

NEW CONCEPTUAL WIRELESS DEVICE FOR INDUSTRIAL AND GENERAL PURPOSE AUTOMATION APPLICATIONS

This thesis was submitted to the department of Electronics and Telecommunication Engineering of the University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science in Electronics & Automation

> By Jenitalal Reshantha Tharanga Conrad B.Sc. Eng. (Electronics & Telecommunication)

> > Supervisor Dr. Ajith Pasqual

Department of Electronics and Telecommunication Engineering University of Moratuwa Sri Lanka

2009

93918

Abstract

Industrial Automation has greatly improved the industrial processes, efficiency and productivity during the past few decades. Programmable Logic Controllers (PLC) and Microcontrollers are playing a major role in industrial automation. Interconnectivity among machines and processes is a key factor in providing high production rates and also minimizes the need of having buffer stocks in the middle of the production lines. At present there are several world-wide accepted industrial communication standards for wired networks.

High installation costs, high failure rates of connectors, difficulty in troubleshooting connectors, time wastage and cost when rearranging factory floors are the main issues that industries face with wired networks. The solution to overcome the above is Wireless Networks. Wireless Networks hold the potential to help industry to use energy and materials more efficiently, lower production costs, and increase productivity. Although wireless technology has taken a major leap forward with the boom in wireless personal communications, applications to industrial sensor systems are still at the cradle stage. There are some wireless products entering in to the industrial applications which focus more on transmitting large amount of data and almost all of them are application specific.

The objective of this research project IS to come-up with a wireless communication device that can be bought off the shelf and configured by the user himself by -simply downloading readymade binaries to suit the application. The fundamental feature of the device is its ability to configure according to the sensor output. Hence the user need not to select the device based on the sensor type.

A prototype was developed for the research activities and was successfully tested in two different industrial environments. Firstly it was used monitor the status of 64 knitting machines from an office area, which eliminate the need of wiring 64 machines across the factory floor to a display board in a nearby office. This provided

the freedom to re-arrange machines in any order and to move the display board anywhere in the office area without bothering about Wires.

Secondly the prototype was tested on a plastic injection molding machine to eliminate wires between machine sensors and the PLC. Use of wireless sensors eliminate the issues with wire connector such as loose connections, short circuits and there by greatly reducing the machine downtime.

The following pages describe in detail the above two scenarios and how the prototype is designed and developed to eventually meet the above mentioned objectives and achieve a single device that matches with any type of sensor and capable of transmitting the sensor data in a user defined format.

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

 $2c/c\tau/2ccq$ Date

J. R. **7**. Conrad

I endorse the declaration by the candidate,

Table of Contents

Declaratio	ni
Abstract	
Dedication	1 vi
Acknowle	dgement vii
List of Fig	uresviii
List of Tal	olesx
1 Introd	uction
1.1 L	iterature Survey
1.2 S	cope of Research Project 5
-	ot & Definition of Specification7
2.1 C	oncept of SmarTx7
2.2 E	Definition of Specifications10
2.2.1	Input Stage 10
2.2.2	Transfer Function 11
2.2.3	Output Stagen vorsity of Moratuwa, Sri Lanka,
	letwork Topology onic .Theses & Dissertations
2.4 P	rotocol Definition lib.mrt.ac.lk 15
2.4.1	OSI 7 Layer Model 15
2.4.2	Transmitter & Receiver
2.4.3	Packet Format
2.5 T	Transmission & Error Controlling18
2.5.1	Clock Pulse & Header 18
2.5.2	Packet Detection
3 Develo	opment of Hardware21
3.1 E	Development of Hardware
3.1.1	Input Interface
3.1.2	Base Station Interface
3.1.3	Microcontroller Selection
3.2 I	Development of Firmware
3.2.1	Programming Procedure
3.2.2	Configuration Information
3.2.3	Microcontroller Programming

4	Dev	elopment of Software	29
	4.1	Software Development – Operational Mode	29
	4.2	Software Development – Configuration Module	30
5	Resi	Ilts & Discussion	34
	5.1	Test Case #1	34
	5.2	Test Case #2	37
6	Con	clusion & Future Works	42
A	Ref	erences	45

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

This research project would have not been realized without the contribution of following wonderful people.

I wish to express my heart felt gratitude to Dr. Chulantha Kulasekere for the encouragement and support given to make this a success. You were the guidance which helped me to align my attitude in the right direction.

I'm greatly honoured to have Dr. Ajith Pasqual as the supervisor. The thoughts and ideas that you shared opened our minds to think beyond boundaries. It is simply not possible to complete this project if you weren't there to guide.

I would like to thank all the lecturers who spent their valuable time and effort to teach us during this M.Sc. program and for showing us the way forward.

University of Moratuwa, Sri Lanka

I sincerely express my gratefulness to the Technical Director at EMCA Combine Pvt Ltd, Mr. Collin Perera and the Production Manager at Torroid International Pvt Ltd, Mr. Jalaka Wickramasinghe for allowing me to test the SmarTx at their factories.

Finally I specially thank my family members for coping up with me and encouraging me in every possible way to successfully complete this project.

List of Figures

Figure 1.1 – Eliminate wires from sensors to PLC
Figure 1.2 – Monitor Status of 64 Machines
Figure 1.3 – Honeywell - STT170 Smart Temp
Figure 1.4 – OMNEX Trusted Wireless - One Way System
Figure 1.5 – ELPRO Technologies - ELPRO 505U-K Wireless I/O 5
Figure 1.6 – Pheonix Contact - Wireless Interface
Figure 2.1 – Wireless Communication
Figure 2.2 – Proportional
Figure 2.3 – Inversely Proportional
Figure 2.4 – Log to Linear
Figure 2.5 – Linear to Log
Figure 2.6 – High Sensitivity
Figure 2.7 – Analog to TTL
Figure 2.8 – Network Topology 14
Figure 2.9 – OSI 7 Layer Model Moratuwa, Sri Lanka. 16
Figure 2.10 – Packet Format 18
Figure 2.11 – Normal Clock Pulse Train
Figure 2.12 – Modified Clock Pulse Train
Figure 2.13 – Invalid Packet Detection
Figure 3.1 – Resistance
Figure 3.2 – Switch
Figure 3.3 – Analog Voltage
Figure 3.4 – Digital Voltage
Figure 3.5 – Sensor Connector
Figure $3.6 - I^2C$ Adapter
Figure 3.7 – SmarTx Circuit
Figure 3.8 – Base Station Circuit
Figure 3.9 – SmarTx Circuit
Figure 3.10 – Reading SmarTx Configuration
Figure 3.11 – Writing SmarTx Configuration
Figure 3.12 – Config Byte
Figure 3.13 – EEPROM Memory Map

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 2.1 – Sensor Types	•••••	10
Table 2.2 – Comparison of Standard Protocols	· · · · · · · · · · · · ·	17
Table 2.3 – Error Probability		19
Table 5.1 – Encoder & Liner Controller Values	· · · · · · · · · · · ·	36
Table 5.2 – SmarTx Transfer Function	•••••	37

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk