

ANALYZING TRAFFIC BEHAVIOR AND TREATMENTS IN NGN IP CORE NETWORKS

This dissertation was submitted in partial fulfillment of the requirement for the Degree of Master of Science in Telecommunications Department of Electronic and Telecommunication Engineering University of Moratuwa.

> A thesis presented by, M.A.I.K KARUNARATNE

Supervised by Eng. KITHSIRI SAMARASINGHE

In partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN TELECOMMUNICATIONS

of the

FACULTY OF ELECTRONIC AND TELECOMMUNICATION ENGINEERING, UNIVERSITY OF MORA TUW A,

SRI LANKA

2009

93923

Abstract

Keywords: IP core network, mobile traffic, fast convergence, QoS, media gateways, MPLS.

Today Internet Protocol has taken over the entire communication. With the advancements in the new technologies cost of the IP related equipments has come down which has helped this exponential growth. with the increase of the usage the telecommunication service providers are expanding their infrastructure to cater the growth. Entire world is expanding their infrastructure mainly on IP equipments.

Integrating the legacy infrastructure to the IP Network has lot of challenges. The real challenges are the transporting delay sensitive traffic like voice over the IP Network, IP node failures, IP link failure detections, delay variations. There are proprietary systems being developed between the IP vendors and the others in order to over come these challenges which can sometime be not flexible to the telecom service provider. In this research an open standard based approach is used to integrate media gateways to an IP/MPLS Network. The challenges of the integration are discussed in this thesis.

A lab setup and a live network test were performed in order to measure the quality of the integration work. The interconnection methods were analyzed after going through the theories related to the media gateways and IP/MPLS technologies. Also since there, can be different type of traffic in an IP/MPLS network a traffic treatment method should also be developed

The major results of the research was that using open standards methods the Essential parameters for the Media gateway integration of the IP core networks can be achieved. Also the model that was developed for the traffic treatments was successful.

Media gateways interconnections with IP. networks are successful on open standards IP protocols. Fast convergence requirements, QoS requirements and jitter and delay requirements can be addressed using open standards IP protocols.

Declaration

I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for a degree in any University to the best of my knowledge and believe that it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

UOM Verified Signature

Signature of the Candidate

Date: 17-02 2001

To the best of my knowledge, the above particulars are correct.

of Moraluwa, 511 Lalika.

Supervisor

(Eng. Kithsiri Samarasinghe)

A. T. L. K. Samarasinghe Head Department of Electronic & Telecommunication: Engineering University of Moratuwa, Sn Lanka

ACKNOWLEDGMENTS

I would like to make this an opportunity for showing my sincere gratitude towards the people and institute who helped me through out this project.

First of all, I wish to express my sincere thanks to my supervisor Eng. Kithsiri Samarasinghe of the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka for his kind and valuable guidance despite his busy schedule. I also like to thank Dr. Ajith Pasqual who helped us as the co-ordinator of the M.Sc Project.

I also wish to extend my gratitude to all of my friends, for their support and encouragement extended towards the successful completion of this research project. Last but not least, I would like to thank my wife Sumedha for her continuous encouragement and support

I dedicate this thesis to my dear parents who dedicate their life for their children

ACKNOWLEDGMENTS

I would like to make this an opportunity for showing my sincere gratitude towards the people and institute who helped me through out this project.

First of all, I wish to express my sincere thanks to my supervisor Eng. Kithsiri Samarasinghe of the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka for his kind and valuable guidance despite his busy schedule. I also like to thank Dr. Ajith Pasqual who helped us as the co-ordinator of the M.Sc Project.

I also wish to extend my gratitude to all of my friends, for their support and encouragement extended towards the successful completion of this research project. Last but not least, I would like to thank my wife Sumedha for her continuous encouragement and support

I dedicate this thesis to my dear parents who dedicate their life for their children

Table of Contents

	Declar Abstra	ration	iii iv
	Ackno	owledgements	vi
	Table	of Contents	vii
	Table	of Figures	iX
	List of	f lables	X1
1	Introd	uction	1
	1.1	IP Network Evolution	1
	1.2	Drive for Future Mobile Technologies	7
	1.3	Converged IP Core Networks	10
		1.3.1 MPLS Technology	10
		1.3.2 Quality of Service	12
		1.3.3 IP Network Architecture for UMTS	16
		1.3.4 UMTS R4 and R5 Networks	17
		1.3.5 Applying IP Core Technologies to Mobile Core	18
		1.3.6 Performance Expectations for Mobile Packet Backbone	
		Networks	19
	1.4	Problem Statement	20
	1.5	Scope	21
2	Netwo	ork Architecture	22
	2.1	3GPP R4 Integration with IP Core	22
		2.1.1 Architecture	23
	2.2	IP Core Network	24
		2.2.1 Failure Scenarios	25
	2.3	Media Gateway Types	27
	2.4	QoS Model	30
3	Simul	ation of the Network Traffic	31
	3.1	Prototype Network	31
	3.2	Test Procedure	38
		3.2.1 Router High Availability	39
		3.2.2 Fast Convergence in Stress Traffic Condition	40
		3.2.3 Traffic Engineering with FRR	40
		3.2.4 QoS Testing	42
	3.3	Testing on the Live Network	42

		3.3.1 Media Gateway Connectivity	42
		3.3.2 Testing with the Media Gateways	42
4	Test R	esults	45
	4.1	Overview	45
	4.2	Lab Simulation Results	45
	4.3	Live Network Results	46
		4.3.1 QoS Model	46
5	Conclu	usion	48
	5.1	Analysis of Test Results	48
	5.2	Future Work	49
6	Refere	nces	50
7	APPE	NDIX A	53

Table of Figures

Figure 1 1: ARPANET, SATNET & PRNET network diagram [6]	4
Figure 1 2 : Uplink and downlink data rates compared for HSPA and LTE	9
Figure 1 3: MPLS Label format	10
Figure 1 4: MPLS Label assigning to the IP header	11
Figure 1 5 : Label insertion and removal	11
Figure 1 6: IP precedence and DSCP	15
Figure 1 7 : Mobile network infrastructure – generalized view [17]	16
Figure 1 8 :-Common IP/MPLS vetwork [17]	18
Figure 2 1 : 3GPP R4 architecture migration	23
Figure 2 2 : Topology of an IP core network for media GW interconnection.	24
Figure 2 3: Links susceptible to failures which can downgrade the quality	
of the network	25
Figure 2 4: Internal architectures of different types of media gateways [22],[23].	28
Figure 3 1 : Test network sctup	32
Figure 3 2 : Next hop back haul tunnel	38
Figure 3-3: Test setup for fast convergence testing- a Logical overview	40
Figure 3 4: lab setup for TE-FRR	41
Figure 3 5: lab setup for QoS	41
Figure 3 6 : (a) Media gateway Type -1 connectivity (b) Media gateway Type II	
connectivity	43
Figure 3 7: media gateway Test setups	44
Figure 4 1: Voice quality measurements for transporting mobile traffic over	
the IP cloud	46
Figure 7 1: PE-A to Sw-1 Link down	55
Figure 7 2 :PE-A to Core-1 link down	56
Figure 7 3: PE-A to core-1 link up	57
Figure 7 4: MGW Link Down	58
Figure 7 5: MGW Link UP	59
Figure 7 6: MGW Link Down	60
Figure 7 7: Fast Convergence with link down when 100% traffic loaded	61
Figure 7 8: Fast Convergence with link UP when the traffic is 100%	62
- Figure 7 9: TE-FRR with Core1-PEA down	63

Figure 7 10: TE-FRR with Core1- PEA link UP6	54
Figure 7 11:TE-FRR Core-1 to Core 3 link up	55
Figure 7 12:TE-FRR Core1 to Core 3 link up	56
Figure 7 13:TE-FRR Node protection- Core 1 Down	67
Figure 7 14: TE-FRR Node protection. Core 1 Up	68
Figure 7 15:QoS traffic Drops	69
Figure 7 16:PE-A to PE-D with 100% traffic	69
Figure 7 17: traffic pumped to PE-D from both PE-A and PE-B	70

List of Tables

Table 1 1: Comparison of the data rates of each mobile technology	7
Table 1 2: Classification of mobile services that will be enabled or enriched in fut	ure
mobile technologies	7
Table 1 3:- Useful terminology—GSM / UMTS Networks	17
Table 1 4: Example 1: Mobile operator performance requirement [22],[23]	19
Table 1 5: Example 2 Mobile operator performance requirement	19
Table 3 1 : Traffic types and their relative importance	44
Table 4 1: Summery of the fast convergence figures for the lab setup	45
Table 4 2: Fast convergence figures for the live network	46
Table 4 3 : Perceived voice quality against the fast convergence values	46
Table 4 4: QoS classes	47

