide investigations as the radar has the 

capability of all-weather day and night observation providing complementary 

information with optical images for the smaller scale landslide investigations. Hence, 

this research is based on the integration of radar and optical remote sensing for 

landslide prediction and detection analysis. 
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Landslide susceptibility analysis involves several qualitative and quantitative methods. 

Qualitative methods are based on the expert opinions while quantitative methods are 

dependent on the past landslide experiences. Quantitative methods are bivariate and 

multivariate and this chapter discussed some popular bivariate and multivariate 

approaches with their theoretical formations. As the validation is most valuable part in 

any prediction analysis, this chapter described the use of AUC of ROC curves using 

separate training and validation samples. 

 

Earlier, landslide detection was based on time consuming, cost-intensive field surveys 

and visual interpretation of orthophoto generated from aerial photographs. Recently, 

with the advancement of satellite remote sensing technology in spatial, spectral and 

temporal domain, new opportunities are emerging for fast, reliable and accurate 

landslide identification at smaller scales. This chapter focused on several change 

detection techniques that are most suitable for extracting the landslide signature from 

satellite imageries. 

 

Landslide susceptibility analysis detects the locations of potential landslide failures in 

a given area based on a set of conditioning factors. However, these analyses do not 

provide the information about debris flow path of the landslide from the failed 

locations. According to the past understandings of damages from landslides, it is 

noticeable that most damages occurred due the debris flow than the mass failure 

region. Hence, this chapter finally describes the importance of applying the debris flow 

path for landslide susceptibility analysis.  
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CHAPTER 4 : PERFORMANCE ASSESSMENT OF 

RADAR AND OPTICAL REMOTE SENSING FOR 

LANDSLIDE SUSCEPTIBILITY ANALYSIS 

 

Through the most recent technological developments of satellite remote sensing in the 

areas of temporal, spectral, spatial, and global coverage, the availability of such images 

either at a low cost or free of charge, and the advancement of tools developed in image 

analysis techniques and GIS for spatial data analysis, a large variety of applications 

using remote sensing and GIS as tools are promising (Reis et al., 2012). Hence, the 

goal of this chapter is to generate landslide prediction models using bivariate and 

multivariate statistical analysis on the causative factors as thematic maps that are 

produced in GIS and remote sensing environment, with and without radar induced 

factors. Fifteen topographical, hydrological, geological, land cover, and soil factors 

are considered in order to determine the landslide susceptibility regions, including 

three radar induced factors. The prediction levels of susceptibility regions are 

distinguished and categorized in to four susceptibility classes as very low, low, 

moderate and high. Currently, the statistical methods are more applicable for landslide 

prediction analysis than the qualitative approaches. Hence, the Information Value 

method as a bivariate statistical analysis and MCDA based on the AHP as a 

multivariate statistical analysis, are performed.  

 

4.1 Study Area 

 

Koslanda is a remote, hilly, area with geographically difficult access, facing various 

harsh weather conditions. Badulla is the capital of Uva province and is approximately 

28 km away from Koslanda. The population is around 5,000 peoples and most of them 

are working in tea estates. The selected study area has an extent of 19 km2 within the 

Koslanda area [Figure 4-1]. 
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A most devastating landslide occurred in Sri Lanka in year 2014 in Koslanda. Earlier 

in 1997, there was a landslide in Naketiya. As a consequence, many studies on 

landslide research have focused on Koslanda area as the study area. Even though the 

study area is most significant in tourism with natural beauty, and rich cultural heritage, 

due to its topographical and geomorphological formation, Koslanda is better known 

for its vulnerability to natural disasters such as landslides, rock falls, rock slides, and 

cutting failures, particularly during the heavy rains (SAARC, 2010). 

4.2 Data and Methodology 

 

The most important phases in landslide prediction analyses are the collection of data 

from different sources and the construction of a spatial database for these on a common 

platform (Lan et al., 2004). The preliminary data acquisition, processing stages for the 

spatial database, and the methodology followed throughout this work are discussed in 

the sub sections.  

Figure 4-1 : Topographical formation of the selected Koslanda area for Landslide 

susceptibility analysis 
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4.2.1 Data 

 

The data utilized for the landslide prediction analysis include the topographical, 

hydrological, geological, soil and land cover factors. All factors are derived from 

optical images (Landsat-8, Sentinel-2), radar images (Sentinel-1, TerraSAR-X), DEM 

derived from aerial triangulation and other available data sources (geology, rainfall). 

Stereo aerial photographs from 1993 are used to generate the DEM using aerial 

triangulation. The Imagine photogrammetry tool from ERDAS Imagine 2014 (Earth 

Resource Data Analysis System) software is used for DEM generation. Camera 

calibration, interior orientation, and exterior orientation by using 25 GCPs, are 

performed in order to generate the DEM from aerial triangulation. An inventory map 

of landslides for the study area was constructed by integrating the interpreted multi-

temporal aerial photographs, satellite images, and some temporal images from the 

Google Earth. Verifications are carried out through field investigations.  

 

4.2.2 Methodology 

 

Landslide inventory map, and the topographical, hydrological, geological, soil and 

land cover factors are processed in order to gain the landslide susceptible regions from 

bivariate and multivariate statistical analysis. The general flow chart shown in Figure 

18 gives a quick overview into the overall set up of this research to achieve the 

expected outcomes. Topographical factors, elevation, slope, aspect, planar curvature, 

and profile curvature are derived from the elevation information using the DEM. 

Furthermore, the DEM is used to calculate the Topographical Wetness Index (TWI), 

as a hydrological factor. The NDVI and the thermal information derived from Landsat-

8 image are used in conjunction for extracting the surface soil moisture. The lineament 

density and the recent land cover classes were obtained from the supervised 

classification of Sentinel-2 image (10 m resolution) of 10th October 2016.  
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Figure 4-2 : Methodological flow of the Landslide susceptibility analysis using Bivariate 

and Multivariate approaches 
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Sentinel-1 radar images with 10 m resolution from wet and dry seasons were used for 

obtaining the soil moisture index and surface roughness as radar induced factors. 

Moreover, the TerraSAR-X spotlight image of 02nd November 2014 with a 2 m 

resolution was used for forest biomass estimation. Geology, rainfall and distance to 

hydrology were extracted from the available data sources such as geological map from 

GSMB (Geological Survey Mines Bureau), monthly average rainfall data from the 

Department of Meteorology, and water bodies as digital vector data layers from the 

Survey Department of Sri Lanka. Afterwards, the landslide inventory map and the 

derived causative factors (topographical, hydrological, soil and land cover) are cross-

checked to calculate the weight index for the landslide susceptibility analysis. 

 

Validating the results of predictions is of paramount importance to confirm the 

significance of the analysis and the results. In this research, the landslide failure map 

derived from previous landslides occurred within the study area are separated in to two 

independent samples as training and validating. The training samples are used to 

generate the landslide susceptibility regions while the validation samples are for 

validating results from the landslide prediction analysis (Remondo et al., 2003; Saha 

et al., 2005). The same training and validation samples were used of for all the 

prediction analysis and appropriate validations throughout the entire research. 

 

4.3 Selected Landslide Predisposing Factors 

 

Landslides might occur as a consequence of a number of predisposing and triggering 

factors. In this research, the predisposing factors were selected from among the most 

widely considered factors in literature and opinion from experts [Table 4-1]. Most data 

are derived as primary data from remote sensing techniques for a large area with up-

to-date information. As such, fifteen predisposing factors are selected for the landslide 

susceptibility analysis by using bivariate and multivariate statistical techniques. Of 

these, twelve factors were derived from optical images, DEM and auxiliary data, while 

three more factors were derived from radar images. These factors were then combined 
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in order to analyse the performance of this integration for landslide susceptibility 

analysis. 

 Table 4-1: Selected Predisposing Factors for Landslide susceptibility analysis 

Factors 

Main Factors Sub Factors 

       Topographical 

   Elevation 

   Slope 

   Aspect 

   Planar Curvature 

   Profile Curvature 

   Surface Roughness (radar) 

       Hydrological 

   Distance to Hydrology 

   TWI 

   Rainfall 

       Soil 
Surface Soil Moisture 

   Soil Moisture Index (radar) 

       Land cover 
   Land Cover Type 

   Forest Biomass (radar) 

      Geological 
   Geology 

   Lineament 

 

4.3.1 Topographical Factors 

 

The topographical factors include elevation, slope, aspect, planar curvature, profile 

curvature and surface roughness of the terrain [Figure 4-3, 4-4, and 4-5]. The elevation 

is important to study the local relief of the terrain and ranges from 446 m -1537 m 

above MSL (Mean Sea Level) in the study area. Since the area contains high 

mountains, more than a 1,000 m difference in elevation can be observed. The basic 

parameter for the slope stability analysis is the slope angle. The slope angle of the 

study area ranges from 00 to 800, showing a significant increase of slope angle within 
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a relatively smaller area. Additionally, the area with steep slopes ranging from 600 - 

800 can be seen in the northern part of Koslanda [Figure 4-3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 : Topographical factors, from top to bottom as Elevation and 

Slope used in Landslide Susceptibility Analysis 
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Aspect is defined as the direction of maximum slope of the terrain surface, or the 

compass direction (one of the eight main directions - N, NE, E, SE, S, SW, W, and 

NW) of a particular slope. Slopes of many regions on the study area are oriented in SE 

(South-East) and NW (North-West) directions. The curvature is theoretically defined 

as the rate of change of slope, or slope, of the focused slope. Planar curvature describes 

convergence and divergence of the flow across a surface while the profile curvature 

refers to acceleration or deceleration of the flow across a surface, as discussed in 

section 6.5.1 [Figure 4-4]. 

 

The importance of incorporating these factors for landslide susceptibility analysis is 

that these factors heavily influence the soil water content. When considering most of 

the area within the study region, the planar curvature of the South-East and North-

West regions are upwardly convex, thereby providing higher convergence (3.68 -

9.37), while the North, South-West and middle regions are upwardly concave, 

resulting in more divergence of debris. Similarly, the profile curvature defines the 

South-East and North-West regions as upwardly concave, resulting in more 

accelerations of debris (8.46 - 21.9) while the North, middle and South-West columns 

indicate the surfaces as upwardly convex with more decelerations (1.13- (-3.28)) in the 

study area [Figure 4-4, 4-5]. 

 

Under radar configuration, the magnitude of radar backscatter is defined as a function 

of surface roughness and moisture content. Hence, to estimate the surface roughness 

without the use of any ancillary field data, a radar image of 12th March 2015 under dry 

climatic condition is used to reduce the effect of the moisture component from the 

radar backscatter [Figure 4-5]. The texture is the structure, or appearance, of the 

surface, and as such, describes the coarseness or the homogeneity of the image 

structure. One of the most prominent methods for texture analysis is Grey Level Co-

occurrence Matrix (GLCM), which is based on the second order probability density 

function. Hence, the GLCM texture analysis is performed using a window size of 9*9 

pixels and the homogeneity or dissimilarity criterion is used to determine the surface 
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roughness of the study area (Rahman et al., 2008; Rahman et al., 2007; Septiadi and 

Nasution, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 : Topographical factors, from top to bottom as Aspect and 

Planar Curvature used in Landslide Susceptibility Analysis 
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Figure 4-5 : Topographical factors, from top to bottom as Profile Curvature 

and Surface Roughness used in Landslide Susceptibility Analysis 

Legend
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4.3.2 Hydrological Factors 

 

Distance to hydrology, TWI and rainfall are selected as the hydrological factors for 

this landslide susceptibility analysis [Figure 4-6]. Proximity to the hydrological 

features is an important factor when considering the landslide susceptible analyses 

(Beven and Kirkby, 1979). Hence, through the assigning of weights, this work 

investigated the effect of this particular parameter for the landslide prediction analysis. 

The Eruwendumpola Oya is along the valley of the lower slope of the study area, and 

the debris flow materials from the landslide at Meeriyabedda were finally accumulated 

in this river. There are many small streams and drainage systems commencing from 

the top of the mountainous regions. Therefore, the proximity to hydrological features 

is also considered in the landslide prediction analysis. 

 

TWI is a solid index that is capable of predicting areas susceptible to saturation or 

wetness of land surfaces, and the areas that have the potential to produce an overland 

flow. TWI has been used to study the spatial scale effects, or topographic control, on 

hydrological processes. This index was developed by (Beven and Kirkby, 1979) and 

can be defined as; 

 TWI = ln⌈∝ tan 𝛽⁄ ⌉ (10) 

 

where ∝ is the local upslope area draining through a certain point per unit of contour 

length, and 𝛽 is the gradient of the local slope in degrees. The index is designed for 

the hill slope catenas and will not be a relevant variable for flat land studies. The best 

results can be achieved from high resolution DEMs (Kavzoglu et al., 2014; Sørensen 

et al., 2006). 
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Figure 4-6 : Hydrological factors from top to bottom as Distance to hydrology and 

Topographical Wetness Index (TWI) used for Landslide Susceptibility Analysis 
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Within the Sri Lankan context, heavy and prolonged rainfall is the main triggering 

factor for the landslides. The monthly average rainfall data for the year 2014 from 10 

nearby stations to Koslanda as Buttala, Konketiya, Diyatalawa, Badulla, Gangeyaya, 

Gleanore, Haputale factory, Poonagala, Suriyawewa, Thanamalwila and Wellawaya 

are used in this study [Figure 4-7]. All of the monthly rainfall data from the above 10 

rain gauge stations are averaged, and the average rainfall map for the study area is 

generated using the IDW (Inverse Distance Weighting) interpolation method within 

the ArcGIS environment (Sar et al., 2016; Shahabi and Hashim, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 : Hydrological factor, Average Rainfall for 2014 used 

for Landslide Susceptibility Analysis 
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4.3.3 Soil Factors 

 

The soil factors selected in this study are the SMI (Soil Moisture Index) and Delta 

Index [Figure 4-8]. Surface soil moisture is the one of most important parameters in 

land susceptibility analysis. As the soil mass’s moisture increases, the pore water 

pressure rises and increases the shear load while decreasing the shear strength, 

resulting in landslides. The use of remotely sensed data is potentially of great interest 

and is prominently used in soil moisture estimation.  

 

Several methods have been proposed to estimate the surface soil moisture conditions 

accurately with insitu measurements. However, these methods are time consuming and 

costly with respect to the study of a larger area at a smaller scale. Hence, this research 

uses the Universal Triangle relationship between Soil Moisture, NDVI and LST (Land 

Surface Temperature) derived from Landsat-8 image bands as an optical remote 

sensing approach, and the Delta index derived from two radar images from wet and 

dry conditions as a radar remote sensing approach (Carlson et al., 1994; Zhan et al., 

2002).  

 

Band 5 (Near Infrared (NIR), 30 m resolution), band 4 (Red, 30 m resolution) and band 

11 (Thermal, TIR-2, 100 m resolution) of Landsat-8 image of 03rd July 2015 is 

processed for extracting the soil moisture index in the Thermal-NDVI space. The 

combination of Thermal-NDVI space is widely used, and has been successfully 

employed to determine the surface soil moisture information (Hassaballa et al., 2013).  
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 Figure 4-8 : Soil factors top to bottom as Soil Moisture Index (SMI) 

from optical approach and Delta Index from radar approach used for 

Landslide Susceptibility Analysis 

Legend

SMI.tif

<VALUE>

-0.76 - -0.08

-0.08 - -0.50

-0.50 - 1.07

1.07 - 1.09



83 
 

In this space, the surface temperature is primarily determined by the soil moisture 

emitted from the land surface, while the vegetation index (NDVI) is determined by the 

land-surface reflectance. The combination of these two variables (T and NDVI) from 

remotely sensed measurements apparently carries information about surface soil 

moisture under different vegetation types expressed by NDVI. The SMI is "0" along 

the dry edge and "1" is along the wet edge. SMI can be defined as; 

 SMI =   
(𝑇𝑚𝑎𝑥 − 𝑇)

(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
 (11) 

 

where Tmax, Tmin are the maximum and minimum surface temperature for a given 

NDVI and T is the remotely sensed data derived surface temperature at a given pixel 

for a given NDVI (Wang and Qu, 2009; Zenga et al., 2004). The simple regression 

relationship between T and NDVI is formulated as; 

 

 𝑇𝑚𝑎𝑥 = 𝑎1 ∙ 𝑁𝐷𝑉𝐼 + 𝑏1 (12) 

 

 

 

𝑇𝑚𝑖𝑛 = 𝑎2 ∙ 𝑁𝐷𝑉𝐼 + 𝑏2 (13) 

where, 𝑎1 = -5.2362,  𝑏1 = 300.14,  𝑎2 = 2.9254, and 𝑏2 = 289.11. Accordingly, the soil 

moisture index is calculated and the value ranges approximately from 0 to 1. High 

indices are scattered in the North-West regions of the study area where the area 

contains thick forest areas at the top of the mountains, and the low soil moisture indices 

are abundant in the South and South-West regions where the area contains residences, 

roads, and abundant number of tea estates. 

 

Radar remote sensing provides advantages for extracting near surface soil moisture (0-

5 cm) using L band including timely coverage with repeat passes in day and night, 

under all weather conditions. Technically, the surface roughness and vegetation affect 

radar backscatter much more than soil moisture. Hence, surface roughness and 

vegetation have to remain unchanged during the image acquisition for soil moisture 

estimation (Thoma et al., 2006).  
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DI (Delta Index) is a modified, image differencing technique, and many studies have 

proven it to be a good predictor for near surface soil moisture extraction in many 

studies (Barrett et al., 2009; Moran et al., 2000; Sano et al., 1998; Thoma et al., 2004). 

This index describes the change of wet scene backscatter relative to the dry scene 

backscatter. DI require two images, one as the dry reference image and the second a 

wetter image (when compared with the “dry” image) where the surface roughness and 

vegetation density of the study area should not change significantly between the image 

acquisition dates. Delta Index is defined as; 

 

 𝐷𝑒𝑙𝑡𝑎 𝐼𝑛𝑑𝑒𝑥 =  |
𝜎𝑤𝑒𝑡

0 − 𝜎𝑑𝑟𝑦
0

𝜎𝑑𝑟𝑦
0 | (14) 

 

where, 𝜎𝑤𝑒𝑡
0  is the radar backscatter (decibels) from a pixel in a radar image 

representing wet soil conditions, and 𝜎𝑑𝑟𝑦
0  is the radar backscatter (decibels) from a 

pixel in the same geographic location representing dry soil conditions at a different 

time. Sentinel-1 images with 10 m spatial resolution and VV polarization is used. Dry 

reference image was acquired on 12th March 2015 and the wet image was 24th 

November 2014 after the Meeriyabedda landslide. Hence, the topographical changes 

as roughness and vegetation density were not significantly changed with in these three 

months’ time. When compared with the near surface soil moisture extracted from radar 

images with surface soil moisture from optical approach, high and low moisture 

contents are scattered in similar regions of the study area but in an ad hoc manner. 

 

4.3.4 Land Use 

 

The major land uses existing in this study area are identified as tea, scrub, forest, rock, 

paddy, water, and residential. Sentinel-2A image from 10th October 2016 is used to 

extract the desired land uses from the study area by applying supervised classification 

[Figure 4-9].  
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 Figure 4-9 : Land use factors top to bottom as Land use from Sentinel – 2A 

(10 m resolution), and estimated Forest Biomass from TerraSAR-X (3 m 

resolution) Radar image, which are used in Landslide susceptibility analysis 

Legend
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Tea and scrub areas are prominent in this study region with some forest covers and 

residential areas. Scrub areas are typically the tea estates that are in abundance, while 

the residential areas are the rooms of tea workers. It is noted that most of the 

devastating landslides in this area had occurred in the abundant tea estates. Hence, the 

main reason for the continuous occurrence of these landslides can be identified as the 

lack of proper land use management in this study area. 

 

Forest biomass is a significant factor that can control the landmass failures or 

landslides. Measurements of forest resources are often outdated due to forest 

degradations, forest fires, intensive logging activities, and natural reforestations on 

abundant agricultural lands. The main limitations of using optical remote sensing for 

forest biomass estimation is the near constant tropical cloud cover, and the insensitivity 

of reflectance to change of the biomass in older and mixed forests. Radar has potential 

to overcome the above limitations due to its all-weather, day and night capability and 

mainly with the positive relationship of radar backscatter and forest biomass (Caicoya 

et al., 2016). 

 

Kuplich et al., (2005) related the radar image texture derived from GLCM to the forest 

biomass. Field data collections were done from 37 plots to generate allometric 

regression equations that express the relationship between diameter at breast height, 

wood density and biomass. JERS-1 (Japanese Earth Resources Satellites), L band in 

HH polarization data from December 1995 and July 1995 had been used in this work. 

An experiment was conducted with seven texture measures but only the GLCM 

derived contrast increased the correlation between the backscatter and the log of 

biomass. The study concluded that the GLCM derived contrast to backscatter has the 

potential to increase the accuracy of biomass prediction (Kuplich et al., 2005).  
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The regression model derived for forest biomass estimation from radar data with the 

inclusion of textural information (GLCM contrast) are formed as follows, 

 

 𝐿𝑜𝑔 𝑜𝑓 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 2.24 + 0.33𝑏 + 0.0001𝑐 (15) 

 

where, b is the radar back scatter and the c is the GLCM contrast texture for the 

particular radar image.  

 

TerraSAR-X spot light image from 2nd November 2014 with 3m resolution and dual 

polarization (HH and VV) is used to estimate the forest biomass in this research. The 

calculated log of forest biomass ranges from -7.43 to 3.19. When comparing the 

calculated forest biomass from radar with the land use derived from the 10 m resolution 

Sentinel-2 optical images, forest and scrub land uses are indicated by high indices of 

forest biomass regions. 

 

4.3.5 Geological Factors 

 

In this research for Landslide susceptibility analysis, two geological factors are 

considered as geology and lineament density [Figure 4-10]. Geology refers to the 

physical structure and the substance of the Earth. In order to investigate the land mass 

failures, the geological structure of that particular area have to be analysed carefully. 

The geomorphology of Koslanda in section 2.1.3 describes, in detail, the formation of 

the physical structure of the Earth around the Koslanda study area [Table 4-2]. 

 

A combination of geology and improper land uses in the study area has made it more 

vulnerable for landslides. Hence, the geological information of the particular area is 

obtained from the available geological map from GSMB at 1:100,000 scale. Seven 

types of different geological structures are contained in the selected study region. 
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Lineaments are extractable linear features which are correlated with the geological 

structures of the earth. When considering the analysis of lineaments with respect to the 

landslide potentiality, lineaments exhibit the zones of weakness surfaces as faults, 

fractures, and joints. Lineaments can typically be derived from aerial photographs or 

satellite images (Mandal and Maiti, 2015). This study uses the Sentinel-2A optical 

satellite image with 10 m resolution for the extraction of lineaments of the study area. 

The lineament density is then calculated to use this information for landslide prediction 

analysis [Figure 4-10]. 

 

Table 4-2 : Geological Structures of the Koslanda area obtained from the 1:100,000 Geological 

Map of GSMB, Sri Lanka 

 

 

 

Geological 

Structures 
Description 

Pmc 
Marble, usually coarse-grained and dolomitic, locally high calcite 

marble present   

Pmgga Garnet-sillimanite –biotite gness± graphite pelitic schist or gneiss 

Pmgga_ga 
Garnet-sillimanite –biotite gness± graphite with up to 30% large 

(1-3cm) red garnet, formerly “khondalite” 

Pmgk 

Charnockitic gneisses: restricted outcrops, often ridge-forming: 

typically coarse-grained with characteristic brown or green greasy 

lustre; may lack hypersthene. Includes patchy in situ charnockites 

as well as partially retrogressed, bleached “ex-charnockites”, 

stipple indicates local charnockitisation includes Pmgkh 

hornblende rich charnockitic gneisses with garnet ± graphite       

Pmgk_b 

Undifferentiated charnockitic biotite gneisses: extensive sequences 

of charnockitic-looking grey gneisses usually lacking hypersthene, 

though commonly with boudinaged orthopyroxene-bearing mafic 

layers; but may include some paragneisses 

Pmgqf_ga 

Garnetiferousquartzofeldspathic gneiss (formerly “garnet 

granulite”): leucocratic quartz-feldspar gneiss with abundant pink 

garnets, often>20%; weathers to iron-rich residual deposits    

Pmq 
Quartzites: pure coarse-grained ridge-forming quartzites locally 

with <5% each of sillimanite, kaolinised feldspar or biotite 
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 Figure 4-10 : Geological factors top to bottom as 1:100,000 scale Geological 

map from GSMB, Sri Lanka and Lineament density with the lineaments derived 

from 10 m resolution Sentinel -2 image used for landslide susceptibility analysis 
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4.4 Landslide Susceptibility Analysis 

 

Production of landslide maps is an essential tool that can help planners, local 

administrations, and decision makers in disaster management activities. Accuracy of 

the landslide maps is crucial for the reduction of negative impacts on human life and 

property. The prediction models that are available in landslide susceptibility analysis 

require a combination of various predisposing factors. Many algorithms have been 

developed and successfully applied, in order to combine these predisposing factors. In 

recent years, InfoVal method based on simple statistical analysis such as bivariate, and 

GIS based MCDA as multivariate, have been successfully applied for landslide 

susceptibility analysis.  

 

After decisive analysis of the types of predisposing factors, present research work 

aimed to consider fifteen predisposing factors that are derived from optical, radar and 

other available auxiliary data sources. Three significant causative factors as surface 

roughness, soil moisture from Delta Index, and forest biomass were estimated by using 

radar satellite images. Thus, this work investigated the performance of landslide 

susceptibility analysis from bivariate and multivariate nature with the inclusion of 

radar induced factors. 

 

4.4.1 Bivariate Statistical Analysis (InfoVal or SI method) 

 

The bivariate statistical analysis determines the susceptibility at each point or pixel, 

jointly considering the weight of influence of all predisposing factors. The weight of 

influence is based on the landslide inventory map of the particular area. When 

constructing a probability model for landslide prediction, it is necessary to assume that 

the landslide occurrence is determined by landslide-related factors, and that future 

landslides will also occur under the same, or almost similar, conditions as past 

landslides. Hence, at the beginning of the analysis, the landslide inventory map was 
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divided in to two samples as training and validation, enabling the use of this data for 

landslide susceptibility analysis and results validation respectively. 

 

Information value method as a bivariate approach has been described in detail in 

section 3.7.2 (a) part (ii). The mathematical analysis for determining the weight of 

influence for landslide susceptibility analysis is also discussed in Chapter 3, as 

Equation (2). The Log function is used to control the large variation of weights in 

calculations. The weight of influence for each factor type is calculated from its 

relationship to landslide events using training samples of landslide failure map [Table 

1-15 of Annexure A]. Larger the weight of influence, the stronger the relationship 

between landslide occurrence and the given factor’s attribute.  

 

Finally, the weight of influence of all thematic maps, with radar induced factors, and 

without radar induced factors, are added to obtain the contribution of all predisposing 

factors for landslide susceptibility analysis. The entire study area of each landslide 

susceptibility map is then discretized in to four classes as 0%, 10%, 30% and 60% of 

failure regions for very low, low, moderate and high susceptibility classes respectively 

[Figure 4-11 and 4-12].  

 

Susceptible regions are identified from the bivariate information value method without 

radar induced factors as 12% for high, 45% for moderate, 38% for low, and 5% for 

very low. Hence, 57% areas from the total study area are predicted as having high and 

moderate susceptibility for the landslide hazard. Very steep slope mountains in the 

North, North West, and East regions are identified as very low susceptibility areas, 

given that the area was free from historical landslides. The middle regions with 300-

500 slope are detected as having high probability for landslide occurrences with the 

past experience from Naketiya and Meeriyabedda landslides.  
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The bivariate information value method with radar induced factors identified 19% of 

failure regions for high susceptibility, 39% for moderate, 33% for low, and 9% for 

very low susceptible regions. Therefore, 58% of the total study area is predicted as 

having high and moderate susceptibility for landslides. Very steep slope mountains in 

the North, North West, East, and South East regions, area near to the Eruwendumpola 

Oya, are identified as having very low susceptibility for landslides. Similar to the 

bivariate analysis without radar induced factors, the middle regions with 300-500 slope 

are detected as having high probability for landslide occurrences.  

 

Figure 4-11: Landslide Susceptibility Map from Bivariate, 

Information Value Method (without Radar Induced Factors) 
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4.4.2 Multivariate Statistical Analysis (MCDA based on AHP) 

 

Multivariate methods too, integrate all the independent predisposing factors with the 

inclusion of relative contribution of each factor by putting more emphasis on the 

predisposing factors that contribute to landslide occurrence. In multivariate analysis, 

the same predisposing factors with or without radar, are used to investigate the 

landslide susceptibility regions from AHP technique within the GIS domain. The AHP 

provides an effective way to deal with complex decision making. It can assist with 

identifying and weighting of multi criteria, analysing the collected data, and expediting 

the decision-making process. Theoretical concepts of Multivariate prediction models 

and AHP technique are discussed in section 3.7.2 (b). 

 

Figure 4-12 : Landslide Susceptibility Map from Bivariate, 

Information Value Method (with Radar Induced Factors) 
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In AHP, each pair of factors in a particular factor group is examined at one time, in 

terms of their relative importance. Relative weights for each factor are calculated based 

on a questionnaire survey from experts in the field [Annexure B]. These relative 

weights are then used to generate a pair-wise comparison matrix which is the basic 

measurement mode when applying the AHP procedure. The selected predisposing 

factors, and relevant relative weights, are used to generate the normalized matrix with 

final weights by performing the weighted linear combination. Practically, the weight 

analyses are benefitted from the expert knowledge of causal factors for landslides. 

However, expert knowledge could be subjective at times, or may cause to assign 

different weights for each factor, when dealing with a large number of causative 

factors. Hence, in order to avoid this inconsistency, CR (Consistency Ratio) is 

calculated. For better predictive models, the CR should be less than 0.1, or else have 

to be generated weights for each factor with the proper pairwise comparison [Section 

3.7.2 (b) part (i)].  

 

All fifteen weighted predisposing factors were grouped as with or without radar 

induced factors, and weighted overlay is performed separately in order to obtain the 

landslide susceptibility regions. When considering the twelve predisposing factors 

without radar, a 12×12 pairwise comparison matrix [Annexure B, Table 16] and the 

normalized matrix [Annexure B, Table 17] are generated in order to calculate the final 

weights for each predisposing factor. The calculated weights for elevation, slope, 

aspect, planar curvature, profile curvature, TWI, land use, lineament density, distance 

to hydrology, SMI in NDVI-T domain, geology, and rainfall are 0.030, 0.172, 0.022, 

0.018, 0.014, 0.074, 0.149, 0.052, 0.045, 0.094, 0.185, and 0.145, respectively. The 

CR is 0.089, making it less than the 0.1, the value showing the reasonable level of 

consistency in the pairwise comparison. 

 

Then the fifteen predisposing factors with radar induced factors are selected and, a 

15×15 pairwise comparison matrix [Annexure B, Table 18] and the normalized matrix 

[Annexure B, Table 19] are generated in order to calculate the final weights for each 
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predisposing factor. The weights for elevation, slope, aspect, planar curvature, profile 

curvature, TWI, land use, lineament density, distance to hydrology, SMI in NDVI-T 

domain, geology, rainfall, soil moisture (Delta index), surface roughness, and forest 

biomass are 0.022, 0.145, 0.016, 0.013, 0.011, 0.053, 0.126, 0.039, 0.033, 0.065, 0.153, 

0.124, 0.088, 0.088, and 0.027, respectively. When considering the fifteen 

predisposing factors, the CR is calculated as 0.092, which is less than the 0.1 thereby 

showing a realistic level of consistency in the pairwise comparison matrix. 

 

Finally, the multi criteria decision analysis using AHP theories is performed to obtain 

the landslide susceptibility regions for the study area. As in with the bivariate method, 

the whole study area is discretized in to four classes as 0%, 10%, 30% and 60% of 

failure regions for very low, low, moderate and high susceptibility classes, 

respectively. Figure 4-13 illustrates the landslide susceptibility map from the 

multivariate method without radar induced factors. Multivariate AHP technique is able 

to identify 18% for high, 44% for moderate, 36% for low and 2% for very low 

susceptible regions. Hence, 62% of areas from the total study area are predicted to be 

of high and moderate susceptibility for landslide hazard. 

 

The tops of the mountains in the North West and East regions are identified as having 

very low susceptibility for landslides. Similar to the bivariate approaches, the middle 

regions are detected as having a high and moderate probability for landslide 

occurrences.  

 

The landslide susceptibility map from the multivariate method with radar induced 

factors, are illustrated in Figure 4-14. From the total area, 21% of the area having high 

susceptibility to landslides, 40% of area for moderate, 34% area for low and 5% of 

area as having very low susceptibility to landslides have been identified from this 

analysis. Hence, 61% of areas from the study area are predicted as having high and 

moderate susceptibility for the landslide hazard. 
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The top of the mountains in the North, North West, East, and South East regions, with 

area near to the Eruwendumpola Oya, are identified as having a very low susceptibility 

to landslide hazards. The middle regions with 300-500 slopes are detected as having 

high and moderate probability for landslide occurrences.  

 

Figure 4-13 : Landslide susceptibility map from Multivariate, 

AHP based on MCDA (without Radar Induced Factors) 
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Table 4-3 shows the comparison of landslide susceptibility derived from bivariate and 

multivariate analysis, and with and without radar induced factors. The following 

notations are used in the table; 

BiNR -   Bivariate analysis without radar induced factors 

BiWR -   Bivariate analysis with radar induced factors 

MNR -   Multivariate analysis without radar induced factors 

MWR -   Multivariate analysis with radar induced factors 

 

 

 

Figure 4-14 : Landslide susceptibility map from Multivariate, 

AHP based on MCDA (with Radar Induced Factors) 
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Table 4-3 : Landslide susceptible area comparison from bivariate and multivariate analysis 

with and without radar induced factors  

BiNR BiWR MNR MWR 

High 12% 19% 18% 21% 

Moderate 45% 39% 44% 40% 

Low 38% 33% 36% 34% 

Very Low 05% 09% 02% 05% 

 

The area identified as having high and moderate susceptibility classes in these four 

approaches (57%, 58%, 62%, and 61% respectively in BiNR, BiWR, MNR, and 

MWR) are approximately similar but shows a slight increase in multivariate analysis 

when compared with bivariate analysis. Moderate and low landslide susceptibility 

areas show only some slight changes throughout these four analyses. With the 

integration of radar induced factors as surface roughness, near surface soil moisture 

from delta index, and forest biomass in bivariate and multivariate analysis, the high 

and very low susceptible areas are increased significantly (high: 7% - bivariate, 3% - 

multivariate and very low: 4% - bivariate, 3%- multivariate). However, when 

comparing the high and very low susceptibility areas from bivariate and multivariate 

analysis, high susceptibility areas show a significant increase (without radar: 6% and 

with radar: 2%) while, very low susceptibility areas have a significant decrease 

(without radar: 3% and with radar: 4%). 

 

4.5 Results Validation 

 

As the last step, the landslide susceptibility maps derived from the bivariate 

information value method and multivariate AHP techniques are validated using the 

validation samples from the landslide failure map. Two of the most commonly used 

and scientifically recognized validation methods are followed as RFD (Relative 

Failure Density) and ROC (Receiver Operating Characteristics) curves, and these have 

been used in the validation stage of this work.  
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4.5.1 RFD Analysis 

 

RFD is used to quantify the accuracy of the landslide prediction analysis from many 

years in the literature (Dai and Lee, 2002; Guinau et al., 2007; Remondo et al., 2003). 

 

 𝑅𝐹𝐷𝑖 =  100. (𝑁𝑝𝑖𝑥(𝑆𝑖) 𝑁𝑝𝑖𝑥(𝑁𝑖)⁄ )/ ∑(𝑁𝑝𝑖𝑥(𝑆𝑖) 𝑁𝑝𝑖𝑥(𝑁𝑖)⁄ )

𝑛

𝑖=1

 (16) 

 

where, 𝑁𝑝𝑖𝑥(𝑆𝑖) is the number of failed pixels in the ith factor class, 𝑁𝑝𝑖𝑥(𝑁𝑖) is the 

number of pixels in the ith susceptibility class, and “n” is the number of susceptibility 

classes. Here, “n” is “4” with the four susceptibility classes as very low, low, moderate, 

and high. The RFD of the very low susceptibility class is “0” in all prediction models 

(bivariate and multivariate with and without radar induced factors) as number of failure 

pixels (𝑁𝑝𝑖𝑥(𝑆𝑖)) are not available in the particular class. RFD of low, moderate, and 

high susceptibility classes are having 22.134, 47.755, and 30.111 in BiNR, 19.618, 

43.120, and 37.262 in BiWR, 27.933, 40.250, and 31.817 in MNR, and 31.133, 35.278, 

and 33.589 in MWR.  

 

Figure 4-15 describes the relative failure density in each susceptibility classes from 

bivariate and multivariate analysis, with and without radar induced factors. The 

validation results from both techniques imply that the prediction results are in 

acceptable form with analysed predicted susceptibility classes as “0” RFD in very low 

susceptibility class, less than 30% in low and more than 70% in moderate and high 

susceptibility classes providing gradual increase from very low to high susceptibility 

classes.  
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Validation of prediction maps from RFD for bivariate and multivariate analysis, with 

and without radar induced factors, indicate that the prediction results from both the 

bivariate and multivariate techniques are fit with the prediction analysis. This is 

because, it is observed that the very low susceptible regions from the four statistical 

predictive analyses are validated as 0%. From RFD analysis more than 70% of the 

areas are identified as having high and moderate landslide susceptibility areas. The 

validation results from bivariate and multivariate statistical analysis illustrate the 

gradual increase of RFD from very low to (moderate + high) susceptibility classes. As 

a whole, the prediction analysis from the four approaches can be considered as within 

acceptable range, confirming the careful selection of predisposal factors and suitable 

methodology for landslide susceptibility analysis. 

 

 

 

 

 

Figure 4-15 : Graphic display of validation results for each landslide susceptibility class 

from bivariate and multivariate techniques with and without radar induced factors 
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4.5.2 ROC Curves 

 

ROC is a graphical plot that illustrates the performance of classification, and is 

considered as a powerful tool for the validation of landslide susceptibility analysis 

from many years [Section 3.9]. The AUC (Area Under Curves) for the four different 

approaches, as bivariate and multivariate with and without radar induced factors, are 

calculated [Figure 4-16, 4-17, 4-18, and 4-19]  

 

Figure 4-16 : Success rate and Prediction rate curves with AUC for the bivariate analysis 

without radar induced factors 

 

Figure 4-17 : Success rate and Prediction rate curves with AUC for the bivariate analysis 

with radar induced factors 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
la

n
d

sl
id

e 
 s

ee
d

s

Cumulative percentage of susceptibility map

BiNR

Success Rate

Prediction Rate

AUC = 0.8315

AUC = 0.6692

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

BiWR

Success Rate

Prediction Rate

AUC = 0.8560

AUC = 0.6804



102 
 

 

Figure 4-18 : Success rate and Prediction rate curves with AUC for the multivariate analysis 

without radar induced factors 

 

 

Figure 4-19 : Success rate and Prediction rate curves with AUC for the multivariate analysis 

with radar induced factors 
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fit with the training data set, while the areas under the prediction rate curves measure 

how well the landslide prediction models and landslide causative factors predict the 

landslides. If the area under the ROC curve is closer to 1, the result of the test is 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

MNR

Success Rate

Prediction Rate

AUC = 0.7986

AUC = 0.5882

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

MWR

Success Rate

Prediction Rate

AUC = 0.8023

AUC = 0.5901



103 
 

excellent and vice versa, and when AUC is closer to 0.5, the result of the test is fair or 

acceptable (Kamp et al., 2008). 

 

The AUC of all the success rates are more-or-less near 0.80, indicating good prediction 

performances according to the definition. The AUC of all the prediction rates are 

having values above, 0.50 indicating that they are within the acceptable range as per 

the definition. As such, they indicate that the accuracy of prediction rate of land 

susceptibility and the selection of land causative factors are somewhat acceptable, but 

not excellent even though the fit between the landslide prediction and the training data 

set are excellent [Table 4-4]. The incompleteness of the available landslide inventory 

map and an insufficient number of validation samples in the study area are reasons for 

the discrepancy. As a whole, better prediction and validation capabilities are shown by 

the bivariate analysis when compared with the multivariate approaches. 

 

Table 4-4 : Comparison of area under Success rate and Prediction rate curves for bivariate and 

multivariate analysis with and without radar induced factors 
 

AUC BiNR BiWR MNR MWR 

Success rate 0.8315 0.8560 0.7986 0.8023 

Prediction rate 0.6692 0.6804 0.5882 0.5901 

 

4.6 Discussions and Conclusions 

 

The main difference of bivariate and multivariate analysis is that in multivariate 

analysis, selected predisposing factors are also weighted by considering how each of 

them affect for landslide hazard. This study investigated fifteen landslide predisposing 

factors as elevation, slope, aspect, planar curvature, profile curvature, TWI, land use, 

lineament density, distance to hydrology, SMI in NDVI-T domain, geology, rainfall, 

soil moisture (Delta Index), surface roughness, and forest biomass. Most of the factors 

are derived from radar and optical remote sensing techniques, where smaller scale 
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studies with up-to-date information allows the work to be done to the meter-level 

accuracy, and repeated analysis simultaneously.  

 

From the obtained results, it can be concluded that the bivariate and multivariate 

statistical analysis, with and without radar induced factors, can be used for landslide 

prediction analysis. However, with the integration of radar induced factors as surface 

roughness, near surface soil moisture from delta index, and forest biomass, the 

detection of the boundary between the high and very low susceptibility areas increased. 

When comparing the bivariate analysis with the multivariate analysis, the area 

identified as high susceptibility regions are increased when very low susceptibility 

regions decreased. As a whole, there is a slight improvement of prediction and 

validation performances of bivariate analysis than multivariate analysis. 

 

4.7 Chapter Summary 

 

InfoVal method as bivariate and MCDA based on AHP as multivariate with (15 

factors) and without (12 factors) radar induced factors were considered for landslide 

prediction analysis. The InfoVal method combines the failure map with each thematic 

map to determine the weight of influence on terrain susceptibility for each parameter 

class. Integration of all weights of influences determines the terrain susceptibility 

levels for the landslides. The AHP is the structured technique for analysing and 

weighting multi criterions through the pair-wise comparison. Hence, each thematic 

map was analysed through the MCDA based on the AHP theoretical concepts. The 

four landslide susceptible maps from InfoVal method and MCDA based on AHP were 

divided in to four susceptibility classes as having very low, low, moderate, and high 

susceptibility to landslides.  

 

The validation process was conducted in two methods as RFD calculated from 

validation samples and AUC of success rate and prediction rate curves generated from 

training and validation samples of the landslide failure map. Finally, as this chapter 
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shows that despite their simplicity, bivariate statistical methods have more acceptable 

precision than multivariate methods, and consequently, they are more compatible with 

the landslide prediction modelling. With the inclusion of radar induced factors, the 

discrimination between high and very low susceptibility areas are increased. 

Therefore, the result of this study can be used in the preliminary hazard mapping and 

selection of suitable locations for future land use planning.  
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CHAPTER 5 : PERFORMANCE ASSESSMENT OF 

RADAR AND OPTICAL REMOTE SENSING FOR 

LANDSLIDE DETECTION 

 

Landslide detection is an essential requirement in pre and post disaster hazard analysis, 

and in early times, landslide detection was often achieved through time consuming, 

cost intensive field surveys and visual orthophoto interpretation. Now, EO (Earth 

Observation) data offer new opportunities for fast, reliable and accurate landslide 

identification at smaller scales, and can contribute for effective landslide monitoring 

and hazard management.  

 

5.1 Introduction 

 

Landslides are a very familiar, yearly event, to the Sri Lankan community. A fairly 

large number of landslides have occurred in Elapatha (1986), Abepura (2003), Helauda 

(2003, 2006), Naketiya (1998), Meeriyabedda (2014), Pambahinna (2016), and 

Aranayaka (2016) which took human lives, and damaged property and infrastructures 

(NBRO, 2016; Weerawansha et al., 2007). Some highway stretches of A4 in Beragala 

and Koslanda areas, and Puswellawa on the A5 had to have extensive repair due to 

landslides in the last couple of decades. Furthermore, due to the Watawala landslide 

in 1990, the upcountry railway track was damaged and train travel was affected for a 

considerable period.  

 

Frequently, detail landslide studies are performed by the field-based techniques with 

the use of aerial photo interpretation. However, most field techniques provide point-

based discrete measurements of the landslides but do not consider any past 

movements. In active landslides, although the ground-based techniques can provide 

very precise information on displacement or deformation at very specific locations, 

especially in residential or areas with major infrastructures, they do not provide 
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information on the changes due to land sliding in wider area. Moreover, the field 

techniques in preliminary investigations of unstable areas may sometimes not be cost 

effective and advisable (Javier et al., 2003; Rosin et al., 2000). 

 

Recently, all disaster management phases are becoming dependent on results derived 

from satellite image analysis when the damage area is large, and the terrain is mostly 

inaccessible (Tralli et al., 2005; Voigt et al., 2007). With the availability of a large 

number of Earth Observation satellites with a wide range of spatial, temporal and 

spectral resolutions, and better organization to share the data in emergency scenarios, 

the applicability of satellite remote sensing for disaster management is promising. 

High resolution remote sensing images, especially, have proved their potential for 

landslide studies in detection of the damages area, and assessment of the damage from 

the landslides (Guzzetti, 2004; Vinodkumar et al., 2008), preparation of an inventory 

of landslides (Martha et al., 2010a), estimation of the volume of the landslide (Martha 

et al., 2010b), and monitoring of landslides for early warning purposes (van Westen 

and Lulie, 2003). 

 

Optical sensors can provide information about the geographical phenomena that can 

be interpreted by the human directly. However, optical satellite image techniques are 

limited given that observations under cloud-cover conditions and during night time are 

not possible. SAR (Synthetic Aperture Radar) is free from these restrictions and thus 

becomes more convenient to be used, especially in post-disaster responses (Rathje and 

Adams, 2008; Yamazaki et al., 2011). Landslides detection using the integration of 

radar and optical sensors are carried out frequently all over the world. Even though, 

there most studies to-date have combined the use of radar and optical remote sensing 

for landslide detections using different change detection techniques with advanced 

mathematical principles (Afify, 2011; Tsuchida et al., 2015), without comparing and 

evaluating the performance of radar remote sensing for landslide detection. 
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Thus, the main objective of this section of the research is to compare the detection of 

Meeriyabedda landslide from optical and radar remote sensing techniques. The back-

scattering characteristics from the C band radar images of Sentinel-1, acquired before 

and after the landslide event, are examined in order to extract the land use changes due 

to the landslide. The high resolution Geoeye and Worldview II optical satellite images, 

pre and post event scenarios, are analysed for detecting the landslide area from change 

detection techniques. 

 

5.2 Study Area 

 

A severe landslide occurred in Meeriyabedda area in Kotabathma Grama Niladhari 

division in Haldumulla Divisional Secretariat Division in Badulla District on 29 th 

October 2014 at around 7.30 am [Figure 5-1 and Section 2.1.4]. Immediately after the 

landslide, JICA (Japan International Co-operation Agency) Technical Co-operation 

Project for Landslide Mitigation, together with the NBRO and DMC (Disaster 

Management Center), Sri Lanka, carried an air survey (Landslide, 2014).  

 

5.3 Data and methodology 

 

The information about the radar and optical satellite images that have been utilized 

and methodological flow followed in order to achieve expected objectives are 

discussed in this section.   
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5.3.1 Data 

 

Current study depended entirely on optical satellite images from Geoeye and World 

View II, and the radar images from Sentinel 1, acquired before and after the 

Meeriyabedda landslide. Optical images before the event were obtained on 16th May 

2013 without any cloud cover, and the image after the event was from 06th November 

2014 with 0.114 cloud cover. It was a difficult task to find cloud-free images after the 

event due to the prevailing bad weather conditions. All optical images obtained had 

the bands Red (R), Green (G), Blue (B), and Near Infrared (NIR) standard colors at a 

2 m spatial resolution, and the panchromatic bands at 0.5m resolution. Sentinel-1 radar 

images before the event were captured on 19th October 2014, and the image after the 

Figure 5-1 : Meeriyabedda Landslide in Koslanda, Sri Lanka and its pre and post high 

resolution satellite views 
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landslide was acquired on 31st October 2014 at a 10 m spatial resolution. Though the 

radar images are independent from the sun illumination and weather conditions, thus 

providing clear images even in the disaster situation, feature extractions are restricted 

to the nature of radar imaging and spatial resolution. A 7 m resolution DEM was 

derived from the method of aerial triangulation using aerial photographs from 1993, 

as discussed in section 2.2.1. 

 

5.3.2 Methodology 

 

The methodology consisted of two major components depending solely on the data 

used. The landslide area was detected from both optical and radar images using 

inherent change detection techniques. In order to extract the ground surface changes 

following a landslide, the satellite images before and after the event were 

geometrically co-registered and radiometrically normalized, enabling for pixel-based 

analysis. The general flow chart shown in Figure 5-2 gives a quick look at the overall 

set up of this research for delineating the damaged area due to the landslide. 

 

During the pre-processing stage, the DNs (Digital Numbers) were converted into the 

TOA (Top-Of-Atmosphere) reflectance for both Worldview II and Geoeye images 

with their own parameters (earth sun distance, solar zenith angle, mean solar 

atmospheric spectral irradiances, and spectral radiance). Geometrical registration of 

high-resolution optical images of hilly terrain areas require orthorectification to 

remove the effects caused by relief displacements. Hence the orthorectification of pre 

and post images were performed by using the 7 m resolution DEM derived from aerial 

triangulation (Hervas et al., 2003).  
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In the radar imaging approach, Sentinel-1 images before and after the event were 

radiometrically calibrated by converting the original DN values pertaining to the 

intensity data of the C band of the Sentinel-1 satellite to the backscattering coefficients. 

In order to reduce the speckle noise effect and to obtain the square shaped pixels, using 

enhanced lee filter, multi look processing and image filtering were performed. In the 

next step, the two images were corrected for image displacement due to relief, and 

geometrically registered using SRTM 30 m DEM. 

Figure 5-2 : Conceptual methodology for detecting Meeriyabedda Landslide from radar 

and optical satellite images 
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Afterwards, PCA and NDVI change detection analysis for optical images, and with the 

mathematical relationships for analysing the change, the correlations, and the 

difference parameters for radar images were calculated for delineating the area of the 

landslide disaster. Detected landslide areas were then compared with the area extracted 

from the ground-based GPS surveying.  

 

5.4 Landslide detection from optical images 

 

In most cases, a landslide displaces a significant portion of landmass in mountainous 

regions. As it causes for changes to some geomorphological settings, identification of 

such changes is difficult from spectral domain alone, when using either satellite or 

aerial data sets. The common noticeable element after the occurrence of landslides is 

the loss of vegetation and exposure of fresh rock and soil. With the high-resolution 

images used in this study, it can be interpreted that some buildings, roads and part of 

vegetation with trees have collapsed [Figure 5-3]. This unique property from the nature 

of landslide is taken in to consideration for the detection of damaged areas when using 

PCA and NDVI change detection techniques. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3 : Worldview II satellite image (before) with damaged properties and Geoeye 

image (after) with Meeriyabedda Landslide 

Pre image Post image 
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5.4.1 Principle Component Analysis 

 

The PCA is a technique that can be applied to both multispectral and hyperspectral 

remotely sensed data, as a method of data compression. PCA allows redundant data to 

be compacted in to lesser bands. The bands of PCA data are non-correlated and 

independent. Hence, interpretation of such bands, or components, is easier than when 

using the source data [Figure 5-4]. 

 

 

 

 

 

 

 

 

 

 

 

In this research, PCA was performed for the post and pre-images of Meeriyabedda 

separately. All the principle components from the pre and post images were first 

analysed in order to delineate the landslide area from the surrounding. Then, the colour 

composite image was generated by assigning Red, Green, and Blue colors for 

appropriate bands so as to identify the damaged areas from the landslide [Figure 5-4 

(a)]. By trial and error, it was found that by assigning Red colour for the PCA2 from 

the post image and Green and Blue for the PCA1 from the pre-image, the landslide 

component can be extracted.  

(b) (a) 

Figure 5-4 : Landslide detection from PCA applied for high resolution optical images. 

(a) – red colour, (b) – white represent detected change from the pre and post images 
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The next step was to calculate the principle components for the difference image that 

were obtained by subtracting the reflectance values of pre-image from the post image. 

All possibilities for extracting the landslide area as a change from the post image were 

investigated. The difference between PCA1 and PCA4 gives the better discrimination 

of reflectance values for the disaster region. Hence, by applying a threshold value 

(difference > 0) for the PCA1 and PCA4 difference image, it was possible to detect 

the landslide area from the surrounding [Figure 5-4 (b)]. 

 

5.4.2 NDVI 

 

The study area consisted of a combination of buildings, roads and part of vegetation 

with trees. Thus, it can be noted that, the landslide caused a reduction of NDVI values 

due to the exposure of bare soil. Since the pre-event image was taken in May 2013, 

while the post-event was in November 2014, the NDVI is supposed to have increased 

in most pixels. If the NDVI had decreased, then landslides might have occurred in the 

corresponding area. Thus, it is correct to assume that pixels with reduced NDVI values 

after the event can be considered as corresponding to the landslide area. The clouds 

that existed in the post-event image were a disturbance for better delineation of the 

landslide area. 

 

In order to extract damages to the vegetation due to the landslide, and the vegetation 

changes within the time period, NDVI ratio was calculated using the combination of 

Near Infar Red (NIR) and Red band as [(NIR-Red)/(NIR+Red)] for the post-event 

image, and the difference image separately. NDVI difference image identified the 

main change features as cloud patch and the landslide region. However, the boundary 

was not clearly extracted due to the fact that the buildings inside the landslide damaged 

area were not recognized as changes by the difference image. This is because the image 

pixels for buildings in the pre-image and debris flow in the post image were not really 

different [Figure 5-5 (a)]. The NDVI of the post-event image identified the cloud 
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patch, the landslide area, and the additional buildings developed within this time period 

[Figure 5-5 (b)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Landslide detection from radar images 

 

The backscatter values of radar images depend highly on the radar viewing geometry. 

Due to side looking configurations, the intensity images of radar were highly affected 

by the incidence angle with the earth surface. Especially in mountainous regions where 

topographical effects are most prominent, radar intensity images suffer mostly from 

typical topographic effects of layover, foreshortening, and radar shadow. Hence, 

careful consideration is needed when selecting appropriate radar images for a 

mountainous study area, as the slope angle and the orientation of the slope with respect 

to the radar illumination differ depending on the locations.  

 

Figure 5-5 : Landslide detection from NDVI analysis for high resolution optical images. 

Red colour features are detected change from pre and post images 

(b) (a) 
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The radar images used in this research were mainly the C band and VV polarization 

from the freely available Sentinel-1 images. While looking at the timely radar images 

before and after any disaster situations, radar images are independent from the sun 

illumination and weather conditions, and provide cloud free clear images. 

Meeriyabedda landslide in Koslanda area occurred on 29th October 2014. It was 

possible to obtain the free radar images from 19th October 2014 and 31st October 2014 

for analysis to detect the landslide area. However, due to limitations of spatial 

resolution and spectral characteristics of radar images, visual image interpretations for 

feature extractions were not conclusive [Figure 5-6]. 

 

 

The two images pertaining to the pre and post disaster events were first radiometrically 

calibrated, while multi look processing was performed in the second step so as to 

reduce the speckle noise and obtain square shaped pixels. Speckle noise was reduced 

again using an enhanced Lee filter. Finally, the radar images were geometrically 

corrected for the terrain using the 30 m SRTM DEM that were freely available. After 

completing all the pre-processing stages for correcting the two images that are 

geometrically co-registered and radiometrically balanced, change detection techniques 

were applied with the intension of extracting the damaged areas due to the landslide. 

Figure 5-6 : Radar images before and after the Meeriyabedda Landslide in Koslanda area 
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5.5.1 Correlation and Difference 

 

In order to extract the changes due to the landslide, the correlation coefficient and the 

changes between the pre-and post-event radar images were calculated for the landslide 

area. The reduction of the correlation coefficient was mainly expected from the 

landslide damaged area, with some radar illumination changes. Seasonal changes of 

forest canopy and vegetation patches cannot be expected as the temporal difference of 

two images were only a few days.  

 

With the purpose of examining the characteristics of radar backscatter values in the 

landslide area, Figure 39 plots the relationship between the correlation and difference 

of the two radar images before and after the landslide. Theoretically, if any changes of 

geographical phenomena occurred in-between these two image acquisitions, the 

smaller correlation (<0) or minus relationships define the change. It can be visually 

interpreted that the area damaged consisted of some buildings and vegetation. Hence, 

the backscatter value reduced from the pre-image to the post disaster image [Figure 5-

7].  

 

 

In the case of radar images in mountainous regions, the radar backscatter value is 

highly affected by the orientation and the angle of fore slopes, more so than surface 

materials and conditions. Therefore due to different illumination conditions, it was 

difficult to extract the areas that changed only due to the landslide. However, it was 

possible to mast out the damaged area due to the landslide from the radar images, as 

opposed to using change detection techniques applied to high resolution optical 

images.  

 

 

Figure 5-7 : Areas detected as change from 19th - 31st October 2014 from image correlation and 

difference domain 
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Additionally, a similar phenomenon was observed even in the difference image (minus 

values represented the change areas in the scatter plot). By taking all concepts into the 

consideration, change pixels were extracted by selecting the Region of Interest (ROI) 

from the minus areas of the scatter plot. The possible range of landslides in the 

correlation vs. difference plot, and the extracted landslide areas after masking are 

illustrated in Figure 5-7.  

 

5.6 Results Analysis 

 

In this research, the main objective was to detect the landslide from radar and optical 

remote sensing techniques by applying different change detection methods. 

Consequently, the PCA and NDVI change detection techniques used in the optical 

approach were applied to two high resolution images before and after the event. The 

correlation and difference theory were applied for the Sentinel-1 radar images in order 

to extract the change due to the landslide. 

 

The interaction between NIR, Red and Green standard colour bands in optical images 

with the real earth features as vegetation and manmade features was different. By 

taking these facts into consideration, PCA and NDVI analysis were performed. 

Validating the results from analysis were of paramount importance to confirm the 

significance of the applied methodology. In this process, detected landslide areas were 

numerically compared with the area derived from GPS field surveying technique. GPS 

survey was carried using LICA handheld GPS with the positional accuracy of 3m for 

extracting the landslide boundary in July 2015. At that time, field surveying in the 

landslide area was possible as the area was free from the risk of disaster. Table 5-1 

contains the percentage of the accuracy of area detected as landslide from difference 

change detection techniques when compared with the area observed through GPS 

survey.  
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It is observed that the area detected from optical approaches provide a lesser 

percentage of accuracy when compared with the radar method. This is mainly because 

of the cloud effect on optical images, especially due to the prevailing weather 

conditions during a disaster situation. The damaged area from the GPS survey was 

80692 m2. The accuracy percentages from the optical methods range from 63% to 

76%. The colour combination of PCA derived from the two images identified the 

landslide area damage better than the other optical approaches. By proving the radar 

capability in the study of disaster, the landslide area detected from Sentinel-1 images 

showed the higher percentage of accuracy than any optical methods. It was around 

86% when compared with the reference area as shown in Table 5-1.  

 

Table 5-1: Comparison of the detected landslide area from optical and remote sensing 

techniques with the area from GPS survey 

Change Detection 

Techniques 

Landslide delineated area 

(m2) 
Accuracy (%) 

GPS Survey 80692 - 

O 

P 

T 

I 

C 

A 

L 

Principal Component 

Difference 
50480 63 

Color Combination of 

Principal Components 
61179 76 

Post NDVI 57268 71 

NDVI Difference 52163 65 

Radar Images Analysis 69680 86 

 

5.7 Discussion 

 

This research study investigated the capability of radar and high-resolution optical 

images to extract the landslide from different change detection techniques. The native 

characteristics of radar and optical images for landslide studies, and the capability of 

different change detection techniques with respect to an area like Meeriyabedda to 

determine the change due to landslide, were examined. In an approach of using high 
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resolution optical images, PCA and NDVI change detection techniques for the 

Worldview II (pre-event) and Geoeye (post event) were applied. 

 

In the image analysis using PCA, the influence of clouds was reduced when compared 

with the other optical based methods. The reason is that, most of the cloud pixels and 

landslide pixels depart to the two different principal components. However, the 

influence of the total cloud effect was difficult to avoid. The principle behind the 

NDVI difference technique is also an acceptable method to detect certain changes due 

to landslides. However, it is limited as this method is more appropriate to identify 

changes over vegetation or forest covers. In the NDVI difference image, some pixels 

inside the landslide have been identified as unchanged pixels, even though it is clearly 

observed that those pixels should be related to the damaged area. The fact that these 

pixels were covered by buildings before the occurrence of the landslide, can be shown 

as a reason for this, and as such, higher NDVI differences cannot be expected from 

those pixels.  

 

However, there are some advantages with the above limitation, as most of the 

manmade properties which were damaged by the landslide could be clearly identified 

from the NDVI difference image. Hence, these results would be very useful for rescue 

efforts like searching for survivors. The post NDVI image clearly extracted most parts 

of the landslide (71%), but it is difficult to directly state that the post NDVI result is 

more accurate than the NDVI difference image as it does not indicate any change. 

However, if there are some prior knowledge about the land use in the area, and if any 

changes had occurred in a vegetated region, then the post NDVI image provides better 

clues about changes due to landslide in the study area. 

 

The main difficulty in detecting the change using optical images is having clouds over 

some areas. This is because clouds hide some important information while getting 

classified as changes. In the case of SAR images in mountainous regions, the 

backscatter is highly affected by the incident angle and angle of slopes, more so than 
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the type surface materials and their conditions. Furthermore, radar back scatter 

changes with the illumination conditions of the time of data acquisition due to the side 

looking configurations. Hence, the most appropriate radar images have to be selected 

very carefully, and then used for the change detection analysis. This research aimed to 

use freely available, C band images at 10 m resolution from the sentinel-1 with VV 

polarization for detecting the landslide. It was difficult to perform the pre-processing 

of radar images in pre and post event with the freely available Sentinel-1 images to 

better suit the change detection analysis as they covered a much-undulated region with 

serious geometrical distortions. However, it was possible to obtain more than 80% 

accuracy for delineating the landslide area by using a subset that included the 

Meeriyabedda landslide. 

 

According to the validation results, colour combination of PCA had produced better 

results (76%) than other optical methods because all available bands were utilized in 

the analysis process. The PCA difference and the NDVI difference gained least 

accuracy (63% and 65% respectively), for landslide detection as the methods caused 

some other radiometric changes of land cover and illumination than the change due to 

landslide in pre and post image acquisitions. Yet, due to the advantages shown by radar 

in disaster situations (with prevailing bad weather conditions and timely information 

in smaller scale), radar remote sensing techniques have proven their suitability for 

disaster studies. As such, it can be concluded that radar remote sensing for landslide 

detection offer significant advantages. At the same time, detection of the landslide 

from PCA in optical techniques is also acceptable at more than 75%, even though both 

techniques have their own limitations.   

 

5.8 Chapter Summary 

 

Two radar and optical images before and after the event are used in order to delineate 

the landslide area from different change detection techniques. Geometrically 

registered and radiometrically normalized World View II and Geoeye optical images 
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were used. Satellite image pixel intensity changes were extracted by calculating the 

NDVI and PCA. Two pre and post Sentinel-1 images were pre-processed in order to 

apply pixel-based classifications. Backscatter difference and the correlation coefficient 

between two images were examined to threshold the image in order to extract the 

changed pixels or landslide area from non-changed pixels. Due to weather independent 

capability of radar images, all the landslide regions were detected. However, radar 

suffers serious geometrical distortions specially when studying the high relief terrain 

areas. Moreover, when considering the spatial resolution, radar has some limitations 

to detect small landslides as compared to optical images. 

 

Detected landslide areas from radar and optical images were compared with the area 

extracted from the GPS field surveying technique. Comparison distinguished that the 

colour combination of PCA produced better results (76%) than the other methods of 

using optical images. With the inherent nature of the radar images in disaster situation, 

radar image analysis has confirmed the suitability for disaster studies by identifying 

86% of the area from landside. Finally, it can be concluded that the radar remote 

sensing can be successfully used for landslide detection, but PCA in optical techniques 

is also acceptable for the same purpose.  
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CHAPTER 6 : ENHANCEMENT OF LANDSLIDE 

SUSCEPTIBILITY ANALYSIS THROUGH THE 

INTEGRATION OF DEBRIS FLOW 

 

Landslide is a natural disaster which occurs frequently in the mountainous region. 

Debris flows are most dangerous processes due to their rapid rate of movement and 

long runout zone. Sudden and rather unexpected impacts produce huge damages to the 

buildings, infrastructure and human lives. Under intensive rainfall, debris flows tend 

to travel long distances following the steepest path and merging with the drainage 

network.  This concept has been used to determine the areas that are prone to debris 

flows.  

 

6.1 Introduction 

 

Landslide susceptibility assessment is necessary for disaster management and planning 

development activities in mountainous regions. By assessing landslide prone areas, 

damages to human life and property can be reduced. The term susceptibility defines 

the location of potential landslides in a region based on the terrain characteristics. 

Many research studies of landslide hazard susceptibility analysis are accomplished by 

assuming that future landslides are likely to be produced by the same conditioning 

factors as the landslides in the past and the present (Carrara et al., 1999; Guinau et al., 

2007; Varnes, 1984b). Even if such studies provide information on potentially unstable 

terrain regions, they do not necessarily supply the direct information on landslide 

magnitude and frequency. Although it is yet difficult to predict a landslide in space 

and time, various studies (Chung and Fabbri, 2003; Coe et al., 2004; Dai and Lee, 

2002; Guinau et al., 2007; Hurlimann et al., 2006; Kappes et al., 2011) have proven 

that the integration of terrain failure susceptibility analysis and runout behaviour of the 

mobilized materials can provide improved end results on landslide susceptibility 

analysis. 
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The probability of spatial occurrence can be determined by heuristic, statistic (bivariate 

or multivariate) or deterministic approaches. Heuristically potential areas can be 

identified in the field and on aerial photographs. Statistical methods integrate various 

environmental factors for identification of the terrain failures or source regions at 

smaller scale. The models are based on the bivariate or multivariate statistics(Carrara 

et al., 1999; Dai and Lee, 2002; van Westen et al., 2006). After determining the 

potential source regions, runout behaviour can be analysed by using the empirical, 

analytical and numerical approaches in order to demarcate the areas that could be 

reached by the debris (Dai and Lee, 2002; Hurlimann et al., 2006). 

 

Especially in developing countries, scarcity of good quality data, insufficient funds, 

lack of specialized expertise are some factors that severely affect for proper landslide 

susceptibility assessments. Hence, there is a necessity of developing a low-cost 

methodology for landslide susceptibility assessments. With the recent technological 

developments, even the developing countries tend to use GIS as its tools enable the 

handling and production of large amount of data. DEM has become very significant in 

most environmental studies, and has proven its importance in the study of landslides 

(Guinau et al., 2007). Hence, one aim of this research is to develop a low-cost 

methodology for landslide susceptibility analysis with acceptable accuracy at a smaller 

scale as suited to the conditions in most developing countries.   

 

6.2 Study Area 

 

Landslides, earthquakes, tsunami and storms are, of course, natural disasters. Yet, their 

impact can be minimized by scientific planning and preventative measures. The 

growing incidence of landslides in Sri Lanka is getting higher with many damages to 

the economy in the up-country. Parallel to this, unplanned land clearing for tea and 

other plantations, forest degradation, changing the existing natural drainage patterns 

and dramatically reduced vegetation covers, make larger areas more vulnerable to 
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landslides. Koslanda is a remote or hilly area with geographically difficult access, 

facing many harsh weather conditions [Figure 4-1, Chapter 4].  

 

6.3 Data Acquisition 

 

Two types of data, DEM and landslide inventory map, enabled the development and 

validation of the terrain failure and debris flow susceptibility analysis in the study area. 

A 7 m resolution DEM was derived from aerial triangulation methodology, utilizing 

aerial photographs taken in 1993. The “Imagine photogrammetry” tool from ERDAS 

Imagine 2014 software was used to generate the DEM from aerial photographs. 

Camera calibration, interior orientation, and exterior orientation by using 25 GCPs 

were performed in order to generate the DEM from aerial triangulation.  

 

Three devastating former landslides that occurred in the study area and other landmass 

failures are delineated from the aerial photographs captured in year 1997 and Geo-eye 

satellite image acquired on 06th November 2014 with 0.114 cloud cover. All these 

landslide images from different sources are integrated in to one polygon shapefile with 

ArcGIS (version 10.1) with the purpose of generating the landslide inventory map. In 

order to carry out a joint analysis of landslides and DEM data, the landslide regions 

are rasterized to the DEM resolution. 

 

6.4 Methodology 

 

The methodology of this work contains the terrain failure and the debris flow 

susceptibility analysis. The flow chart shown in Figure 6-1 illustrates the methodology 

followed in the terrain failure susceptibility analysis for this study area. Terrain failure 

susceptibility analysis is performed by using four terrain factors derived from DEM, 

and the training samples from landslide inventory map in the study area. The resultant 
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terrain failure susceptibility regions were validated using validation samples from the 

landslide inventory map from RFD (Relative Failure Density) analysis.  

 

Figure 6-1 : Methodological flow to analyse the terrain failure susceptibility regions 

 

Debris flow analysis considered the fact that under intense rainfall, debris flows tend 

to travel long distances following the steepest path, and merges with the drainage 

network (Guinau et al., 2007; Pall`as et al., 2004). In this study, the debris flow 

susceptibility regions are extracted with the use of the open source TauDEM 5.1 

software developed by (Tarboton, 1997), which is electronically available on the 

internet (http://www.engineering.usu.edu/dtarb/taudem, accessed on 12th February 
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2016). Figure 6-2 illustrates the methodology followed to extract the debris flow 

susceptibility regions in the study area. This straight-forward statistical calculation 

allows determining the contribution of each terrain factor for ground instability 

assessment by using common GIS tools and simple raster calculations.  

  

 

TauDEM (Terrain analysis using Digital Elevation Models) is an open source software 

developed by (Tarboton, 1997) for hydrologic terrain analysis and channel network 

extraction. This software can be executed as an ArcGIS extension. Three simple tools 

are utilized as Pit remove, D-∞ flow direction and D-∞ avalanche runout. Pit remove 

identifies all pits in the DEM and raises their elevation to the level of the lowest pour 

point around their edge. The D-∞ flow direction is defined as the steepest downward 

slope on a planar triangular surface encoded as an angle of radians between 0 and 2𝜋. 

Figure 6-2 : Methodological flow to analyse the debris flow susceptibility regions 
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The D-∞ avalanche runout identifies an avalanche's affected area and the flow path 

length to each cell in that affected area from a given source pixel. 

 

6.5 Terrain Failure Susceptibility Analysis 

 

Bivariate statistical analysis is simple and is a quantitatively suitable technique for 

terrain failure analysis (Saha et al., 2005). The aim of this work is to combine 

instability condition of terrain factors and landslide inventory map so as to determine 

the weight of influence for each factor class. The weights are then added to obtain the 

TFSI (Terrain Failure Susceptibility Index) for each pixel (Guinau et al., 2007). Even 

though continuous variables are more informative than the discrete variables, most end 

users can understand a map with susceptibility classes than strange numerical values 

(Begueria, 2006; Chung and Fabbri, 2003). Hence, in order to better visualize the 

terrain failure susceptibility classes in a map, terrain failure indices are generally 

classified in to four susceptibility classes as very low, low, moderate, and high.  

 

Validating the results of predictions is of paramount importance to confirm the 

significance of the model and the model results. In this process, two independent 

samples as training and validating from the landslide inventory map are utilized. 

Training samples are used to generate the landslide susceptibility regions, and the 

validation samples are used for validating the results from the prediction analysis 

(Remondo et al., 2003; Saha et al., 2005). However, since this work is focused mainly 

on the contribution of debris flow path for the landslide prediction analysis, debris 

flow path regions are excluded from the training and validation samples in order to 

avoid the misclassifications. 
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6.5.1 Extraction of Terrain Factors from DEM 

 

Terrain factors derived from the DEM are very significant in most environmental 

studies, and have confirmed the importance in the study of landslides (Guinau et al., 

2007). Four terrain factors are derived as slope, aspect, planar curvature and the profile 

curvature. Slope is the gradient of the elevation and aspect is the compass direction of 

the slope. Curvature is the second derivative of a surface or the slope of the slope. 

Planar curvature relates to the convergence and divergence of flow across a surface. 

The information regarding the degree of concavity or convexity along a line 

perpendicular to the slope profile can be extracted from the planar curvature. Profile 

curvature affects the acceleration or deceleration of flow across a surface. The degree 

of concavity or convexity of the slope profile can be explained from the profile 

curvature [Figure 6-3].  

 

 

 

 

Figure 6-3 : Interpretation of geographical formation through planar and 

profile curvature. Planar curvature: A – surface is laterally convex and 

divergence flow across a surface, B – surface is laterally concave and 

convergence flow across a surface, C – surface is linear 
Profile curvature: A- surface is upwardly convex and deceleration across a 

surface, B- surface is upwardly concave and acceleration across a surface, C- 

surface is linear. Source :http://desktop.arcgis.com/en/arcmap/10.3/manage-

data/raster-and-images/curvature-function.htm 

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm
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The negative values of planar curvature represent a surface that is laterally concave, 

and positive values indicate a surface that is laterally convex. For the profile curvature, 

negative values correspond to a surface that is upwardly convex while positive values 

characterize a surface that is upwardly concave. Figure 43 describe the thematic maps 

in which the discretized terrain parameters are represented. 

 

 

Figure 6-4 : Thematic maps obtained from the DEM. Each thematic map illustrates the generated 

terrain factors with discretized number of classes. Left to right and top to bottom, aspect, profile 

curvature, planar curvature and slope. 
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The basis for selecting these parameters is due to their influence on soil water content, 

which is responsible for landslide occurrences under heavy rain fall. According to the 

notions from NBRO, most of the landslides in Sri Lanka occurred due to the heavy 

and prolonged rainfall in the hilly areas.  

 

6.5.2 Terrain failure susceptibility analysis using Information Value Method 

 

Many research studies proposed the Information value method for terrain failure 

susceptibility analysis (Guinau et al., 2007; Saha et al., 2005; van Westen, 1997). This 

method combines the failure map with each thematic map to determine the weight of 

influence on terrain instability for each parameter class. The failure map consists of 

only the training samples. Then the weight of influence for landslide susceptibility is 

calculated by using formula derived in Information value method as described in 

Section 3.7.2 (ii) and Equation (2). 

 

The information value weights obtained for each factor class and the area represented 

are tabulated in Table 6-1. It can be observed that the slopes between 300 and 500 

consist of the higher Information Values in the Slope factor class. S, SE and SW factor 

classes in the aspect terrain factor contain higher information value weights than the 

other aspects. Once the Information Values of each factor class are calculated for all 

thematic maps, they are superimposed and added to obtain the TFSI for each pixel in 

the study area. The value of TFSI defines the landslide susceptibility levels as high 

TFSI for high susceptibility classes and low TFSI for low susceptibility classes. 
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Table 6-1 : Computed Information Value weights for each factor class in the four 

thematic maps 

Terrain Factors Factor Classes Area (%) Information Value 

Slope 

0-10 17 -0.037 

10-20 32 -0.067 

20-30 28 -0.027 

30-40 15 0.131 

40-50 6 0.111 

50-60 2 0.088 

60-70 0 0.022 

70-80 0 0.013 

Aspect 

N 4 -0.883 

NE 3 -0.502 

E 8 -0.28 

SE 21 0.003 

S 20 0.224 

SW 16 0.224 

W 17 -0.226 

NW 11 -0.687 

Planar Curvature 

< -8.68 1 -1.037 

-3.71 4 -0.109 

-1.45 13 0.043 

0.35 44 0.016 

2.16 27 0.025 

5.32 9 -0.11 

12.9 2 -0.334 

12.09 < 0 -0.554 

Profile Curvature 

< -16.71 0 -0.877 

-8.15 1 -0.483 

-3.59 5 -0.222 

-1.31 14 -0.019 

0.4 43 0.016 

3.82 32 0.041 

11.23 5 -0.108 

11.23 < 0 -0.645 
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6.5.3 Susceptible area discretization 

 

For better understanding of the terrain failure susceptible regions, the area is 

discretized in to four susceptible classes as very low, low, moderate and high. The 

class separations are based on the cumulative percentage of failures as: very low 

susceptibility ((-2477e-3) < TFSI < (-872e-3)) : interval containing 0% of failures, low 

susceptibility ((-872e-3) < TFSI < (-274e-3)) : interval containing 10% of failures, 

moderate susceptibility ((-274e-3) < TFSI < (33e-3)) : interval containing 30% of 

failures and high susceptibility ((33e-3< TFSI < (439e-3)) : interval containing 60% of 

failures (Guinau et al., 2007; Saha et al., 2005). The value ranges for each percentage 

of failure are obtained after performing the equal interval classification for 10 classes 

in GIS environment. The whole study area is then discretized into four classes as 0%, 

10%, 30% and 60% of failure regions for very low, low, moderate and high 

susceptibility classes respectively [Figure 6-5].  

 

6.5.4 Results Validation 

 

Validation is the most prominent phase in the prediction analysis (Chung and Fabbri, 

2003; Guinau et al., 2007; Remondo et al., 2003). Validation is performed using 

separate validation samples which consist of the Meeriyabedda landslide. RFD 

analysis is used to quantify the accuracy of the predictions [Section 4.5.1 and Equation 

16]. Figure 6-6 illustrates the RFD in each susceptibility class and it can be clearly 

seen that there is a gradual increase of RFD from very low to the high terrain failure 

susceptibility classes. 

 

Even if the validation results imply that the prediction model is fit with the validation 

samples, it does not explain the predictive capability of the failures with temporal 

information. Figure 6-5 illustrates the terrain failure susceptibility map with the four 

landslide susceptible classes. 
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Figure 6-6 : Graphic showing of RFD for each terrain failure susceptibility class 

Figure 6-5 : Terrain failure susceptibility map with four landslide susceptibility 

classes 
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6.6 Debris Flow Susceptibility Analysis 

 

The debris flow behaviour is controlled by topographical structure, land use, soil type, 

debris volume, and the amount of liquefaction. Characterizing these parameters for 

debris flow prediction is a complicated task. This can be overcome by considering the 

debris flow path under intense rainfall that tends to follow the steepest path to connect 

with the drainage network (Guinau et al., 2007; Pall`as et al., 2004). 

 

6.6.1 Debris Flow Susceptibility Assessment 

 

High susceptibility class in the terrain failure map is used as the source zones to assess 

the debris flow susceptibility regions in the study area. Pit filled DEM is used to 

calculate the D-∞ flow direction in order to extract the steepest downward slope 

regions. With the use of D-∞ flow direction and the terrain failure high susceptibility 

regions as source points, the D-∞ avalanche runout identify the avalanche's affected 

area and flow path length from the source points. In order to discretize the avalanche 

affected area or DFR (Debris Flow Regions) into selected susceptibility classes, the 

study area is classified as 0% debris flow for very low (DFR<20), 10% debris flow for 

low (20<DFR<21.35), 30% debris flow for medium (21.35<DFR<23.93), and 60% 

debris flow for high (DFR>23.93) susceptibility classes. 

 

6.6.2 Results Validation 

 

Validation is performed by overlaying the validation sample on the classified image. 

At this point, the validation sample consists of the debris flow path as the debris flow 

analysis is entirely dependent on the way of hydrological modelling (Chung and 

Fabbri, 2003; Remondo et al., 2003) RDFD (Relative Debris Flow Density) is used to 

quantify the accuracy of the debris flow analysis [Section 4.5.1 and Equation 16]. 
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Figure 6-7 illustrates the RDFD (Relative Debris Flow Density) for each susceptibility 

class. There is a gradual increase of a RDFD from the very low to high terrain failure 

susceptibility classes (2%, 6%, 28%, and 64%). The validation results confirm that the 

prediction model is fit with the real landslide scenarios (validation samples), and 

Figure 6-8 shows the debris flow susceptibility map with four landslide susceptibility 

classes. 

 

Figure 6-7 : Graphic showing of RDFD for each Debris Flow susceptibility class 
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6.7 Integration of Terrain Failures and Debris Flow Susceptibility Regions 

 

In order to map the landslide susceptibility regions, two independent studies are 

performed as terrain failure susceptibility analysis and debris flow susceptibility 

analysis by considering only the terrain parameters extracted from a DEM. The 

integration of these two concepts can provide far more realistic prediction results and 

is done through a comparison matrix. Figure 6-9 illustrates the comparison matrix and 

Figure 6-10 shows the final results from this integration. It is observed that 35% of the 

study area is highly susceptible, 18% is medium susceptible, 33% is low susceptible, 

and 14% is very low susceptible for landslide disasters. 

 

Figure 6-8 : Debris flow susceptibility map with four susceptibility classes 
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Figure 6-9 : Matrix with terrain susceptibility classes in the columns and debris flow 

susceptibility classes on the rows 

Figure 6-10 : Landslide susceptibility map with integration of terrain failure and 

debris flow susceptibility analysis 
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6.8 Discussions and Conclusions 

 

Landslide prediction is of utmost importance in all phases of disaster management and 

development activities in a country. Within the recent years, Koslanda in Sri Lanka, 

has been found to be significantly prone to the landslide disaster [Figure 6-11].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11:Susceptibility maps from terrain failure (a) debris flow analysis (b) and their 

integration (c) overlaid with the prominent landslides occurred in the study area and (d) 

number of landslide failure pixels in the terrain failure, debris flow, and integrated map. 

 

 

 Failure  Debris  Integration  

High  17%  70%  78%  

Moderate  71%  08%  11%  

Low  05%  03%  07%  

Very 

Low  07%  19%  04%  

(a) (b) 

(c) 
(d) 
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Naketiya landslide in year 1997 and Meeriyabedda landslide in 2014 record the most 

severe losses of human life and damages to properties so far. The investigations by 

NBRO, Sri Lanka, have revealed that the area closer to Naketiya is still active with 

slow land movements. Hence, a reliable study with available data for landslide studies 

is of utmost importance. 

 

Even though the multivariate statistical methods consider various parameters 

simultaneously, the process is complex and time consuming. Thus, the low-cost 

bivariate methodology is more helpful to obtain terrain failure susceptibility regions 

using terrain factors derived from DEM data due to the lack of detailed information 

about the bedrock, geology and soil structure in this study area [Figure 6-11].  

 

Debris flow motion depends on the debris volume, amount of fluids and terrain 

morphology. The TauDEM extension allowed for determining the flow paths 

following the steepest tracks from the source points to the drainage network. The 

validation results confirm the suitability of the selection of terrain parameters and 

methodology. Figure 6-11 illustrates the performance of landslide prediction analysis 

with the integration of debris flow path by overlaying the landslide inventory map on 

each prediction analysis. 

 

High and moderate susceptibility pixels in the landslide inventory map from the terrain 

failure analysis are 17% and, 71% (88%), and from debris flow path analysis is 70%, 

and 08% (78%), and from the integrated analysis is 78%, and 11% (89%) respectively. 

Thus, it can be concluded that the integration of debris flow path with the landslide 

susceptibility analysis can provide far more realistic landslide prediction analysis as 

compared to taking those individually. 
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The high and moderate landslide susceptibility areas in landslide failure analysis 

are14% and 44%, from debris flow analysis 29% and 04%, and from integrated 

analysis 35% and 18%, covering a considerable area showing the limitations of land 

for planning developments and human settlements in this area [Figure 6-11, Table 6-

2]. Areas having a high susceptibility, can be used for forestation, while medium 

susceptibility areas can be utilized for agriculture. The areas showing low and very 

low susceptible regions (33% and 14%) from integrated analysis can be reserved for 

settlements, schools and religious places. The buildings located in areas with very low 

susceptibility can be used as the shelters in the case of emergencies. 

 

Table 6-2 : Landslide susceptibility classes in the Terrain Failure, Debris Flow and the 

Integrated analysis 

 

 

 

 

 

 

 

 

6.9 Chapter Summary 

 

This research work utilizes the landslide inventory map for tracing the selected 

predisposing factors from DEM as slope, aspect, planar curvature and profile 

curvature. Simple and comprehensive bivariate information value method has been 

used to obtain the weight of influence of landslide disaster for each topographical 

factor. The highest weights are used as the source points for debris flow analysis. By 

integrating terrain failure regions and debris flow susceptibility regions, final landslide 

susceptibility classes can be generated. Validation results emphasize the better 

 
Failure Debris Integration 

High 14% 29% 35% 

Moderate 44% 04% 18% 

Low 30% 09% 33% 

Very Low 14% 58% 14% 
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estimations of landslide susceptibility classes by considering the integration of terrain 

failure and debris flow path for landslide susceptibility analysis as a low-cost 

approach.  
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CHAPTER 7 : CONCLUSIONS AND 

RECOMMENDATIONS 

 

The work presented in this research focuses on developing a versatile approach for 

landslide prediction and detection through the integration of radar and optical satellite 

data. Both optical and radar data have their own merits, and the integration of these 

two would complement each other, especially in disaster studies.  

 

7.1 Fundamental Contribution of this Research to the Field of Landslide 

Studies 

 

The main focus after a landslide disaster is to carry out relief and rescue operations, 

and afterwards for monitoring and mapping of the landslide. These are often disturbed 

by lack of timely information under the prevailing bad weather conditions, particularly 

in inaccessible mountainous areas. Though field surveys can provide accurate and 

reliable data, it is not capable of satisfying all of the requirements of landslide studies 

at a smaller scale, and for active sliding. The present practice in Sri Lanka is to use 

aerial photographs for landslide investigations other than the field surveys. Hence, by 

proving the significance of a remote tool for landslide investigations, this research 

work highlighted the use of remote sensing techniques for landslide investigations with 

freely available satellite images at high spatial, spectral, and temporal resolutions with 

ample area coverage. 

 

Radar is both revolutionary, and considered to be unique among the remote sensing 

systems as it is all-weather, independent of the time of day, and is able to penetrate 

into objects. Hence, only radar can offer timely information for landslide 

investigations for immediate disaster management activities remotely. Moreover, 

radar images are capable of extracting several natural surface parameters such as the 

surface soil moisture, forest biomass, and surface roughness which are major causative 
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factors for landslide prediction analysis. Hence, this research proves the significance 

of radar in landslide investigations through landslide detections, and landslide 

predictions with the radar induced predisposing factors. 

 

Optical remote sensing is traditionally used in disaster management as it can provide 

high spatial, spectral, and temporal information about the earth surface that can be 

directly and easily interpreted by humans. Optical satellite images are significant data 

sources for extracting predisposal factors for landslide susceptibility analysis, such as 

land use and lineament. However, optical satellite images are limited by observations 

under cloud-cover conditions and during night time. In landslide detection using PCA, 

the influence of clouds was reduced when compared with the other change detection 

techniques. This is because most of the cloud pixels and landslide pixels depart to two 

different principal components. The principle behind the NDVI is also an acceptable 

method for detecting changes due to landslides as vegetation is reduced due to most 

landslides. Hence, this research evaluated the use of optical remote sensing for 

improved landslide investigations by filling the existing gap with radar. 

 

Unexpected landslides with debris flows result in damages either over a period of time, 

or rapidly, destroying property and human lives suddenly. Yet, most landslide studies 

ignore the debris flow path in landslide susceptibility analysis. Especially in 

developing countries, timely information, scarcity of good quality data, insufficient 

funds, lack of specialized expertise are some factors that severely affect proper 

landslide investigations. Hence, there is a necessity of developing a low-cost 

methodology for improved landslide investigations as better suited for developing 

countries. DEM has become very significant in the study of landslides by providing 

some of the most prominent predisposing factors such as slope, aspect, planar, and 

profile curvature. Moreover, DEMs are freely available worldwide, with medium 

resolution (example – 30 m SRTM and ASTER), but most recently at high resolution 

(example–10 m TanDEM-X). Hence, this research developed a low-cost methodology 
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for landslide susceptibility analysis, maintaining an acceptable accuracy at a smaller 

scale as suited with the conditions in most developing countries. 

 

The main reason for landslides in Sri Lanka is improper land use management and as 

a result, landslide occurs frequently in mountainous regions. Hence, the selected main 

pre-disposal factors such as land use, slope, aspect, elevation, lineament, geology, soil 

moisture, surface roughness, rainfall, hydrology, and forest biomass are so common 

for any type of landslide studies in Sri Lanka. Moreover, the comparison of bivariate 

and multivariate statistical analysis for landslide susceptibility analysis with the 

inclusion of radar induced factors for improved analysis can be easily applied for any 

landslide as the methodology is site independent. Furthermore, the same methodology 

applied in landslide detections can also be applied for any landslides as most of the 

limitations (clouds, vegetation, and weather) are common to any landslide. 

 

7.2 Conclusions of the Research 

 

Following conclusions can be derived from this research work: 

1. Integration of optical and radar remote sensing could be used to quite 

satisfactorily predict Meeriyabedda landslide. Integration of radar images 

improve the predictability achieved by optical remote sensing alone. Inclusion 

of radar induced factors (soil moisture, surface roughness, and forest biomass) 

in a landslide prediction model can improve the prediction of high and low 

susceptibility areas. 

2. Selection of pre-disposing factors for landslide prediction is highly dependent 

on the specific geographic area, and no universal rule can be laid down for such 

selection. Care and intuition are needed in this matter. 

3. In landslide prediction models, bivariate approach shows better prediction and 

validation capabilities than multivariate approach. 
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4. Radar for landslide detection is promising with the advantages of radar imaging 

in the disaster situation and simultaneously, with PCA from optical under their 

own limitations  

5. Landslide prediction analysis are improved by integrating debris flow analysis 

with DEM derived topographical factors, as applicable for a developing 

country with data scarcity for fine scale studies. 

 

7.3 Discussions on Conclusions 

 

This research first produces and compares the landslide prediction models derived 

from bivariate and multivariate statistical analysis with and without inclusion of the 

radar induced factors. Then it carries out the detection of the Meeriyabedda landslide 

in Sri Lanka by using different change detection techniques and evaluate their 

performances with respect to the field measurement. As the last step, the study 

develops a feasible methodology for landslide susceptibility analysis, which can be 

readily tested and implemented, under the prevailing conditions of most developing 

countries like Sri Lanka, where there exists a scarcity of timely data for fine scale 

studies.   

 

7.3.1 Main Objective – Investigate the integration of radar and optical remote 

sensing for landslide prediction through a detailed study of landslides 

 

To achieve the main objective of the research, Landslide prediction models from 

bivariate and multivariate statistical analysis with and without the inclusion of radar 

induced factors were developed (Chapter 4). The main focus of this work was to 

analyse the importance of landslide predisposing factors in an equal and weighted 

environment, and to analyse the influence of radar induced factors for landslide 

susceptibility analysis. Most developing countries, like Sri Lanka, have difficulties in 

timely access to complementary data needed for fine scale landslide prediction and 

analysis work. Further, the damages due to debris flow path are not considered in most 
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of the landslide susceptibility analysis. As such, the work in Chapter 6 produced, and 

tested, a low cost, timely analysis of landslide susceptibility by incorporating the debris 

flow path. The capability of detecting a landslide from different change detection 

techniques using radar and optical data was investigated (Chapter 5) using the 

Meeriyabedda landslide, and it was observed that the radar was more capable of 

detecting landslide damaged area than optical, under the weather conditions of the 

disaster situations. 

 

7.3.2 Detection of Meeriyabedda landslide using different change detection 

techniques inherent to radar and optical 

 

This work examined the capability of radar and high-resolution optical images for 

landslide detection by considering native characteristic of satellite images and the 

performance of change detection techniques. In the optical approach, high resolution 

satellite images were analysed by using PCA and NDVI. The influence of the cloud 

effect is reduced by PCA as most of the cloud pixels are separated into different 

principal components. Landslide area can be recognized from NDVI difference and 

post NDVI image due to elimination of vegetation cover from the landmass failures. 

Most of the manmade properties which were damaged due to landslide could be clearly 

identified from the NDVI difference image. Even though the post NDVI image 

detected 71% of the affected area, it is difficult to conclude that the post NDVI result 

is more accurate than the NDVI difference image as it does not specify any change, 

and reduction could be the result of either landslide or drop of vegetation. However, 

with prior knowledge of the land use, and if any changes had occurred in a vegetated 

region, then the post NDVI image can provides better detections about the landslide 

damaged areas. 

 

In change detection analysis, clouds hide some important information while getting 

classified as changes. This can be overcome with the use of radar images, which is 

most important in disaster studies. However, in radar image analysis of hilly regions, 
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radar backscatter is highly affected by incident angle and angle of fore slopes, more so 

than the type of surface materials and their conditions. Moreover, radar back scatter 

changes with the illumination conditions of the time of image acquisition due to side 

looking configurations. Hence, most appropriate radar images have to be selected for 

change detection analysis. Freely available Sentinel-1, C band radar images at 10 m 

resolution with VV polarization is used. Pre-processing of radar images in pre and post 

event was challenging as they covered much undulated region with serious geometrical 

distortions. Yet, it was possible to obtain 86% of accuracy for landslide damaged area 

for Meeriyabedda landslide. 

 

Validation results highlighted the colour combination of PCA gained better results 

(76%) as all available image bands were used in image analysis. PCA and NDVI 

difference obtained least accuracy (63% and 65% respectively), as it was affected by 

other radiometric and illumination changes than the change due to landslide in pre and 

post image. Hitherto, due to the advantages of radar images in disaster situations, it 

has proven the suitability for disaster studies. Hence, it can be concluded that the radar 

for landslide detection is promising, simultaneously with PCA as optical is at 76% 

under their own limitations. 

 

7.3.3 Identification of the most prominent landslide pre-disposing factors from 

remotely sensed sources, i.e. DEM, Optical and Radar 

 

Landslides may occur as consequences of complex predisposing and triggering factors. 

Long term topographical, geological, and land use predisposing factors, together with 

local climatic conditions, trigger landslide occurrences. There are no universal 

strategies for the selection of predisposing factors in landslide susceptibility analysis. 

Thus, determining of appropriate causal factors is a difficult task, and no specific rule 

exists to define how many factors are sufficient for a specific landslide susceptibility 

analysis. Hence, the selections of predisposing factors are dependent on the nature of 

the study area, opinions of the experts, and the availability of data for generating the 
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appropriate spatial and thematic information. Furthermore, selection of these factors, 

and preparation of corresponding thematic data layers, are vital for landslide 

susceptibility analysis. 

 

Selection of predisposing factors were based on the careful investigations of the study 

area, literature recommendations, and the expert opinions. Fifteen topographical, 

hydrological, geological, land cover, and soil factors were considered, including three 

radar induced factors. All factors were derived from optical images (Landsat-8, 

Sentinel-2), radar images (Sentinel-1, TerraSAR-X), and DEM derived from aerial 

triangulation and other available data sources (Geology, Rainfall). Twelve factors were 

derived from optical images, DEM and auxiliary data. Three more factors (surface 

roughness, soil moisture index, and forest biomass) derived from radar images were 

incorporated in order to analyse the performance of this integration for landslide 

susceptibility analysis. 

 

7.3.4 Building landslide prediction models from bivariate and multivariate 

statistical methods 

 

Prediction models combine various predisposing factors through a predefined 

algorithm in landslide susceptibility analysis. Information Value method based on 

simple statistical analysis as bivariate and AHP based MCDA as multivariate have 

been applied for landslide susceptibility analysis. Bivariate analysis calculates the 

susceptibility at each point with the equally joined weight of influence of all 

predisposing factors. The weight of influence is estimated based on the landslide 

inventory map of the study area. Multivariate analysis integrates all the predisposing 

factors with relative contribution of each factor by putting more emphasis on landslide 

occurrences. AHP calculate the relative importance by using questionnaire survey 

from the experts in the field of geology and decision makers in DMC, UDA, and 

NBRO. The expert knowledge could be subjective or may assign different weights for 

each factor when analysing a large number of predisposing factors. Hence, in order to 
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minimize this inconsistency, CR is calculated. For better predictive models, the CR 

should be less than 0.1, and otherwise, weights for each factor have to be regenerated. 

 

7.3.5 Investigation of the performance of landslide prediction model, with the 

inclusion of landslide causal factors derived from radar images 

 

High and moderate susceptibility classes in bivariate and multivariate analysis with 

and without radar induced factors are approximately identical but showslight increase 

in multivariate analysis than bivariate. However, with the inclusion of radar induced 

factors, as surface roughness, near surface soil moisture from delta index, and forest 

biomass, the high and very low susceptible areas are increased significantly (high: 7%, 

3%, and very low: 4%, 3% bivariate and multivariate respectively). However, when 

comparing high and very low susceptibility areas from bivariate and multivariate 

analysis, high susceptibility areas have significant increase (without radar - 6% and 

with radar - 2%) while, very low susceptibility areas have significant decrease (without 

radar - 3% and with radar - 4%). Hence, it can be noted that with the inclusion of radar 

induced factors, the discrimination between high and very low susceptibility areas are 

increased. 

 

Validation was conducted from two different approaches as RFD and AUC of success 

rate and prediction rate curves to minimize the inconsistency. The regions predicted as 

very low are validated as 0% in RFD analysis. More than 70% areas are identified as 

high and moderate susceptibility areas. The validation results illustrate the gradual 

increase of RFD from very low to (moderate + high) susceptibility classes. The success 

rate curves measure prediction performance while, the prediction curves measure 

validation performance. If the AUC is closer to 1, the result of the test is excellent and 

AUC is closer 0.5, the result of the test is fairer. Even if the AUC of prediction rates 

are more than 0.5 which, are in acceptable range, they are closer to the 0.5 predicting 

fairer performance in validation. The main reason could be the incompleteness of the 

available landslide inventory map with insufficient validation samples in the study 
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area. However, with the inclusion of radar induced factors, AUC of success rate and 

prediction rate curves are increased from 0.8315 to 0.8560, 0.7986 to 0.8023, 0.6692 

to 0.6804, and 05882 to 0.5901 in bivariate and multivariate respectively. 

 

7.3.6 Comparing the performance of differently built landslide prediction 

models 

 

Four landslide prediction models, (i) BiWR, (ii) BiNR, (iii) MWR, and (iv) MNR 

(bivariate and multivariate, and with and without radar induced factors) are developed 

and their performances were investigated by using RFD analysis and AUC of success 

and prediction rate curves. RFD analysis investigate the number of pixels in validation 

sample in each landslide prediction classes. By observing the correct performance of 

prediction analysis in all prediction models, very low susceptible areas from prediction 

analysis are validated as 0% while high and moderate susceptibility areas are above 

70% from all these four statistical analyses. However, from RFD analysis the 

performance of each prediction model could not be distinct as all prediction models 

perform in similar mode.  

 

The AUC of prediction rate and success rate curves investigate the prediction and 

validation performances separately. Theoretically, if AUC is closer to 1, the prediction 

result is “excellent” and on the contrary, if AUC is closer 0.5, the prediction result is 

“fair”. In these analyses, AUC of all the success rates are closer to or more than 0.80, 

thereby providing better prediction performances, though the prediction rates predict 

less performance in validation. The most possible reason would be the incompleteness 

of the available landslide inventory map with insufficient validation samples. All 

success and prediction rate analysis in bivariate and multivariate analysis perform well 

with the inclusion of radar induced factors (Success rate – BiNR – 0.8315, BiWR- 

0.8560, MNR – 0.7986, MWR – 0.8023 and prediction rate -- BiNR – 0.6692, BiWR- 

0.6804, MNR – 0.5882, MWR – 0.5901). All in all, the better prediction and validation 

capabilities are shown by bivariate when compared with the multivariate approaches. 
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7.3.7 Investigation the post disaster effects from debris flow due to landslide 

failures 

 

The post disaster effect from debris flows is harmful process due to the rapid rate of 

movement and long runout zone throughout the hilly terrain by destroying everything 

they meet. Recent landslide studies have identified that the Koslanda area in Sri Lanka 

is significantly prone to landslide disaster (Naketiya – 1997, and Meeriyabedda –2014) 

causing higher losses to human life and severe damages to properties. NBRO 

investigations have revealed that the area near to Naketiya is still in active with slow 

land movements.  

 

The multivariate analysis considers several parameters simultaneously, the process is 

complex and time consuming. Thus, the low-cost bivariate approach is more 

supportive to categorize terrain failure susceptibility regions using the factors derived 

from DEM, if there is a lack of detailed information about the study area. Debris flow 

depends on the debris volume, amount of fluids and terrain morphology. TauDEM 

determine the flow paths that follow the steepest route from the source points to the 

drainage network. Two independent studies of susceptibility for terrain failures and 

debris flow analysis were integrated to obtain more realistic prediction results using a 

comparison matrix. 

 

The high and moderate susceptible areas (58%) in terrain failure analysis, and debris 

flow susceptible areas (33%), and the integrated susceptible areas (53%), covered a 

significant percentage of the study area, showing limitations of land for planning 

developments and human settlements. High susceptible areas have to be used for 

forestation while medium areas can be utilized for agriculture. Low and very low 

regions, obtained as 33% and 14%, from integrated analysis, can be reserved for the 

settlements, schools and religious places. The buildings in very low susceptible areas 

can be used as potential shelters in the case of emergencies. The validation results 

confirm the selection of terrain parameters and suitable methodology. 
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7.4 Future Works 

 

Remote sensing techniques for disaster investigations have been emerging fields of 

research in the last decade. In landslide investigations, landslide detections, 

predictions, monitoring, damage, and risk assessments using spatial predictors and 

statistical analysis can go a long way in establishing the scientific research in these 

fields. However, there are some issues that have emerged from this research that need 

to be addressed in future studies. 

 

The first and foremost step is that the national programme for landslide inventory 

mapping should be carried out in optimal ways by introducing time and scale 

dimensions. Time dimensions involve landslide records over time for properly 

addressing the reactivation history and scale dimensions should be able to change the 

representation of landslide at different scales from a single point to a set of polygons.  

 

Data about the damages due to landslides are usually scares in landslide inventories 

and more attention should be taken to link the magnitude of landslides with the 

damages. Hence, an up-to-date landslide inventory map is recommended for proper 

landslide studies. 

 

Landslide inventory mapping should be web-based and allow for collaborative 

mapping, and reporting of landslide occurrences in a simple way by local authorities. 

In that sense, event-based landslide inventory maps can be produced by using remote 

sensing or semi-automated techniques of landslide inventory mapping. The demand 

for query facilities and visualization information through public domain is increasing 

in geographical information users. Hence, the development of WebGIS on a scientific 

platform allows integration of data from various sources, means, and methods, and 

data dissemination through geographical information user.    
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The increasing availability of free data through the worldwide web can be used for 

landslide studies where the data scarcity is ultimately a main challenge. At the 

moment, most data that is freely available is only applicable in smaller scales (SRTM 

30 m and 90 m), even though more detailed data with higher resolution (TanDEM 10 

m resolution) are gradually increasing in future. 

 

Many landslide predisposal factors are considered in literature for landslide 

susceptibility mapping, but it is not certain which factor combination provides best 

results for susceptibility analysis. Though several research studies examine the effects 

of predisposal factors on landslide susceptibility analysis, as yet, there does not exist 

a well-established framework exists for the selection of optimum factors for landslide 

susceptibility analysis. 

 

In addition, a fully polarimetric multi bands system could further improved the radar 

image analysis than single polarized C band radar images in change detection and soil 

moisture studies. The present generation of spaceborne SAR sensors operating in fully 

polarimetric mode at different frequencies (L, X, C) with future planned sensors offer 

a potential for land surface studies even under highly dense forest. 
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APPENDIX A – Weight of Influence for Landslide 

predisposing factors 

 

Following tables show the calculation procedure of the weight of influence for the 

fifteen selected predisposing factors 

 

Table 1: Weight of influence for Topographical predisposing factor "Elevation" 

Table 2: Weight of influence for Topographical predisposing factor "Slope" 

Table 3: Weight of influence for Topographical predisposing factor "Aspect" 

Table 4: Weight of influence for Topographical predisposing factor "Planar curvature" 

Table 5: Weight of influence for Topographical predisposing factor "Profile curvature" 

Table 6: Weight of influence for Topographical predisposing factor "Surface 

roughness (radar)" 

Table 7: Weight of influence for Hydrological predisposing factor "Distance to 

hydrology" 

Table 8: Weight of influence for Hydrological predisposing factor "Topographical 

Wetness Index (TWI)" 

Table 9: Weight of influence for Hydrological predisposing factor "Rainfall" 

Table 10: Weight of influence for Soil predisposing factor "Surface soil moisture" 

Table 11: Weight of influence for Soil predisposing factor "Soil Moisture Index 

(radar)" 

Table 12: Weight of influence for Land cover predisposing factor "Land cover type" 

Table 13: Weight of influence for Land cover predisposing factor "Forest biomass" 

Table 14: Weight of influence for Geological predisposing factor "Geology" 

Table 15: Weight of influence for Geological predisposing factor "Lineament density" 

A - No of failure pixels in the particular class 
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B - No of whole pixels in the particular class 

C - Whole failure pixels in the study area 

D - Whole pixels in the study area 

 

 



 

 

Table 1 : Weight of influence for Topographical predisposing factor "Elevation" 

 

 

 

No of 

classes 

break 

values 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 446 - 600 6087 109273 36025 730895 0.05570 0.04929 1.13016 113.016 113 0.05314 0.053 

2 600 - 710 4917 128866 36025 730895 0.03816 0.04929 0.77413 77.413 77 -0.11119 -0.111 

3 710 - 790 3420 80067 36025 730895 0.04271 0.04929 0.86661 86.661 87 -0.06218 -0.062 

4 790 - 900 4580 101449 36025 730895 0.04515 0.04929 0.91594 91.594 92 -0.03813 -0.038 

5 900 - 1050 13724 133169 36025 730895 0.10306 0.04929 2.09088 209.088 209 0.32033 0.320 

6 1050 - 1260 2805 118332 36025 730895 0.02370 0.04929 0.48093 48.093 48 -0.31792 -0.318 

7 1260 - 1540 492 59739 36025 730895 0.00824 0.04929 0.16709 16.709 17 -0.77704 -0.777 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 10 6901 126235 36025 730895 0.05467 0.04929 1.10913 110.913 111 0.04498 0.045 

2 15 7698 219096 36025 730895 0.03514 0.04929 0.71284 71.284 71 -0.14701 -0.147 

3 25 13304 159137 36025 730895 0.08360 0.04929 1.69614 169.614 170 0.22946 0.229 

4 30 3353 111498 36025 730895 0.03007 0.04929 0.61012 61.012 61 -0.21458 -0.215 

1
7
2

 



 

 

Table 2 : Weight of influence for Topographical predisposing factor "Slope" 

 

 

 

Table 3 :Weight of influence for Topographical predisposing factor "Aspect" 

 

 

5 40 3056 73145 36025 730895 0.04178 0.04929 0.84766 84.766 85 -0.07178 -0.072 

6 50 941 31880 36025 730895 0.02952 0.04929 0.59886 59.886 60 -0.22268 -0.223 

7 80 772 9904 36025 730895 0.07795 0.04929 1.58146 158.146 158 0.19906 0.199 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 N 961 25065 36025 730895 0.03834 0.04929 0.77787 77.787 78 -0.10909 -0.109 

2 NE 1925 18085 36025 730895 0.10644 0.04929 2.15955 215.955 216 0.33436 0.334 

3 E 6599 58557 36025 730895 0.11269 0.04929 2.28639 228.639 229 0.35915 0.359 

4 SE 9007 158397 36025 730895 0.05686 0.04929 1.15368 115.368 115 0.06208 0.062 

5 S 7816 146386 36025 730895 0.05339 0.04929 1.08327 108.327 108 0.03474 0.035 

6 SW 4924 123340 36025 730895 0.03992 0.04929 0.80996 80.996 81 -0.09153 -0.092 

7 W 3141 121771 36025 730895 0.02579 0.04929 0.52333 52.333 52 -0.28122 -0.281 

8 NW 1652 79294 36025 730895 0.02083 0.04929 0.42269 42.269 42 -0.37398 -0.374 

1
7
3
 



 

 

 

Table 4 : Weight of influence for Topographical predisposing factor "Planar curvature" 

 

 

Table 5 :Weight of influence for Topographical predisposing factor "Profile curvature" 

No of 

classes 
break value A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 -169.89 - -26.96 194 5838 36025 730895 0.03323 0.04929 0.67420 67.420 67 -0.17121 -0.171 

2 -26.96 - -12.3 1626 47862 36025 730895 0.03397 0.04929 0.68926 68.926 69 -0.16162 -0.162 

3 -12.3 - -3.28 8096 157249 36025 730895 0.05149 0.04929 1.04456 104.456 104 0.01893 0.019 

No of 

classes 
break value A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 -116.87 - -16.34 276 7679 36025 730895 0.03594 0.04929 0.72921 72.921 73 -0.13714 -0.137 

2 -16.34 - -7.74 1569 48647 36025 730895 0.03225 0.04929 0.65436 65.436 65 -0.18418 -0.184 

3 -7.74 - -2.59 6388 133567 36025 730895 0.04783 0.04929 0.97032 97.032 97 -0.01308 -0.013 

4 -2.59 - -0.8 5875 105724 36025 730895 0.05557 0.04929 1.12742 112.742 113 0.05209 0.052 

5 -0.8 - 3.68 15828 287665 36025 730895 0.05502 0.04929 1.11632 111.632 112 0.04779 0.048 

6 3.68 - 9.37 4897 109086 36025 730895 0.04489 0.04929 0.91078 91.078 91 -0.04059 -0.041 

7 9.37 - 102.25 1192 38527 36025 730895 0.03094 0.04929 0.62771 62.771 63 -0.20224 -0.202 

1
7
4

 



 

 

4 -3.28 - 1.13 11857 220702 36025 730895 0.05372 0.04929 1.08999 108.999 109 0.03742 0.037 

5 1.13 - 8.46 10459 201529 36025 730895 0.05190 0.04929 1.05294 105.294 105 0.02240 0.022 

6 8.46 - 21.9 3458 85635 36025 730895 0.04038 0.04929 0.81926 81.926 82 -0.08658 -0.087 

7 21.9 - 141.63 335 12080 36025 730895 0.02773 0.04929 0.56264 56.264 56 -0.24977 -0.250 

 

 

Table 6 :Weight of influence for Topographical predisposing factor "Surface roughness (radar)" 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 
0.178186 - 

0.330745 
9679 237949 36025 730895 0.04068 0.04929 0.82527 82.527 82 -0.08340 -0.084 

2 
0.330745 - 

0.390972 
14294 219651 36025 730895 0.06508 0.04929 1.32030 132.030 132 0.12067 0.120 

3 
0.390972 - 

0.414748 
9093 120237 36025 730895 0.07563 0.04929 1.53433 153.433 153 0.18592 0.186 

4 
0.414748 - 

0.474975 
2433 67109 36025 730895 0.03625 0.04929 0.73555 73.555 74 -0.13339 -0.133 

5 
0.474975 - 

0.627534 
518 43885 36025 730895 0.01180 0.04929 0.23948 23.948 24 -0.62074 -0.620 

6 
0.627534 - 

1.013976 
8 29178 36025 730895 0.00027 0.04929 0.00556 0.556 1 -2.25471 -2.253 

7 
1.013976 - 

1.992856 
0 12886 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

 1
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Table 7 :Weight of influence for Hydrological predisposing factor "Distance to hydrology" 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 20 6639 126235 36025 730895 0.05259 0.04929 1.06702 106.702 107 0.02817 0.028 

2 65 12267 219096 36025 730895 0.05599 0.04929 1.13594 113.594 114 0.05535 0.055 

3 115 8412 159137 36025 730895 0.05286 0.04929 1.07246 107.246 107 0.03038 0.030 

4 175 4089 111498 36025 730895 0.03667 0.04929 0.74405 74.405 74 -0.12840 -0.128 

5 250 3221 73145 36025 730895 0.04404 0.04929 0.89342 89.342 89 -0.04894 -0.049 

6 350 1397 31880 36025 730895 0.04382 0.04929 0.88906 88.906 89 -0.05107 -0.051 

7 565 0 9904 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

 

Table 8 : Weight of influence for Hydrological predisposing factor "Topographical Wetness Index (TWI)" 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 0 - 3 15500 338442 36025 730895 0.04580 0.04929 0.92918 92.918 93 -0.03190 -0.032 

2 3 - 5 6026 130315 36025 730895 0.04624 0.04929 0.93818 93.818 94 -0.02771 -0.028 

3 5 - 10 7199 140498 36025 730895 0.05124 0.04929 1.03957 103.957 104 0.01685 0.017 

4 10 - 80 6695 114448 36025 730895 0.05850 0.04929 1.18684 118.684 119 0.07439 0.074 

5 80 - 5415 605 7192 36025 730895 0.08412 0.04929 1.70670 170.670 171 0.23216 0.232 
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Table 9 :Weight of influence for Hydrological predisposing factor "Rainfall" 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 360 - 380 6326 91239 36025 730895 0.06933 0.04929 1.40669 140.669 141 0.14820 0.148 

2 380 - 400 4166 123524 36025 730895 0.03373 0.04929 0.68426 68.426 68 -0.16478 -0.165 

3 400 - 415 10685 95994 36025 730895 0.11131 0.04929 2.25830 225.830 226 0.35378 0.354 

4 415 - 430 3450 101629 36025 730895 0.03395 0.04929 0.68874 68.874 69 -0.16195 -0.162 

5 430 - 445 6173 111846 36025 730895 0.05519 0.04929 1.11976 111.976 112 0.04913 0.049 

6 445 - 460 5225 103533 36025 730895 0.05047 0.04929 1.02390 102.390 102 0.01026 0.010 

7 460 - 485 0 103130 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

 

Table 10 :Weight of influence for Soil predisposing factor "Surface soil moisture" 

No of 

classes 

break 

values 
A B C D densclass densmap weight *100 

weig

ht 

final 

LOG 
LOG 

final 

1 -4.69 - -1.47 3311 60708 36025 730895 0.05454 0.04929 1.10653 110.653 111 0.04396 0.044 

2 -1.47 - -0.96 10910 209281 36025 730895 0.05213 0.04929 1.05766 105.766 106 0.02434 0.024 

3 -0.96 - -0.53 14265 256526 36025 730895 0.05561 0.04929 1.12821 112.821 113 0.05239 0.052 

4 -0.53 - 0.06 7130 164138 36025 730895 0.04344 0.04929 0.88131 88.131 88 -0.05487 -0.055 

5 0.06 - 2.91 409 40240 36025 730895 0.01016 0.04929 0.20621 20.621 21 -0.68568 -0.686 1
7
7

 



 

 

Table 11 : Weight of influence for Soil predisposing factor "Soil Moisture Index (radar)" 

 

 

Table 12 : Weight of influence for Land cover predisposing factor "Land cover type" 

No of 

Classes 

Land 

cover 

A B C D densclass densmap weight *100 

weig

ht 

final 

LOG 
LOG 

final 

1 residential 327 6571 36025 730895 0.04976 0.04929 1.00964 100.964 101 0.00417 0.004 

2 tea 21925 247420 36025 730895 0.08861 0.04929 1.79786 179.786 180 0.25476 0.255 

3 scrub 12491 412088 36025 730895 0.03031 0.04929 0.61498 61.498 61 -0.21114 -0.211 

4 forest 1273 64284 36025 730895 0.01980 0.04929 0.40177 40.177 40 -0.39602 -0.396 

5 other 9 532 36025 730895 0.01692 0.04929 0.34323 34.323 34 -0.46442 -0.464 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 
-0.07 

- 0.11 
6055 17344 36025 730895 0.34911 0.04929 7.08298 708.298 713 0.85022 0.853 

2 
0.11 - 

0.29 
11825 201888 36025 730895 0.05857 0.04929 1.18834 118.834 119 0.07494 0.075 

3 
0.29 - 

0.44 
11141 285156 36025 730895 0.03907 0.04929 0.79267 79.267 79 -0.10091 -0.101 

4 
0.44 - 

0.65 
6365 153598 36025 730895 0.04144 0.04929 0.84074 84.074 84 -0.07534 -0.076 

5 
0.65 - 

1.1 
639 72909 36025 730895 0.00876 0.04929 0.17782 17.782 18 -0.75003 -0.756 
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Table 13 : Weight of influence for Land cover predisposing factor "Forest biomass" 

No of 

classes 

break 

value 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 
-7.4312-

-5.764 13078 256419 36025 730895 0.36303 0.35083 1.03477 103.477 103 0.01484 0.015 

2 
-5.764-

0.113 10514 209578 36025 730895 0.29185 0.28674 1.01783 101.783 102 0.00767 0.008 

3 
0.113-

1.875 7811 174283 36025 730895 0.21682 0.23845 0.90929 90.929 91 -0.04130 -0.041 

4 
1.875-

2.469 4025 69725 36025 730895 0.11173 0.09540 1.17119 117.119 117 0.06863 0.069 

5 
2.469-

3.1914 597 20890 36025 730895 0.01657 0.02858 0.57981 57.981 58 -0.23671 -0.237 
 

 

Table 14 : Weight of influence for Geological predisposing factor "Geology" 

No of 

classes 

break 

values 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

1 Pmc 0 1146 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

2 Pmgga 0 2088 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

3 Pmgga_ga 878 79008 36025 730895 0.01111 0.04929 0.22546 22.546 23 -0.64693 -0.647 

4 Pmgk 0 89 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 1
7
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5 Pmgk_b 34074 523222 36025 730895 0.06512 0.04929 1.32126 132.126 132 0.12099 0.121 

6 Pmgqf_ga 0 7 36025 730895 0.00000 0.04929 0.00000 0.000 0 0.00000 0.000 

7 Pmq 1073 125335 36025 730895 0.00856 0.04929 0.17369 17.369 17 -0.76022 -0.760 

 

 

Table 15 : Weight of influence for Geological predisposing factor "Lineament density" 

No of 

classes 
A B C D densclass densmap weight *100 

weight 

final 
LOG 

LOG 

final 

0 1820 72180 36025 730895 0.02521 0.04929 0.51157 51.157 51 -0.29109 -0.291 

1 2847 58857 36025 730895 0.04837 0.04929 0.98139 98.139 98 -0.00816 -0.008 

2 5050 96920 36025 730895 0.05210 0.04929 1.05713 105.713 106 0.02413 0.024 

3 6088 134472 36025 730895 0.04527 0.04929 0.91853 91.853 92 -0.03691 -0.037 

4 6011 146154 36025 730895 0.04113 0.04929 0.83442 83.442 83 -0.07861 -0.079 

5 3962 82686 36025 730895 0.04792 0.04929 0.97215 97.215 97 -0.01227 -0.012 

6 9075 114113 36025 730895 0.07953 0.04929 1.61348 161.348 161 0.20776 0.208 

7 1172 25513 36025 730895 0.04594 0.04929 0.93200 93.200 93 -0.03058 -0.031 
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APPENDIX B – Questionnaire Survey for MCDA based on 

AHP technique 

 

Questionnaire for MCDA with AHP technique 

 

 

 

 

 

 

 

 

RESEARCH TITLE:   

INTEGRATION OF RADAR AND OPTICAL REMOTE SENSING 

FOR LANDSLIDE PREDICTION. A CASE STUDY OF KOSLANDA, 

SRI LANKA 

 

The importance of the criterion for landslide predictions is expected. The information 

derived from questionnaire survey will only be used for the above research. We thank 

you very much for your valuable cooperation.  

       

1. Designation: ................................................. 

2. Answer the question 2 according to the given instructions. 

 

Degree Description of pair wise comparison judgment 

1 Equally important  

3 Moderately important  

NO: 

Questionnaire Survey  

PhD Research 

University of Moratuwa, Sri Lanka 
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5 Strongly important  

7 Very strongly important  

9 Extremely important  

 

2, 4, 6, 8 are intermediate values. 

 

Main Criteria of the Research, 

A – Elevation 

B – Slope 

C – Aspect 

D – Planar Curvature 

E – Profile Curvature 

F – Topographical Wetness Index (TWI) 

G – Land use 

H – Lineament Density 

I – Distance to Hydrology 

J – Soil Moisture Index (SMI) 

K – Geology 

L – Rainfall 

M – Surface Soil Moisture 

N – Surface Roughness 

O – Forest Biomass 

 

Example: - 

When you consider the criteria A is strongly important than B, then mark the 

suitability degree of the table as follows: 

 

 

When you consider the criteria B is strongly important than A, then mark the 

suitability degree of the table as follows: 

A 9 7 5 3 1 3 5 7 9 B 
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According to your preference, mark your desired degree of importance for the 

desired criterion.  

A 9 7 5 3 1 3 5 7 9 B 

A 9 7 5 3 1 3 5 7 9 C 

A 9 7 5 3 1 3 5 7 9 D 

A 9 7 5 3 1 3 5 7 9 E 

A 9 7 5 3 1 3 5 7 9 F 

A 9 7 5 3 1 3 5 7 9 G 

A 9 7 5 3 1 3 5 7 9 H 

A 9 7 5 3 1 3 5 7 9 I 

A 9 7 5 3 1 3 5 7 9 J 

A 9 7 5 3 1 3 5 7 9 K 

A 9 7 5 3 1 3 5 7 9 L 

A 9 7 5 3 1 3 5 7 9 M 

A 9 7 5 3 1 3 5 7 9 N 

A 9 7 5 3 1 3 5 7 9 O 

. 

B 9 7 5 3 1 3 5 7 9 C 

B 9 7 5 3 1 3 5 7 9 D 

B 9 7 5 3 1 3 5 7 9 E 

B 9 7 5 3 1 3 5 7 9 F 

B 9 7 5 3 1 3 5 7 9 G 

B 9 7 5 3 1 3 5 7 9 H 

B 9 7 5 3 1 3 5 7 9 I 

B 9 7 5 3 1 3 5 7 9 J 

B 9 7 5 3 1 3 5 7 9 K 

B 9 7 5 3 1 3 5 7 9 L 

B 9 7 5 3 1 3 5 7 9 M 

B 9 7 5 3 1 3 5 7 9 N 

B 9 7 5 3 1 3 5 7 9 O 

 

 

 

A 9 7 5 3 1 3 5 7 9 B 



 

184 
 

C 9 7 5 3 1 3 5 7 9 D 

C 9 7 5 3 1 3 5 7 9 E 

C 9 7 5 3 1 3 5 7 9 F 

C 9 7 5 3 1 3 5 7 9 G 

C 9 7 5 3 1 3 5 7 9 H 

C 9 7 5 3 1 3 5 7 9 I 

C 9 7 5 3 1 3 5 7 9 J 

C 9 7 5 3 1 3 5 7 9 K 

C 9 7 5 3 1 3 5 7 9 L 

C 9 7 5 3 1 3 5 7 9 M 

C 9 7 5 3 1 3 5 7 9 N 

C 9 7 5 3 1 3 5 7 9 O 

 

D 9 7 5 3 1 3 5 7 9 E 

D 9 7 5 3 1 3 5 7 9 F 

D 9 7 5 3 1 3 5 7 9 G 

D 9 7 5 3 1 3 5 7 9 H 

D 9 7 5 3 1 3 5 7 9 I 

D 9 7 5 3 1 3 5 7 9 J 

D 9 7 5 3 1 3 5 7 9 K 

D 9 7 5 3 1 3 5 7 9 L 

D 9 7 5 3 1 3 5 7 9 M 

D 9 7 5 3 1 3 5 7 9 N 

D 9 7 5 3 1 3 5 7 9 O 

 

E 9 7 5 3 1 3 5 7 9 F 

E 9 7 5 3 1 3 5 7 9 G 

E 9 7 5 3 1 3 5 7 9 H 

E 9 7 5 3 1 3 5 7 9 I 

E 9 7 5 3 1 3 5 7 9 J 

E 9 7 5 3 1 3 5 7 9 K 

E 9 7 5 3 1 3 5 7 9 L 

E 9 7 5 3 1 3 5 7 9 M 

E 9 7 5 3 1 3 5 7 9 N 

E 9 7 5 3 1 3 5 7 9 O 

 

F 9 7 5 3 1 3 5 7 9 G 

F 9 7 5 3 1 3 5 7 9 H 
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F 9 7 5 3 1 3 5 7 9 I 

F 9 7 5 3 1 3 5 7 9 J 

F 9 7 5 3 1 3 5 7 9 K 

F 9 7 5 3 1 3 5 7 9 L 

F 9 7 5 3 1 3 5 7 9 M 

F 9 7 5 3 1 3 5 7 9 N 

F 9 7 5 3 1 3 5 7 9 O 

 

G 9 7 5 3 1 3 5 7 9 H 

G 9 7 5 3 1 3 5 7 9 I 

G 9 7 5 3 1 3 5 7 9 J 

G 9 7 5 3 1 3 5 7 9 K 

G 9 7 5 3 1 3 5 7 9 L 

G 9 7 5 3 1 3 5 7 9 M 

G 9 7 5 3 1 3 5 7 9 N 

G 9 7 5 3 1 3 5 7 9 O 

 

H 9 7 5 3 1 3 5 7 9 I 

H 9 7 5 3 1 3 5 7 9 J 

H 9 7 5 3 1 3 5 7 9 K 

H 9 7 5 3 1 3 5 7 9 L 

H 9 7 5 3 1 3 5 7 9 M 

H 9 7 5 3 1 3 5 7 9 N 

H 9 7 5 3 1 3 5 7 9 O 
 

I 9 7 5 3 1 3 5 7 9 J 

I 9 7 5 3 1 3 5 7 9 K 

I 9 7 5 3 1 3 5 7 9 L 

I 9 7 5 3 1 3 5 7 9 M 

I 9 7 5 3 1 3 5 7 9 N 

I 9 7 5 3 1 3 5 7 9 O 
 

J 9 7 5 3 1 3 5 7 9 K 

J 9 7 5 3 1 3 5 7 9 L 

J 9 7 5 3 1 3 5 7 9 M 

J 9 7 5 3 1 3 5 7 9 N 

J 9 7 5 3 1 3 5 7 9 O 
 

K 9 7 5 3 1 3 5 7 9 L 
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K 9 7 5 3 1 3 5 7 9 M 

K 9 7 5 3 1 3 5 7 9 N 

K 9 7 5 3 1 3 5 7 9 O 
 

L 9 7 5 3 1 3 5 7 9 M 

L 9 7 5 3 1 3 5 7 9 N 

L 9 7 5 3 1 3 5 7 9 O 
 

M 9 7 5 3 1 3 5 7 9 N 

M 9 7 5 3 1 3 5 7 9 O 
 

N 9 7 5 3 1 3 5 7 9 O 
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APPENDIX C – AHP Calculation Procedure 

 

 

AHP Calculations 

 

There are two main matrices involved with AHP calculations. Pair-wise comparison 

matrix and normalized matrix. Relative weights for each factor, from questionnaire 

survey is generated in pair-wise comparison matrix and final relative weights are 

calculated in the normalized matrix for each predisposing factor with and without radar 

induced factors.   

 

A – Elevation 

B – Slope 

C – Aspect 

D – Planar curvature 

E – Profile curvature 

F – Topographical Wetness Index (TWI) 

G – Land use 

H – Lineament density 

I – Distance to hydrology 

J – Soil Moisture Index (NDVI-T domain) 

K – Geology 

L – Rainfall 

M – Soil Moisture (Delta Index) - radar 

N – Surface roughness - radar 

O – Forest biomass - radar 

 

 

 



 

 

Table 16 : Pair-wise comparison matrix generated from questionnaire survey for without radar induce factors 

 

 

 

 

 

 

 

               

   A B C D E F G H I J K L  

 A 1  1/5 3 3 3  1/5  1/5  1/3  1/3  1/5  1/5  1/5  

 B 5 1 7 7 7 3 1 5 5 3 1 3  

 C  1/3  1/7 1 3 3  1/7  1/7  1/3  1/5  1/7  1/7  1/7  

 D  1/3  1/7  1/3 1 3  1/5  1/7  1/5  1/5  1/7  1/7  1/7  

 E  1/3  1/7  1/3  1/3 1  1/5  1/7  1/5  1/5  1/7  1/7  1/7  

 F 5  1/3 7 5 5 1  1/3 3 3  1/3  1/5  1/5  

 G 5 1 7 7 7 3 1 3 5 3 1 1  

 H 3  1/5 3 5 5  1/3  1/3 1 3  1/3  1/5  1/5  

 I 3  1/5 5 5 5  1/3  1/5  1/3 1  1/3  1/7  1/7  

 J 5  1/3 7 7 7 3  1/3 3 3 1  1/3  1/3  

 K 5 1 7 7 7 5 1 5 7 3 1 3  

 L 5  1/3 7 7 7 5 1 5 7 3  1/3 1  

 SUM 38 5 54 2/3 57 1/3 60     21 2/5 5 5/6 26 2/5 35 14 5/8 4 5/6 9 1/2  
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Table 17 : Normalized Matrix for the final relative weights calculated from pair-wise comparison matrix (without radar induced factors) 

 

 

 

 

 

 

 

                

  A B C D E F G H I J K L AVG 

A 0.026 0.040 0.055 0.052 0.050 0.009 0.034 0.013 0.010 0.014 0.041 0.021 0.030 

B 0.132 0.199 0.128 0.122 0.117 0.140 0.172 0.189 0.143 0.205 0.207 0.316 0.172 

C 0.009 0.028 0.018 0.052 0.050 0.007 0.025 0.013 0.006 0.010 0.030 0.015 0.022 

D 0.009 0.028 0.006 0.017 0.050 0.009 0.025 0.008 0.006 0.010 0.030 0.015 0.018 

E 0.009 0.028 0.006 0.006 0.017 0.009 0.025 0.008 0.006 0.010 0.030 0.015 0.014 

F 0.132 0.066 0.128 0.087 0.083 0.047 0.057 0.114 0.086 0.023 0.041 0.021 0.074 

G 0.132 0.199 0.128 0.122 0.117 0.140 0.172 0.114 0.143 0.205 0.207 0.105 0.149 

H 0.079 0.040 0.055 0.087 0.083 0.016 0.057 0.038 0.086 0.023 0.041 0.021 0.052 

I 0.079 0.040 0.091 0.087 0.083 0.016 0.034 0.013 0.029 0.023 0.030 0.015 0.045 

J 0.132 0.066 0.128 0.122 0.117 0.140 0.057 0.114 0.086 0.068 0.069 0.035 0.094 

K 0.132 0.199 0.128 0.122 0.117 0.234 0.172 0.189 0.200 0.205 0.207 0.316 0.185 

L 0.132 0.066 0.128 0.122 0.117 0.234 0.172 0.189 0.200 0.205 0.069 0.105 0.145 

  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 18 : Pair-wise comparison matrix generated from questionnaire survey (with radar induce factors) 

 

 

 

                 

  A B C D E F G H I J K L M N O  
A 1  1/5 3 3 3  1/5  1/5  1/3  1/3  1/5  1/5  1/5  1/5  1/5  1/3  
B 5 1 7 7 7 3 1 5 5 3 1 3 3 3 7  
C  1/3  1/7 1 3 3  1/7  1/7  1/3  1/5  1/7  1/7  1/7  1/7  1/7  1/3  
D  1/3  1/7  1/3 1 3  1/5  1/7  1/5  1/5  1/7  1/7  1/7  1/7  1/7  1/5  
E  1/3  1/7  1/3  1/3 1  1/5  1/7  1/5  1/5  1/7  1/7  1/7  1/7  1/7  1/5  
F 5  1/3 7 5 5 1  1/3 3 3  1/3  1/5  1/5  1/3  1/3 3  
G 5 1 7 7 7 3 1 3 5 3 1 1 3 3 5  
H 3  1/5 3 5 5  1/3  1/3 1 3  1/3  1/5  1/5  1/3  1/3 3  
I 3  1/5 5 5 5  1/3  1/5  1/3 1  1/3  1/7  1/7  1/7  1/7 3  
J 5  1/3 7 7 7 3  1/3 3 3 1  1/3  1/3  1/3  1/3 3  
K 5 1 7 7 7 5 1 5 7 3 1 3 3 3 7  
L 5  1/3 7 7 7 5 1 5 7 3  1/3 1 3 3 7  
M 5  1/3 7 7 7 3  1/3 3 7 3  1/3  1/3 1 1 7  
N 5  1/3 7 7 7 3  1/3 3 7 3  1/3  1/3 1 1 7  
O 3  1/7 3 5 5  1/3  1/5  1/3  1/3  1/3  1/7  1/7  1/7  1/7 1  

SUM 51 5 5/6 71 2/3 76 1/3 79 27 3/4 6 2/3 32 3/4 49 1/4 21 5 2/3 10 1/3 16 16 54  
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Table 19: Normalized matrix for the final relative weights calculated from pair-wise comparison matrix for with radar induce factors 

 

 

 

 

 

                  

  A B C D E F G H I J K L M N O AVG  
A 0.020 0.034 0.042 0.039 0.038 0.007 0.030 0.010 0.007 0.010 0.035 0.019 0.013 0.013 0.006 0.022  
B 0.098 0.171 0.098 0.092 0.089 0.108 0.149 0.153 0.101 0.143 0.177 0.291 0.189 0.189 0.129 0.145  
C 0.007 0.024 0.014 0.039 0.038 0.005 0.021 0.010 0.004 0.007 0.025 0.014 0.009 0.009 0.006 0.016  
D 0.007 0.024 0.005 0.013 0.038 0.007 0.021 0.006 0.004 0.007 0.025 0.014 0.009 0.009 0.004 0.013  
E 0.007 0.024 0.005 0.004 0.013 0.007 0.021 0.006 0.004 0.007 0.025 0.014 0.009 0.009 0.004 0.011  
F 0.098 0.057 0.098 0.066 0.063 0.036 0.050 0.092 0.061 0.016 0.035 0.019 0.021 0.021 0.055 0.053  
G 0.098 0.171 0.098 0.092 0.089 0.108 0.149 0.092 0.101 0.143 0.177 0.097 0.189 0.189 0.092 0.126  
H 0.059 0.034 0.042 0.066 0.063 0.012 0.050 0.031 0.061 0.016 0.035 0.019 0.021 0.021 0.055 0.039  
I 0.059 0.034 0.070 0.066 0.063 0.012 0.030 0.010 0.020 0.016 0.025 0.014 0.009 0.009 0.055 0.033  
J 0.098 0.057 0.098 0.092 0.089 0.108 0.050 0.092 0.061 0.048 0.059 0.032 0.021 0.021 0.055 0.065  
K 0.098 0.171 0.098 0.092 0.089 0.180 0.149 0.153 0.142 0.143 0.177 0.291 0.189 0.189 0.129 0.153  
L 0.098 0.057 0.098 0.092 0.089 0.180 0.149 0.153 0.142 0.143 0.059 0.097 0.189 0.189 0.129 0.124  
M 0.098 0.057 0.098 0.092 0.089 0.108 0.050 0.092 0.142 0.143 0.059 0.032 0.063 0.063 0.129 0.088  
N 0.098 0.057 0.098 0.092 0.089 0.108 0.050 0.092 0.142 0.143 0.059 0.032 0.063 0.063 0.129 0.088  
O 0.059 0.024 0.042 0.066 0.063 0.012 0.030 0.010 0.007 0.016 0.025 0.014 0.009 0.009 0.018 0.027  
  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  
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