

GENERIC SOLUTION FOR WASTE GENERATION ON SHORT PERIOD POWER DROPS AND FLUCTUATIONS

This thesis was submitted to the department of Electronics and Telecommunication Engineering of the University of Moratuwa in partial fulfilment of the requirements for the degree of Master of Science

> By Kalutantrige Ruchira Asanka Peiris B.Sc. Eng (Textile & Clothing Technology)

> > Supervisor Dr Ajith Pasqual

Department of Electronics and Telecommunication Engineering University of Moratuwa Sri Lanka

2008

93920

Abstract

The research project was conducted in connection with the Waste Project of the candidate's work place, Stretchline Holdings - Global. Stretchline is a multi national company with seven Strategic Business Units (SBU) around the world, manufacturing a variety of Narrow Fabrics (Elastic). The research targeted to mini mise waste generation in one of the uncontrollable waste categories at Stretchline.

The objective of this project is to design and implement an Intelligent Automatic Switching Device for machinery in the event of power fluctuations (drop span within 3 seconds) and secondly introducing the generalised concept to the industry. For this purpose, I have de. eloped a device which reactivates the machinery automatically in the case of short term power dips and cuts. The project highlights the three main advantages of automation such as rmrumising waste generation, increasing productive time and minimising customer complaints.

Essentially, the project focuses on Weaving, Jacquard and Fortitube Looms. Extracts show that nearly 100kg of waste is generated in a month and 65h1's of time wasted on tagging damaged parts of the elastic on power dips' and cuts. As per the information gathered in the month of August, there were 30 power cuts recorded and operator idle time was 1950Hrs per month. The lost production and tagging time waste of the machine operators could be minimised in significant terms by implementing-the concept to the company machinery.

The concept developed through the research was applied to automate Weaving looms. It attempts to further conclude how the concept could be used to automate machinery in the industry by generalising the concept.

As further future work, the device could be converted to a computer system hence could be improved at any length. Therefore, I belive the concept could be further enhanced to suit many industries and minimise the cost of production by reducing

waste generation due to A power fluctuations, which will maximise profits of the target industry.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree and is also not being concurrently submitted for any other degree.

UOM Verified Signature

Peiris K.R.A

76 69 - **5**854

Date

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

l endorse the declaration by the candidate.

UOM Verified Signature

) Dr. Pasqual A

2.1/1/2.0.4

1)...e

CONTENTS

Declaration	i			
Abstract				
Acknowledgement				
List of Figures				
List of Tables and Charts	vii			
List of Symbols and Notations	viii			
List of Acronyms	ix			
Chapter 1: Introduction	1			
1.1 Machineries in Textile Industry	1			
1.2 Objective of the research	2			
1.3 Motivation	2			
1.4 Scope of the present work	3			
1.5 Organisation of the thesis	4			
Chapter 2: Literature Survey Iniversity of Moratuwa, Sri Lanka.	5			
2.1 Literature findings Electronic Theses & Dissertations	5			
2.2 Stop mark www.lib.mrt.ac.lk	7			
2.3 Merits of the battery powere storage against capacitor power storage	7			
2.4 Drawbacks in the battery power storage	7			
2.5 Merits on the capacitor power storage against battery power storage	7			
Chapter 3: Power Source Design	9			
3.1 Capacitor behaviour	9			
3.1.1 Capacitor charging	9			
3.1.2 Capacitor discharging	10			
Chapter 4: System Design	14			
4.1 Design phase 1: Using microcontroller	14			
4.2 Design phase 2: Using basic components with capacitor storage	14			
4.3 Design phase 3: Optimum design with all safety precautions	15			
4.4 State identification	16			

ii

4.5 Short period power c	4.5 Short period power drop actuator (SPDA) circuit design approach			
4.6 Research phase assembly				
4.7 PCB design for wave	4.7 PCB design for wave soldering			
4.7.1 Board outli	ne	26		
4.7.2 Contact tab	s	26		
4.7.3 Component	to-edge distance	26		
4.8 PCB design using O	CAD	26		
Chapter 5: Statistical Analysis	s of Data	27		
5.1 Solid waste data analysis				
5.2 Response to the SPDA design				
5.3 Analysis of time was	te	30		
5.3.1 Single deck	weaving loom	30		
5.3.2 Double deck weaving loom				
5.3.3 Triple deck	weaving loom	31		
Chapter 6: Applicability to Di	fferent Industries	32		
6.1 Adaptability	University of Moratuwa, Sri Lanka.	32		
6.2 Generic concept	Electronic Theses & Dissertations	32		
6.3 Rubber industry	www.lib.mrt.ac.lk	34		
6.3.1 Rubber mixing mill		34		
6.3.2 Rubber extr	uder	35		
6.4 Boiler and compressors		35		
6.5 Air condition plant		36		
Chapter 7: Conclusion and Fu	ture Work	37		
References		39		
Appendix A The full electrical	diagram of the Weaving loom	40		
Appendix B Weaving loom main control board		40		
Appendix C Layout Design				

ACKNOWLEDGMENT

events, and subcere appreciations go out to my supervisor. Dr. Ajith Pasqual, for his great adds, prespective, guidance and his great sense of humor.

i would like to thank Dr. Chulantha Kulasekara, course co-ordinator of the department, for all the support extended towards me.

I would like to thank all the officers in the Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify certain issuse related to my academic works on time with excellent cooperation and guidance. My Sincere gratitude is also extended to the officers of the Department of Electronics and Automation trainacture office

Further, Ewould like to thank Ms Natasha Boralassa. CEO and Mr. Duminda Hewarachchi, Head of Operations, of Stretchline Holdings-Global for extending their approval and support in carrying out this Project in line with the Waste Management Project and subsidizing the expenses meurred on research and development of the Project.

Finally, I would like to thank many individuals, including my family, friends and colleagues, whom I am not able to mention individually, who helped in numerous ways in making this educational process a success. I would not have been able to successfully conclude this protect without all your support.

LIST OF FIGURES

Figure 1.0 Textile manufacturing process	1
inguise 2 a patop marks on elastic tapes	6
Engance 3.4 Capacitor charging	9
Figure 3.2 Capacitor discharging	10
Figure 3.3 Decay curve of Ve, Q and I	11
Figure 3.4 RC combination	11
Figure 3.5 Charging and discharging network of RC combination	11
Figure 4.1 Weaving loom main control board	15
Figure 4.2 Actuator and power source of SPDA circuit design	17
Figure 4.3 SPDA with main motor solonoid signal	18
Figure 4.4 SPDA with a loom type selection	19
Figure 4.5 SPDA with manual stop response	21
$E_{\rm p}$ as 4.5 -PDV with manual stop switch conversion	22
to and the scared board niversity of Moratuwa, Sri Lanka,	23
Equal 4 - Research stage SPDA circuit assembly es & Dissertations	25
Figure 4.9 Final SPDA circuit assembly mrt.ac.lk	25
Figure 6.1 Generic SPDA concept	32
Figure 6.2 Mixing mill	33
Figure 6.3 Rubber extruder	33
Figure 6.4 Boiler	34
Figure 6.5 Air Conditioner	34

LIST OF TABLES AND CHARTS

Table 4.0 State table for machine types 1 and 2	16
Lable 4.1 Analysis of Stop Indication while running the machine	20
Table 5.1 Waste data	27
Table 5.2 Loom Response to the SPDA circuit	29
Chare 5.1. Waste break down	28

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF SYMBOLS AND NOTATIONS

- 1) 	-	Machine Motor moves as far as the this switch is being pressed
SLART	-	Main motor starts running continuously by pressing TIP and START
		both switches together
STOP	-	Machine stop switch
· ICH		Motor clutch activating switch
	-	Transformer
	-	Machine
- 111	-	Weaving machine

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ACRONYMS

- SBU Strategic Business Unit
- KW Kilo Watt
- SPDA Short-period Power Drop Actuator
- UPS Uninterupted Power Supply
- AC Alternative Current
- RC Resistor Condenser
- DC Direct Current
- PCB Printed Circuit Board
- (11) Light Emitting Diode

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk