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ABSTRACT 

The world has already moved to a highly technological stage and internet-based services plays a 

vital part of day to day life. Performance of those internet based services is a key factor of quality 

of the service and developers are forced to develop the best possible performant system. Usually 

gaining the best possible performance is hard due to low visibility and flexibility of the system in 

performance improvement phase. 

 

This research is focusing on developing the framework ‘concor: A framework for high performance 

streaming applications, instrumentation in-built’ by combining the pre-placing instrumentation 

probes and data flow based architectures. The framework provides an API to form data flows, while 

providing in-built performance monitoring capabilities. Furthermore, the possibility of 

implementing a dynamic thread reconfiguration mechanism is also researched and included in the 

framework. Dynamic thread reconfiguration mechanism is used in simplifying the bottleneck 

isolation. Apart from this, dynamic thread configuration mechanism effectively lifts the initial 

concurrency design overhead from the developers and provides a new dimension of runtime 

performance tuning.  

 

Keywords: Instrumentation, Concurrency framework, Dynamic concurrency, Runtime 

performance tuning, dynamically assigned thread pools. Bottleneck identification, data-flow 

architecture, event streaming. 
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Chapter 1 

1 INTRODUCTION 

The term internet-based service was become popular with the wide adaptation of ‘web2’. 

Initially those services initiated as small request serving applications and eventually these 

services started to take over most of the public use cases. The latency of an internet-based 

service is a key factor of the Quality of Service. The high latency creates a negative impression 

about the service; therefore, the authors of the system should provide the maximum 

contribution to reduce the latency of an internet based system. The throughput of a system also 

affects upon QoS. If the system is unable to provide the required throughput, it indirectly tends 

to either drop the requests or increase the latency of the requests. This effect will reduce the 

QoS of the system. Furthermore, if the throughput capability is low, the service providers 

forced to deploy more replications of the same system eventually increasing the operational 

cost. Therefore, the latency and the throughput can be considered as the key factors, which 

contributes to the performance requirement of the system. More about the throughput and 

latency are discussed in section 1.1. 

Usually in the development process, developers tend to give the high priority for the correctness 

of the functionality, but forgets about the high performance requirement. This decision is 

partially correct as, according to the Pareto principle (80/20 rule), 20% of the code will be the 

most used functionality and investing on optimizing the other lesser-used parts may be an 

unnecessary cost. Naturally, the performance issues will be visible in the performance tests, 

which are conducted with the nearly developed systems. At that time, the cost of a change may 

be high. Therefore, it is vital to find the probable performance impacts early as possible. More 

about performance optimization process will be discussed in section 1.2. 

1.1 Instrumentation Properties. 

In the domain of high performance data streaming, the term performance refers to the ability 

of handling a high throughput with a lower latency. The latency and throughput can be 

described as follows. 

Latency 

In general, the term latency is referred to the delay between the requirement occurred and 

catered. In internet-based applications the latency is measured between the request and 

response. This includes request propagation delays, request waiting delay and service time.  
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This research mainly focused on the request waiting delay and service time. The delays outside 

the server are not considered within this research.  

Throughput 

The term throughput is referred to the number of requests served by a system for a defined time 

period. The internet-based applications are expected to serve a high number of clients at the 

same time. This results a higher throughput for a particular internet based service. The low 

throughput capabilities of an instance force the high number of replications and hence a high 

maintenance cost. Therefore, the increase of the throughput capability is a vital part of the 

performance optimization of a system. 

There are several factors which impacts upon the performance of a java based high performance 

data streaming system. 

 

1. Concurrency and Parallelism: At a given time, the number of requests which can be 

served at the system could be considered as the concurrency level of the system. This 

differs from the parallelism, as in parallelism, it refers the number of requests which 

executes at the same instant. The concurrency is highly depending on the thread count 

and the sum of queue sizes, and the parallelism depends on the number of processors.  

2. Number of queues: The number of queues increases the throughput. Yet, since the 

requests are stacked in the queues, the response time of a request increases with the 

number of queue increases. This results the latency increase.  

3. Number of threads and task affinity: While the throughput is increased with the number 

of threads, it results more context switching. This can be an overhead in terms of the 

CPU utilization. Furthermore, based on the given task, the thread can act as a CPU 

bound thread or an IO-bound thread. In CPU thread, the thread utilizes the CPU for 

computations, and in IO thread, the thread waits for an IO Operations to be completed. 

The effective maximum number of CPU threads is bounded by the number of 

processors. In the thread-per-request model, since the tasks are not specifically bounded 

to the threads, the same thread is forced to act as both the CPU and IO-bound. But in 

the stage based systems, there’s a possibility of designing the systems with CPU bound 

stages and IO-bound stages separately. This allows the micro level control of the 

number of CPU bound threads. This is helpful on fine-tuning of CPU bound threads to 

reduce the context switches. Furthermore, this improves the thread affinity. 

4. Synchronous and Asynchronous behavior: The synchronous and asynchronous 

behavior described in this section strictly relates to the behavior in the external 
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connectivity. Usually the synchronous external connectors tend to block the threads 

resulting thread scarcity. In some cases, if those connections aren’t properly managed, 

this may result catastrophic failures of the system due to external delays. Therefore, it’s 

always recommended to use asynchronous remote calls whereas possible. In terms of 

performance synchronous calls may result a low latency yet it limits the throughput due 

to the blocking threads.  

1.1.1 Performance Optimization Process 

As mentioned above, a nearly completed system is used in performance testing. In this stage 

the performance impacting, unnecessary features like debug and trace logs are disabled. 

Usually a dedicated setup is used for the performance testing and a separate firing tool is used 

to fire a controlled burst of requests to test the performance. The system is said to be under-

performing if it shows signs of instability before the required throughput is reached. Latency 

of the system is evaluated separately by analyzing the logs. Irregular bursting sequences in the 

simulator side due to backpressure, increased GC events and increased number of errors are 

considered as the failures of the system. In a case where the system is identified as unstable, 

the troubleshooting process is conducted. Identifying the issues like leaks and bottlenecks is 

focused in this stage. The troubleshooting is discussed more in next subsection. After the 

bottleneck is identified, the necessary changes are done to the related component to gain the 

required performance. This requires another development/functional testing cycle and if the 

functional testing is successful, the system is re-deployed and the performance tests are 

conducted. This cycle will continue until either the system gains the required performance or 

the economical limit of the optimization process is reached the limit. If the performance is still 

not up to the expected level, replications are made in the development to cater the proper 

throughput.  

1.1.2 Cost of finding the bottlenecks 

In the development process, performance issues emerge during the performance test stage. In 

this stage, the components are nearly completed. Usually, the performance impacting features 

like debug logs are disabled in this stage, restricting a low visibility of application insight. If 

the performance test fails with system instability, this low visibility reduces the ability to point-

out the root cause of the performance problem. In general, following indirect methods are used 

to troubleshoot a performance problem in java applications.  

 



4 

 

GC log analysis. 

Most of the time, the system instability is caused by various kinds of leaks. Leaks tend to 

uncover over the time and if it is a memory leak, the JVM heap will be filled eventually. This 

will result a low memory state and the JVM is forced to run the garbage collection frequently 

to free up the memory. Therefore, increasing frequency of the GC events may indicate a 

memory leak. 

 

Bottleneck analysis with logs. 

As mentioned above, the trivial logs like debug and trace logs are disabled in the performance 

tests. However, the info level logs are kept enabled as a practice. If the time is also logged in 

the info logs, those logs can be analyzed to identify the sections with the highest latencies. 

Usually the components with increasing latencies tends to contain the bottlenecks. This 

analysis may provide some kind of indication to the bottlenecks. However, the effectiveness of 

this process completely depends on the early decisions of the logs of application.  

 

Instrumentation and Profiling. 

In order to make the JVM transparent, performance monitoring and instrumentation tools like 

JMC[1] (Java Mission Control) and jMeter[2] are introduced. These tools connect to the JVM 

in runtime and records the JVM statistics. The recorded row data contains the information such 

as object counts, method access, garbage collection patterns, thread dumps and many more 

other related stats. The above-mentioned tools provide a great insight about the JVM.  

While these tools provide a good support on troubleshooting, the collected information are too 

generic and does not provide focused view on the bottlenecks to be improved. The developer 

need to be experienced enough and talented enough to identify the issues correctly and propose 

the solutions. If the diagnostics are incorrect, the developer may waste time on changing an 

unrelated area rather than fixing the real issue. Therefore, a mechanism to tryout and identify 

bottlenecks is invaluable. The common practice is to lay out the probes during the development 

and collect information in runtime. This method provides the visibility of the system for some 

extend, yet it also suffers from following drawbacks.  

1. Implementing a probing mechanism is relatively complicated. The simplest probing 

mechanism would be logs.  

2. The probing mechanism is not a functional requirement and tends to complicate the 

codebase. Therefore, developers reluctant to implement this kind of feature.  
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3. Additional probing mechanism in the hot zones may decrease the performance. 

Therefore, in most cases, implementing probing mechanism is considered as an 

unnecessary burden.  

4. If the performance requirement is not critical, the application may run with the correct 

performance. In this case, adding probes may actually be unnecessary.  

Due to those reasons, usually adding probes is not practiced during the development time. 

However, this aspect can be considered as a cross-cutting concern, and with a correct design 

this aspect can be abstracted out to a different framework. Extracting to a different framework 

is economical as it reuses the implementation to cate this specific aspect.  

1.2 Data-flow architectures 

Most of the high performance streaming applications have a clearly defined role, which can be 

catered with the event processing. Therefore, those applications usually model with data-flow 

network based streaming architectures[3] combining with client-server architectures.  

In those data flow network architectures, a network of components is created with each 

component playing a specific role. There are so many researches following this architectural 

pattern. SEDA[4] architecture and Actor Systems[5] can be taken as examples for data-flow 

architecture pattern. More about data-flow based architectures and its implementations  

discussed within the section 2.2. 

There are couple of properties can be identified from this data-flow architecture patterns. 

● The flows are designed one-way and usually asynchronous. This property is exploited 

in the SEDA architecture to build up the stages.  

● The network components are modularized and contains clearly defined entry and exit 

points. Usually the exit point would be the call to next component.  

The first property clearly defines the data flows, which acts as the hot zones in runtime. And 

the second property provides the entry and exit points of the stages in this hot zones. Therefore, 

data-flow architecture provides a good basis on identifying the possible probe points. As a 

general rule, the probe points should be placed on the entry points of each flow component and 

in the exit point of the flow.  

1.3 Dynamic Concurrency 

In a java-based system, usually, the thread pools are coupled with queues to hold the requests 

until picked. Therefore, any bottleneck would result an increase of both queue size and busy 
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threads of the serving thread pool. This behavior can be exploited in identifying the bottlenecks, 

if the thread pool related data are available in the analysis. During the analysis, the active thread 

counts and queue sizes should be analyzed from the beginning of the flow and the last thread 

pool to indicate the abnormal behavior will contain the bottleneck. This exploitation can be 

used within the proposed framework by implementing a mechanism to adjust the thread model 

dynamically. 

1.4 Type Safety and developer friendliness. 

Type safety is a key feature of java programming language. Therefore, any framework written 

with java should provide the type-safety. Usually types are used to define the shapes of the 

object in a java program. In this research, those shapes are defined according to the runtime 

behavior of the flow computations. More about the types defined in this research is discussed 

in the section 3. 

Usage of a framework usually increases with the developer friendliness. The framework should 

provide an API which is familiar to the developer community to reduce the metal mapping. 

One of the commonly used flow composing pattern is ‘Function chaining’. In Function 

chaining pattern, a builder consists of higher order functions is used to compose the flow. Java 

stream API[6], Scala collection API[7] and RxJava[8] can be considered as the examples for 

the usage of function chaining patterns. This pattern loosely resembles the builder pattern[9]. 

For this research implementation, function chaining is used to build the flows. More about this 

is discussed in section 4. 

1.5 Problem Statement 

Performance optimization is a vital part of developing the high performance data streaming 

applications such as internet-based streaming applications, data processing applications, IOT 

related data processing applications, etc. These optimizations will improve the stability in a 

system and reduces the cost in long run. The conventional instrumentation tools are too generic 

in identifying the system bottlenecks. It is convenient to have a framework, which provides a 

good support for instrumentation while enforcing the developers to use stable mechanism when 

developing a high performance streaming system. 

Additionally, in almost most all the applications, concurrency architecture is hardcoded to the 

application. Within the runtime, the concurrency model is always static. This rigidness can be 

changed by inventing ability to dynamically change the concurrency architecture using thread 
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pool placeholders. The runtime flexibility of the concurrency model can be used to identifying 

the bottlenecks easily. Furthermore, eventually this innovation open ups the ‘thread pool 

reconfiguration’ as another degree of performance tuning in current software development 

process. 

 

1.6 Motivation 

The performance of high performance data streaming applications is a high priority. But in 

current development methodologies, this aspect has been pushed back to the end of 

development process. Investing additional effort to develop an instrumentation mechanism, 

which might not be used at all, seems unnecessary. Yet this feature is extremely useful for high 

performance applications as it provides the proper insight of the application in the optimization 

phase. The norm of not having instrumentation embedded can be changed by introducing a 

framework, which provides the instrumentation alongside other benefits. Data-flow based 

architectures are a good candidate to introduce this feature due to following reasons. Data-flow 

based architecture is commonly used in high performance streaming applications; Data-flow 

architectures provide a structured basis on identifying the hot zones and possible probe points.  

‘Dynamic Concurrency’ or ‘dynamically assigned thread pools’ is another concept which 

would mingle well with the performance troubleshooting. While high latency of a component 

hints a possible bottleneck, the effect on the thread pools from a bottleneck is more direct. In 

the high load situation, the bottleneck tends to make a backpressure on the thread pools 

resulting queue full situations and threads contention. Therefore, if the thread pool location can 

be changed, it will provide a great advantage on identifying and isolating the bottleneck. 

1.7 Objectives 

The main objective of the research is to provide the framework ‘concor’, a comprehensive java 

framework, which caters in-built instrumentation with dynamic concurrency. The concept 

behind this research; ‘instrumentation in-built framework for high performance streaming 

applications’, is a generic concern and should be adapted to the other programming languages 

such as .Net and python as well as the other frameworks like RxJava[8] and Spring-

Webflux[10] in a different research. Following areas are covered within the research. 
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● Provide a type-safe and comprehensive API to develop flow components and assemble 

the flows. The API is built with the types based on the component runtime behavior 

analysis. 

● Provide a mechanism to measure the performance stats on each component with the 

minimum performance cost. A sampling mechanism is used to reduce the runtime 

overhead, and the sampling can be switched off in production. 

● Provide a UI tool, which can be used to visualize the flows and observe real time stats 

of each flow computation. 

● Provide a mechanism to reconfigure the concurrency model by switching the thread 

pools within the flow. This ability provides a great flexibility on both bottleneck 

identification and runtime performance tuning. 

1.8 Scope 

As this research is mainly focusing on providing a proper mechanism to instrument and monitor 

the subjective system in runtime, the PoC implementation does not implement the advanced 

features such as multiple flow handling. The research will be limited to following scope.  

 The research and evaluation will be conducted upon java implementations. The highest 

performing feature libraries will be used in the PoC implementation. Extending this 

concept to other platforms should be researched separately. 

 Vanilla java implementation is used within the research and the extensions alongside 

other flow composition libraries should be researched separately. 

 As the PoC, a single flow will be evaluated for each application. However, by changing 

the user interface, the ability to show multiple flows can be achieved. 

 This Research is mainly focusing on implementing and evaluating data flows rather 

than data flow networks. The research on extending the concept to data flow networks 

should be conducted separately.  

1.9 Structure of the thesis 

The rest of the thesis is structured as follows. The chapter 2 is dedicated to the literature survey 

of the research. Chapter 3 discusses about the methodology and Chapter 4 discusses about the 

proof of concept implementation information. The evaluation of the implementation is 

discussed in the Chapter 5 and the conclusion is discussed in Chapter 6. The Appendixes 

contains the additional information about the PoC implementation.   
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Chapter 2 

2 LITERATURE REVIEW  

The literature review of this research is mainly two-folds as the study about instrumentation 

and the study about data flow architecture patterns. 

2.1 Instrumentation and Profiling. 

Instrumentation and profiling is a vital part of application performance optimization. 

Throughout the history there are several researches have been conducted upon the application 

instrumentation.  

JSR 163: Java Platform Profiling Architecture[11] describes about the initiative of introducing 

the profiling APIs to the JVM. Almost all the tools related to the JVM profiling are using these 

APIs. However, current research is focusing on providing an architectural specific solution and 

therefore within this research these APIs will not be used. By moving this solution out of the 

JVM internals, the generalization of this mechanism in terms of the programming 

language/platform is achieved. 

Other notable researches related to instrumentation are listed below. 

The research in reference [12] is mainly focusing on developing a methodology which is 

capable of collecting individual component performance like method call start and end times 

and stack trace via manipulating the byte code. This research provides the capability to 

instrument arbitrary components in runtime and collect related performance data. While this 

method is powerful in instrumenting specific parts in the application, analyzing and comparing 

a flow for performance bottleneck will include guessing and checking. Furthermore, this is 

merely an instrumentation tool and does not provide runtime optimization capabilities. This is 

acceptable, as the specific research does not cover the runtime optimizations under its scope. 

Reducing the performance footprint can be considered as an important aspect alongside the 

instrumentation framework development. The research in reference [13] is mainly focusing on 

reducing the performance overhead of collecting data only with the selected components. This 

is a good tactic to reduce the load while getting the valuable instrumentation data out of the 

system. Within this project, the JVM is modified ad a GUI tool is given for monitoring and 

configuration. As mentioned earlier research, this research does not provide the capability of 

directly finding bottlenecks of a system.  
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The research in [14] is a similar research, which uses on-the-fly bytecode instrumentation. The 

focus of this research is to provide a good framework with contracts, which enables user writing 

style and correctness improvements. Instrumentation is a part of this research and it does not 

focus on the performance optimization as a main objective. 

There are two main approaches are commonly used in profiling an application as 

instrumentation and sampling. “A Portable Sampling-Based Profiler for Java Virtual 

Machines”[15] research provides a good insight about the both profiling mechanisms. 

Furthermore, this research develops a low overhead sampling based profiling technique. Within 

our research, we use the sampling as the primary data collection mechanism. While this 

research is again focusing on wide range of applications and does not focus on the features like 

topology based analysis.  

There is another research [16] which is similar to ‘concor’ framework. This research provides 

the ability to visualize the insight of an application via extracting topology and sequence 

diagrams. It provides a good basis on instrumentation also. This research differs from the 

‘concor’ framework in two ways. First, this research uses annotation mechanism to separate 

external aspects from core logic. The annotation mechanism provides the flexibility to the 

application itself, but may break the continuity of the monitored output. Furthermore, this may 

break with the conditions and loops. Secondly, ‘concor’ framework provides the dynamic 

concurrency abilities to the framework, which simplifies the bottleneck identification greatly. 

This would not be able to achieve with the flexibility provided by the ‘KEIKER’.  

Altogether, there are two main approaches used in instrumenting a java software. First, the 

bytecode is manipulated to inject instrumentation probes. This approach is too generic and may 

not provide the overall picture of the applications. Yet this method is widely used, as it is easy 

to adapt to existing applications. The second approach is to build the application considering 

instrumentation as a first class citizen. The research around this approach is rare due to the 

inability to adapt to existing applications and the rigidness provided by this mechanism itself. 

However, the authors decided to use this approach, as the rigidness is a necessary feature to 

use alongside the dynamic concurrency. Most of those researches tends to evaluate the 

effectiveness of the instrumentation through the overhead provided by the framework. The 

‘concor’ framework effectiveness also measured using a similar approach. However, in 

‘concor’ the authors decided to use the application performance breaking points instead of the 
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indirect measurements like CPU or Memory, as it is directly related to the practical application 

in terms of benchmarking. 

2.2 Data-flow architectures  

2.2.1 SEDA[4] architecture 

As already discussed, the initial families of the concurrent server side applications were consist 

of thread-pre-request model, which seems simpler and reliable at the time. This model has been 

changed drastically with the famous SEDA architecture. SEDA architecture was initially 

proposed by Matt Welsh in 2000 as an alternative way of improving the performance in high 

performance internet-based applications. The idea was adapted for several other domains like 

distributed functions and SOA. Figure 2.1 shows a simplified view of this architecture. 

 

Figure 2.1: SEDA stage: source: SEDA: An Architecture for Well-Conditioned, Scalable 

Internet Services. 

 

The core idea of SEDA architecture can be summarized as follows. Application developers 

need to develop well-defined stages of the application flow. Those stages are bounded by a 

queue and consists of an event handler, a thread pool and a controller to control the scheduling 

requirements for the specific stage. The application data flows are created by arranging the 

stages in a sequential manner.  

This architecture enables the application to achieve a higher concurrency with low number of 

threads, which eventually increases the throughput. SEDA architecture was massive step 

forward in high performance application development at the time and was referred in 
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developing one of the core java functions; non-blocking IO[17][18]. ‘Concor’ framework 

architecture is mainly based on the SEDA architecture. 

There are couple of enhancement attempts to improve the concurrency and dynamic behavior 

of the SEDA architecture. One of the approaches was by having individual feedback loops to 

respond the throughput and queue size. “Adaptive Overload Control for Busy Internet 

Servers”[19] can be considered as one of those researches. This research is focused on 

optimizing the individual thread pool based on feedback on data flow. The optimizations 

proposed are localized to the individual stages. 

SEDA architecture and above-mentioned optimizations addresses the concurrency and 

throughput problem in micro-level angle. Any stage, which creates a bottleneck, may generates 

a high latency in high load situations. This will eventually propagate to the start of the flow 

due to backpressure and reduces the application performance. Micro level feedback loops alone 

may looks as if it can handle this problem. But without having a global view it is really hard to 

get the most optimized solution. In order to address this problem, researches has been 

conducted with the focus of global view of the system.  

The lack of global load distribution view of flows is the main reason to have such unbalanced 

stages. The authors found the research in [20] is a valuable research on solving this specific 

issue. The solution provided by this research tries to separate integration from business logic. 

In the research, main functional stages are written separately and the Clojure[21] language is 

used to integrate the stages. Clojure is a functional LISP running on top of JVM, which has the 

full interoperability with java. Therefore, this allows the stages to be written in java and 

integrate via Clojure language. Being a LISP, Clojure language inherently provides the tools 

to abstract out and visualize the integration architecture. While, this approach is a good 

combination of using two languages to solve the global concurrency and view problem, it 

suffers from the high language knowledge overhead. To use this system, the developers are 

expected to have the knowledge on Clojure and the additional knowledge introduces an 

additional cost for the projects. This may prevent wide industrial adaptation of this approach. 

The same problem has been addressed differently in the research mentioned in [22]. This 

research introduces a language called FLIMP. In FLIMP, the program is expected to be written 

as a single threaded sequential program. Then the optimization compiler extracts the code 

computation chunks to form highly optimized concurrent stages. Having this new language, 

the platform provides the development simplicity.  
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The FLIMP language provided by the research is mainly focusing on the code analysis and 

parallelism. Therefore, the language should be developed further to cater other general purpose 

language features. Otherwise, the language itself is not usable in the industry. Furthermore, It 

does not talk about the integrity with other platforms like JVM. While the research provides 

one of the theoretically correct ways of solving the problem, the industrial adaptation of this 

research is very limited.  However, the extensive research done on component in terms of the 

latency and caching is impressive and can be adapted for other similar researches. 

2.2.2 Actor systems 

Another alternative idea of modeling the concurrency in a stream application is having an actor 

system[23]. In an actor system, an actor hierarchy is created and those actors are assigned with 

specific tasks. The only communication mechanism between actors is message passing and this 

will effectively isolate the individual tasks. In the industry, actor systems are used in basically 

two different styles. As the name implies, it can be used in database like highly concurrent 

systems where each actor serves a particular client connection. Otherwise, the actor systems 

can be used to form an organization like models. In this model, a strict hierarchy is formed and 

tasks and management is handled by the workers and manager actors. However, in most cases, 

the reference to the next actor is kept within the actors, forming a sequential data flow like a 

factory pipeline. Actor systems promotes single threaded like behaviors. Wherever the 

concurrent behavior is needed, a manager actor is kept to accept the requests. Manager actors 

distribute the task among worker actors, which effectively emulates the concurrency.  

The actor systems uses event loop based execution model[24]. In this model, one or more 

thread pools are used and each actor is scheduled to the thread pool alongside the actor state as 

the context. This allows creation of thousands of lightweight actors for a particular application 

using limited number of threads. While actor provides benefits like modeling simplicity and 

lightweight concurrency, usually actor systems on JVM like platforms suffers from lack of 

thread affinity.  

An actor or a hierarchy focusing on a specific task can be considered as a stage in stage based 

architectures, except for the scheduling. Since actor systems consists of strictly defined 

boundaries between tasks, it is hard to implement fusion kind of operations on top of actor 

systems. Yet in stage-based systems, this is a possibility. 
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The research mentioned in [5] extensively talks about the idea behind the Scala implementation 

of actor system on top of JVM threads. This is a useful resource on understanding the theory 

behind actor systems. However, the actor system implementation in discussion was replaced 

with a new actor system called akka library[25].  

2.2.3 Architecture comparison. 

Deciding the correct architecture to be used in the ‘concor’ framework building is a crucial 

decision and in order to collect the information on the subject, the literature survey is extended 

to searching for architecture patterns comparision. The research mentioned in [26] is a research 

which gives an effort to evaluate and compare the above mentioned architectural styles. The 

researchers have used three different types of servers. μserver for event-driven approach, Knot 

for thread-per-connection and WatPipe for hybrid of events and threads. The results show that 

the μserver and Knot both performs well while WatPipe performance is degraded with regard 

to the response time. However, μserver shared non-blocking implementation and WatPipe 

performs well with regard to the throughput. This behavior is reasonable as the event driven 

architectures prone to keep requests within queues. However, this research is only focusing on 

the performance aspects like throughput and latency.  

2.2.4 Stage analysis  

Both the SEDA architecture and actor systems uses somewhat similar concept to the stages. 

Since in most cases the stages contains more than one functionality, it can be considered as a 

collection of small computation units. Those computation units contains different behaviors.  

The research mentioned in [27] is a valuable resource on understanding the nature of the 

minimum atomic computations and the operations could be done on top of those components. 

It summarizes the other literature related to stream processing such as SEDA, and provides a 

good abstraction over the stream based application optimizations. The atomic computation 

units discussed in this research is similar to the operator in the mentioned research. The research 

is focusing on the operator interconnections arithmetic and optimizations. The target 

optimizations can be listed as follows.  

● Operator reordering is changing the order of the operators and is not expected to be 

included in the proposed solution as it messes up with the architecture written by the 

application authors.  
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● Redundancy Elimination may not be supported by the framework design as a dynamic 

feature. The possible extension on top of the framework related to this optimization 

would be analyzed the data flow and propose the optimization as a suggestion.  

● Operator Separation is expected as an input from the application authors by accepting 

the atomic computation units. The application authors are responsible for providing the 

atomic computation units, because the unit formation is highly application oriented and 

it requires extensive amount of analysis to dynamically separate the defined atomic 

computation units. However, this feature is emulated by redefining the virtual stage 

boundaries. 

● Fusion is the ability to combine sequential operators to form combined operators. This 

is one of the key aspects of this research and this concept is used extensively to form 

virtual stages. 

● Fission is the ability to run the same computation in parallel and in current contexts, it 

is achieved by the thread pools. This research is also expected to be utilize the same 

technique to achieve the fission ability. Instead of the static implementations, the ability 

to dynamically changing the degree of parallelism is achieved by gaining the ability to 

reconfigure thread pools. 

● Placement is the ability to combine the operators in a single environment. Placement 

and fusion does not make any difference in this context. 

● Load Balancing is the ability to balance the work among the parallel stages related to 

the current domain. This is implicitly provided as a particular thread executes a single 

computation at a time, and once the task is completed, the thread moves to get the next 

task. 

● State sharing is the ability to share the state among the operators. This is a mandatory 

feature in most of the applications in current domain, and brings the complications on 

managing the whole structure of the application. An extensive research is to be done on 

handling this feature. For this research scope, the application authors are expected to 

bind the required information at once and use context to share the information.  

● Batching is the ability to buffer the stream and process at once. This feature is may not 

be provided in the initial phase and may be implemented as an attribute of a 

computation. This to be served, the complete virtual stage should be capable of handling 

the batch of events. Using GPGPU for parallel computations can be considered as a 

good example of this nature. 
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● Algorithm selection is not a feature of the framework itself and should be implemented 

by the application authors if necessary. 

● Load Shedding is the ability to drop events in emergencies. This is not a responsibility 

of the framework itself and if needed, should be provided by the application authors. 

However, the tools to identify current state is provided within the framework itself. 

Within this research, Fission and Fusion can be emulated with the dynamic concurrency model. 

“Pipelined fission for stream programs with dynamic selectivity and partitioned state”[28] 

research is one of the attempts, which tries to resolve the stage throughput problem by 

analyzing latencies and model the program into cost optimization problem. The problem is 

solved using a heuristic based approach to gain a reasonably correct solution within the time 

limit. This research is a good resource on understanding the computation modeling and may be 

used in solving the best stage configuration in current research. While this research provides 

the proper abstraction on selecting the concurrency model, it does not capture the individual 

computation behaviors such as critical sections or synchronous IO calls. Therefore, the 

methodology provided by the system should be modified according to the behaviors.  

2.2.5 Queue implementations. 

In almost all the stage-based architectures, queues are used to communicate between the stages. 

These queues may also refer as mailboxes in actor systems. The efficiency of the queue is a 

vital but unnoticed factor in most of the researches. Lmax organization has proposed a high 

performance queue implementation called Disruptor[29], which is the efficient and lowest 

overhead queue implementation at the time of this research.  

Within disruptor implementation, it uses a ring buffer internally. There are couple of advanced 

optimizations implemented to provide the faster operations as listed below. 

● It uses cached buckets to reduce object creation overhead in object passing through 

queue.  

● The number of keys per ring buffer is advised to be a power of 2 (2x) so that the read 

write head increment to be faster. 

● It uses padding to the long keys so that the cache lines containing keys does not swing 

between the processors emulating ping-pong effect (Reduce false sharing effect).  
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This disruptor model is planned to be used in this research to gain the performance out of the 

application itself. 

  



18 

 

Chapter 3 

3 METHODOLOGY 

During our research, the author introduces an alternative approach of instrumentation in 

streaming applications with the collaboration of SEDA architecture. The instrumentation of 

each micro-component is achieved by providing constructs, which accepts a computation and 

generates a wrapper with the instrumentation abilities. Furthermore, this research will introduce 

dynamic staging and thread configuration. The dynamic staging capability provides a great 

help on isolating the bottlenecks. 

Apart from this use case, this will provide following additional advantages.  

●  The developer can get a proper insight of the application architecture graphically. 

● The threads and stages can be configured in the runtime. This will open up another 

degree of runtime optimizations. 

● The framework provides a type-safe and structured mechanism for developers to 

develop individual components. 

● The framework will effectively lift off the burden of concurrency design. 

In order to achieve this requirement we propose following architecture. 
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3.1 Framework 

The framework can be considered as the core of the system. It is supposed to accept the atomic 

computation units as the slots create flows using the computations and build the full fetched 

application with complete concurrency control. A high-level view of the architecture can be 

seen in Figure 3.1. The components of the framework can be described in sections 3.2 to 3.5. 

3.2 Dispatcher 

The dispatcher starts a message flow in the system. There can be more than one flows in the 

system, but multiple flows are not supposed to share the common computation units for the 

simplicity and correctness. In order to have branching, new flows with a dispatcher should be 

used.  

In the operation, the dispatcher is supposed to accept events, wrap the events with the so-called 

contexts, and dispatch the wrapped events to the application flow. The context is useful in 

collecting the statistical information about the flow. 

Figure 3.1: High-level architecture of 'concor' framework. 
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3.3 Virtual stages 

All the atomic computations accepted by the framework will be wrapped with a computation 

wrapper. Those computation wrappers are capable of accepting incoming context, appended 

events, unwrap context and perform computation with the event. The computations are typed 

functions and are chained together to form the flows. Defining the flows is left for the 

application developer as the flow related information are application oriented. Constructs to 

bind the computations are provided by the framework. The computation wrapper can be 

considered as a generic Monad. A simplified view of a computation unit can be seen in Figure 

3.2. 

Other than the above capabilities, the wrapper is capable of optionally having a thread pool, 

which denotes the start of a stage.  

The virtual stages are formed dynamically by adding a thread pool configuration to a selected 

component wrapper. The considering stage is defined from the stage having the thread pool 

until the next stage starts or until the end of flow. Usually the dispatcher is supposed to start a 

thread pool and can be considered as a special type of starting component wrapper. Figure 3.3 

shows the formation of a virtual stage. 

 

Figure 3.3: Virtual Stage 

This design enables the ability to dynamically create, remove and reconfigure the stages by 

redefining the computation wrappers. Furthermore, this will allow the multi-dimensional 

(thread count vs stage size) control over the virtual stages to optimize on the latency and 

performance aspects. The exception handling is supposed to be conducted via a flow based 

Figure 3.2: Computation Unit 
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exception handler. The user should provide a special exception handling function. Internally, 

the context would act as an either monad, which carries the success response or an error at a 

time. 

In terms of performance instrumentation, the virtual stages can be created in the runtime and 

isolate the stages, which has the most performance, degrade. Then the stages can be adjusted 

iterative until the specific low performance component is identified. It is repeatedly proven 

that, in a high load scenario, the last stage that has the highest number of active threads being 

the performance bottleneck. 

3.4 Manager 

The manager is supposed to control all the aspects of the concurrency control instrumentation 

and communication.  

The manager communicates with all the dispatchers and all the wrappers to collect data about 

the current state of application. These performance stats will be transferred to the monitoring 

tool UI to be visualized. 

3.5 User Interface. 

User interface is a major part in the framework as it visualizes the topology of the system, 

current stats and concurrency configurations. Furthermore, it should provide the ability to 

change concurrency configurations on the fly. This UI is supposed to connect to the server, via 

a HTTP API to conduct its operations. For this PoC, advanced features such as dynamically 

connecting to a server is not be implemented. 

3.6 Operation 

In the boot time, the framework accepts the message flows and forms the comprehensive 

wrapper based flows including the dispatcher and wrapper chain. Then, if the system is in 

production and a preset is available, the system loads the preset and reconfigure the flows 

according to the preset. Otherwise, rule based dynamically reconfiguring mode is used in 

operation. These presets are used to save the application thread configuration.   

During the operation, the events are pushed to the dispatchers. Dispatcher picks context objects 

and sends the wrapped event and context through the flow. In order to reduce the object creation 

overhead, a context pool is used to hold predefined contexts. This mechanism is useful in the 
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sampling aspect as well. The context is supposed to collect the performance stats like latency 

and queue sizes. Couple of predefined context objects will be enhanced with the stat collection 

capability and while the requests with specific context passed through, the stats are recorded in 

the system. This information will be used as the input for configurations changes.  

In order to reduce the wastage, the sampling mechanism can be suspended in the production 

environment. This will reduce the performance overhead significantly. The sampling can be 

enabled in the runtime on demand. 

Furthermore, this framework should be capable of validating the flows based on computation 

types. There are four major computation types identified so far. 

● Critical sections: Critical sections are supposed to be run in a single thread due to the 

resource sharing nature of the computation. Session manager can be considered as an 

example of this kind. 

● Synchronous IO blocking sections: In synchronous IO blocking sections, multiple 

threads are used to send the request, park and receive response. This type of 

computations consume more threads and a higher number of worker threads should be 

assigned to this kind of computations. Usually, in these sections, the performance is 

limited by the number of threads. 

● Asynchronous IO Sections: In Asynchronous sections, the requests are sent 

asynchronously and another underlying library defined thread is used to receive the 

response. In terms of the application flow, this breaks the continuity of internal pipeline 

chain. Therefore, additional measures should be taken to mitigate this problem. 

● Parallelizable computations: This type of computations can be considered as the 

currency of the system. These computations can act in single threaded or multi-threaded 

manner. Therefore, this can be used to trade between stages on load balancing. 

This typed micro-component templates are important to maintain the structure of the 

application while preserving the type-safety.  

3.7 Constraints and problematic areas as a framework. 

Following areas are identified as the possible problematic areas of the system implementation.  

● The system should be designed in such a way that the management and instrumentation 

overhead should be minimum.  
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● Maintaining the framework structure during asynchronous callbacks is problematic as 

part of the computation is executed in a different thread. A method of continuing the 

flow in asynchronous callback should be identified.  

● Dealing with thread local variables like transaction is problematic as the thread can be 

changed during the flow. This should be handled by passing the thread local variables 

when events are passing the stage boundary. 

● Still, there is no proper solution for possible reference leaks across stage boundaries. 

This should be mitigated by the application development practices. 

Apart from above mentioned problematic areas, the proposed system is capable of delivering 

the concurrency automation aspects via ‘concor’ framework. The ‘concor’ framework is 

capable to co-exist with other major frameworks like spring DI[30]. However, integration with 

the frameworks such as RxJava, which are mainly focusing on flow handling, may be 

problematic. 

3.8 Summery 

Within this chapter, the concept behind the research and the PoC is extensively discussed. The 

possible implementation related conceptual information and operation are also discussed in this 

chapter. The problematic areas and challenges identified during the designing phase are also 

mentioned in the end of this chapter. Altogether, the Methodology chapter summarizes the 

conceptual and designing related information about the research and it builds a proper guide to 

follow within the research. In the next chapter; chapter 4, the PoC implementation related 

information are discussed. 
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Chapter 4 

4 PROOF OF CONCEPT IMPLEMENTATION 

This section describes the PoC implementation details of the instrumentation framework 

‘concor’, including scope of the implementation, used technologies, test setup architecture and 

outcomes of the framework. 

4.1 Scope of the implementation. 

The complete test setup consists of the framework, UI tool, sample applications and the 

performance simulator.  

● For this PoC java is selected as the main programming language. However, this concept 

can be extended to other platforms like .Net and python.  

● The framework will focus on collecting data, transferring to the monitoring web UI and 

handling the reconfigurations. The framework is completely written from scratch and 

does not use any other stream processing framework like RxJava. Mixing between 

RxJava and concor framework may result unexpected outputs.  

● UI tool consists of a standalone server and web module. It provides the graphical 

representation of the flows, real-time stats and re-configurability. 

● Sample applications are built with a single flow, which consists of multiple steps. 

Ability to handle multiple flows is strictly an implementation concern and therefore this 

will not be evaluated in this PoC. 

● A performance simulator is developed to send simple messages, controlling the TPS. 

Initially the simulator is started with a pre-configured TPS and gradually the TPS will 

increase stepwise. 

● Throughput and latency are the main measurements provided by the tool. Other than 

that, the active thread count and queue sizes are also provided as the measurements.  

● The tool provides the configurability of thread pools between the flow components, 

which can be used to isolate the bottlenecks. 

● Although dynamically connecting the UI to a server is a part of the framework, the 

ability to initiate the connection on the fly is not considered in this POC. However, the 

connectivity can be configured in the UI server property files. 
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4.2 Framework. 

For better adaptability, the framework is written using plain java. All the component constructs 

are built from scratch. There are five types of component constructs provided by the 

framework. All of those interfaces are marked as @FunctionalInterface and therefore 

lambdas can be used instead of java classes. 

● Simple task: The thread safe tasks are considered as simple tasks in this domain. This 

can be run parallel. A sample of simple task is shown in APPENDIX A: Sample simple 

task implementation. 

● Single threaded task: The tasks, which consists of synchronous blocks, are considered 

as the single threaded tasks. The framework makes sure that these components will not 

run in parallel, unless the framework is misused. A sample single threaded task is shown 

in APPENDIX B: Sample single threaded task implementation. 

● Synchronous remote task: Synchronous tasks tends to block the threads until the remote 

call or DB query being complete. Configuring such a component to run in single thread 

will result in a huge blockage as the threads are parked until the result is received. 

Therefore, an additional validation is placed in the framework to prevent the 

synchronous tasks being configured with the single threaded thread pools. APPENDIX 

C: Sample Synchronous remote task implementation shows a sample 

implementation of a synchronous remote task. 

● Asynchronous remote task: Asynchronous tasks are there to fix the flow continuation 

break. Async task provides an additional parameter called ‘continue’ and should be 

used upon async task completion. This pattern is referred as the ‘continuation passing 

style’ in functional programming. A sample implementation of Asynchronous remote 

task can be found in APPENDIX D: Sample Synchronous remote task 

implementation. 

● Catch Task: All the errors thrown to the framework will be collected within the flow 

context. To handle the errors, a special component type is provided as catch tasks. The 

flow works similar to the either monad in functional programming. Upon any 

exception, the specific request context will keep the result and exception and next steps 

will be skipped until the catch block is available. Catch block can be used to recover 
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from the exceptions. APPENDIX E: Sample Catch task implementation shows an 

implementation of a catch task. 

● Apart from those components, another mini flow component is added for the 

completeness called side effect. Side effects will listen to the incoming messages, yet 

it does not provide any output except for the incoming message modification. 

All of those components can be bound together with a flow builder. Flow builder will create a 

flow and binds to the flow manager for management aspects. APPENDIX F: Sample Flow 

composition shows a sample flow construction. 

Requests can be injected to the flow using the ‘apply’ method in the flow. Then an implicit 

context is assigned to the request and dispatched to the flow itself. There are two types of 

contexts as mock contexts and sampling contexts. Sampling contexts tends to collect data while 

traversing in the flow. In order to reduce the instrumentation overhead, sampling contexts are 

dispatched in periodic manner.  

All the data collected in the sampling context are reorganized and stored in memory for the 

visualizations. At a sampling burst, there will be three requests and the average values of those 

requests are taken as the result. Results will be available to query from the monitoring tools via 

a JMX API[31]. 

The concurrency reconfiguration aspect is achieved by implementing a slot mechanism in front 

of each component. A so-called join can be configured in these slots. Those joins consist of a 

disruptor ring buffer, and a thread poll of the choice. This mechanism automatically provides 

queues to split the stages. Currently, Single threaded thread pools, multi-threaded thread pools 

and cached thread pools are available in the system.  

The data collection, transfer to the monitoring tool and response to the thread configuration 

changes are available through the manager component. Furthermore, upon starting the 

manager, it will collect the schema information about the flows to map the topology. This 

information is sent to the web module upon web module connect. 
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Figure 4.1: A runtime view of a flow in ‘concor’ UI. 
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4.3 Performance monitoring tool. 

Performance monitoring tool is consists of a standalone server and a web module. Standalone 

server acts as the gateway between UI and the system. The server communicates with the 

system using java management extensions and with the UI using HTTP/JSON API. The server 

is developed using spring-webflux.[10]  

The web module is built using ReactJS[32] and has the capability to pull the schema and data 

and sending the requests to do the runtime changes. A sample flow with the other stats can be 

seen in the Figure 4.1. 

In the UI flow view, each flow component has its name and the real time latency. The icon in 

the component shows the type of the component and the block in left of a component indicates 

the slot for the join. For the configured joins, the number of active threads and queue size are 

shown. The simulated stage latencies are shown below of the flow. 

The two graphs below the flow indicate the flow specific throughput and latency.  

A new thread pool can be configured with the popup shown when clicked upon the slot as in 

Figure 4.2. 

 

Figure 4.2: Runtime thread model update view. 
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4.4 Sample application: Messaging MO Flow 

The MO-flow sample application is built to visualize an MO flow. The term MO and AT are 

used in telecommunication messaging domain. In this sample, we consider a messaging flow 

from Mobile to Application. Following stages are considered in developing the flow. This flow 

loosely resembles a use case of mobile messaging gateway. 

● Mo Translator: Simple task, which converts the incoming message to internal format. 

● Session manager : A single threaded task which provides the session resolving 

capability. 

● Mo Router: A Simple task, which provides the route resolving capability. 

● Mo Endpoint resolver: A Synchronous task, which provides the load balancing and 

endpoint resolving capability. This component queries the MySQL[33] database per 

request basis. 

● AT Translator: A simple task, which provides the translation capability from internal 

format to external format. 

● Message Sender: An asynchronous task, which sends the message to the user. 

● Trans Logger: MO Trans logger is a side effect, which listen and log the message status. 

● Error handler: An error-handling component to log the errors. 

This sample app is designed to be a balanced use case to verify the framework capabilities. 

4.5 Sample Application 2: USSD server. 

USSD[34] server application is built to visualize a static USSD flow. The term USSD 

(Unconstructed Supplementary Service Data) is strictly used in telecommunication industry. 

The USSD services are used in providing various supplementary services within the 

telecommunication network, and currently this has been extended to serve various third party 

services also as the value added services. The USSD sessions are interactive and real-time. 

Usually, in terms of the server, this service is modeled as question and answer cycles.  

In a USSD serving application, the application accepts USSD requests and returns a new 

response with the next step instructions. This can be modeled as a single flow. This flow 

consists of following components. 

● USSD-In-Translator: will translates the incoming message to the internal format. 
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● Session Manager: This element will resolves the session based on the mobile number. 

Usually this is modeled as a single threaded component. 

● Menu Structure Resolver: resolves the menu structure for newly created sessions.. 

● Menu Resolver: This block is used to select the menus based on the user input. If a 

menu is not present, a default text will be sent. 

● Message Sender: This component is used to send the reply back to the requested party. 

This is modeled as an asynchronous remote connector. 

● Logging and Error Logging: The errors and outgoing messages are logged at the end of 

the flow. 

USSD flow sample application does not have a DB connectivity and therefore this is mainly 

bound by either the CPU usage or external connectivity. 

4.6 Sample application 3: Mobile money tracker 

Mobile money tracker is a simple application, which is built to track the transactions and hold 

the current account values in a DB. Evaluating the ‘concor’ framework for an IO bound flow 

is the main objective of this sample. This contains following items. 

● Translator: This translator element will transform incoming plain message to the 

internal format. This is completely a CPU bound process. 

● TrxManager’s reader: This element is mainly focusing on DB reads. This is an IO 

bound process and modeled with synchronous remote component. 

● TrxCalcluator: The result value calculation is done on this element. This is a CPU 

bound process. 

● TrxManager’s updater: This element should update the DB with calculated values. This 

is an IO bound process with synchronous remote component. 

● Logger and Error Handler: This part is mainly written for the logging purposes. This is 

an IO bound process. Yet this does not give a high overhead in the application compared 

to the TrxManager. 

4.7 Performance Simulator. 

The performance simulator is designed in a way that it initially starts with a predefined TPS 

and increases the TPS in every 10 seconds by 10. The issued throughput is logged in a separate 

log. This log is used to observe the point of instability. 
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4.8 Wiremock[35] Instance. 

A Wiremock instance is started to emulate the remote server. This Wiremock server is 

optimized to cater the best possible performance. 

4.9 Summery 

This chapter discusses about the implementation related details extensively. The 

implementation scope, the components, which are build and the tools used in evaluating the 

system are described within this chapter. The collected information within the tests and the 

evaluation are discussed in the next chapter, Chapter 5: Evaluation. 
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Chapter 5 

5 EVALUATION 

This section discusses the usability, performance impact and the pros and cons of the ‘concor’ 

'framework. Then the results of the two experiments conducted upon the framework sample 

applications are discussed. 

5.1 Usability  

One of the main objective in this research is to propose an easy to use framework providing the 

dynamic concurrency capabilities. By means of the usability, the developer community should 

be able to easily adapt to the framework without additional mental mapping. Therefore, 

commonly used techniques and patterns are used in the implementation. As the flow composing 

mechanism, function chaining is used. This is a widely adapted pattern in many other use cases 

like java stream API, Scala collection API and RxJava. Furthermore, by defining the 

component types based on the behavior enforces the developer to think in clear functional 

aspects rather than jumbling up the code to get the functionality done. This cleanness provides 

a maintainable clear code. 

Even though the ‘concor’ framework provides those pros, following features and safety 

mechanisms are lacking in the framework. 

● Reference leak: A developer can misuse this system to leak some references from one 

stage to another, which might lead to concurrency issues, if the leaked object is not 

thread safe. 

● Single threaded behavior is enforced flow basis: A user can use same single threaded 

component either in different flows or in different locations in the same flow. This 

might lead to concurrency problems. This problem can addressed in a future work by 

enforcing single thread access via a locking mechanism.  

● Thread local value passing is problematic: Since the objects are passed within 

dynamically allocated thread pools, the thread local values like MySQL connections 

and NDC may not be available throughout the flow. This research should be extended 

to resolve these issues.  
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Apart from the developer friendliness, this framework provides a clear view of the system 

flows, in a graphical manner. For a particular new joiner to the project, this feature is helpful 

as it provides the accurate insight and topology of the application.  

5.2 Performance 

5.2.1 Experiment 1: Runtime performance overhead. 

The ‘concor’ framework provides the runtime instrumentation capabilities. Usually the 

additionally injected code for instrumentation results in performance decrease. In order to 

measure the performance drop, following experiment is conducted.  

This research covers the analysis of the types of micro-level components and it concluded that 

there are four major types as single threaded, multi-threaded CPU bound asynchronous remote 

connectivity and synchronous remote connectivity. Any application, which uses this 

architecture, is forced to categorize each component to one of above-mentioned categories. The 

sample flow to be tested is selected as a fair mix of those components. 

In the real world usage, the designer can choose between three options. 

1. Application assembles without ‘concor’ framework. 

2. Application assembles with ‘concor’ framework yet the sampling disabled. 

3. Application assembles with ‘concor’ framework with the runtime sampling. 

In order to measure the performance of the system for these options, a controlled experiment 

is designed as follows.  

● The simulator initial TPS is set to an initial value and increase the TPS by 10 for each 

10 seconds. 

● Sampling overhead is kept as 3 sampling messages per 128 messages. 

● For the configuration setup without the framework, exact same thread model like in the 

diagram is configured. 

● Before each run, all the components were restarted to remove the effect of previous run. 

● The experiment was conducted on a machine with following statistics. 

○ CPU: Intel core i7 6th gen. 

○ Memory 16 GB 
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5.2.1.1 System behavior during performance test 

The system behavior during a performance test can be described as follows.  

● In the initial stage, the throughput in the firing tool shows some fluctuations due to the 

empty queue filling and other system processing behaviors. Within couple of seconds, 

the system stabilizes with the expected throughput. In this state, the throughput is 

smooth across the time. The throughput and latency effect on the system initiation is 

shown in Figure 5.1. 

 

Figure 5.1: Throughput and latency profile in a beginning of a performance test. 

● When the throughput increases, the system saturates and starts to show throughput 

pulses due to the backpressure. In this state also, the system is stable, yet this glitches 

indicates that the system is reaching instability. Figure 5.2 shows a view of such a 

through glitch.  
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Figure 5.2: Dynamic impulse in throughput and latency profile at a near saturation situation. 

● At some point, the system shows a high number of fluctuations in the throughput and 

system reaches to a point without recovery. At this time, the system is considered as 

saturated. Figure 5.3 shows a saturated situation of a failed performance test. 

 

Figure 5.3: Throughput and latency profile of a performance failure. 
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Within the experiment, if the fluctuations does not stabilize within 15 seconds, it is considered 

as a failure, and the last stable throughput is considered as the breaking point throughput value. 

For each experiment case, nine attempts were tried out as three for each without framework, 

without sampling and with sampling. The average values ware calculated using Equation 1. 

𝑇𝑃𝑆𝑎𝑣𝑔 =  
∑ 𝑇𝑃𝑆𝑎𝑡𝑡𝑒𝑚𝑝𝑡

𝑎𝑡𝑡𝑒𝑚𝑝𝑡 𝑐𝑜𝑢𝑛𝑡
 

Equation 1: Average TPS Calculation 

5.2.1.2 Case 1: Starting TPS: 200, with bottleneck in messaging flow. 

The first experiment run conducted upon messaging flow and the collected results are shown 

in Table 5-1. 

Table 5-1: Results of messaging flow performance test with starting 200 TPS 

 Without 

framework (TPS) 

Without sampling 

(TPS) 

With Sampling 

(TPS) 

Attempt 1 400 390 390 

Attempt 2 390 390 380 

Attempt 3 390 390 390 

Average 393.33 390 386.66 

 

In this experiment, an abnormal blockage was appeared in the ‘end point resolver’ component. 

This was visible as high latency in the specific block and abnormally high active threads and 

queue sizes in catering join.  

5.2.1.3 Case 2: Starting TPS: 300, with bottleneck in messaging flow 

In order to identify the bottleneck root cause another experiment was conducted with starting 

point as 300 and increment as 10 messages per 10 seconds. The results yielded form this 

experiment is listed in Table 5-2. 



37 

 

Table 5-2: Results of messaging flow performance test with starting 300 TPS 

 Without 

framework (TPS) 

Without sampling 

(TPS) 

With Sampling 

(TPS) 

Attempt 1 450 450 450 

Attempt 2 440 460 460 

Attempt 3 450 450 450 

Average 446.66 453.33 453.33 

 

An important observation of this experiment result was the approximate equality of request 

counts. That request counts were calculated as using the Equation 2. 

Considering the linear increment of the throughput, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =  
𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 ∗ (𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑃𝑆 +  𝐸𝑛𝑑𝑖𝑛𝑔 𝑇𝑃𝑆)

2
 

Equation 2: Number of requests calculation 

 

The calculation yielded the results in Table 5-3. 

Table 5-3: Object count comparison 

 Case 1: Start with 200 TPS Case 2: Start with 200 TPS 

Time taken to reach the 

instability 

190s 150s 

Starting TPS 200 300 

Breaking point TPS 390 450 

Number of requests 56050 56280 

 

Therefore,  𝑂𝑏𝑗𝑒𝑐𝑡 𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑠𝑒 1  ≈  𝑂𝑏𝑗𝑒𝑐𝑡 𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑠𝑒 2 

This observation hints that there is a leak present in the system. With further analysis of the 

code, it is identified that DB connection pooling was not properly configured. With this 

bottleneck removal, the performance of the system improved greatly.  
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5.2.1.4 Case 3: Starting TPS: 800, without bottleneck in messaging flow 

The same flow was tested against starting TPS 800 to benchmark the system. The yielded 

results on this experiment are listed in Table 5-4. 

Table 5-4: Results of messaging flow performance test after bottleneck removal 

 Without 

framework (TPS) 

Without sampling 

(TPS) 

With Sampling 

(TPS) 

Attempt 1 1650 1650 1640 

Attempt 2 1650 1650 1640 

Attempt 3 1660 1640 1640 

Average 1653.33 1646.66 1640 

 

The breaking point is reached due to a bottleneck at asynchronous remote connectivity in 

‘message sender’. The performance of the specific component is acceptable according to used 

libraries and third party service. Therefore, this concluded the limit of optimization. 

5.2.1.5 Case 4: USSD application performance. 

The USSD application is also tested against the same simulator according to the same 

procedure. The experiment started with 1500 TPS. Table 5-5 shows the results of this 

experiment. 

Table 5-5: Results of USSD application performance test. 

 Without 

framework (TPS) 

Without sampling 

(TPS) 

With Sampling 

(TPS) 

Attempt 1 2130 2120 2090 

Attempt 2 2110 2110 2070 

Attempt 3 2120 2120 2090 

Average 2120 2116.66 2083.33 
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Within the USSD flow test runs, the system reached the performance limit with a bottleneck in 

‘Message Sender’. This did not show any thread blockage and hence, this concluded that the 

external system is contributing to the bottleneck.  

5.2.1.6 Case 5: Mobile-money-tracker application performance. 

The mobile-money-tracker sample application is also tested against the same simulator. Table 

5-6 shows the results yielded from the test runs. 

Table 5-6: Results of Mobile Money Tracker application performance test 

 Without 

framework (TPS) 

Without sampling 

(TPS) 

With Sampling 

(TPS) 

Attempt 1 2130 2100 2090 

Attempt 2 2120 2110 2090 

Attempt 3 2130 2100 2080 

Average 2126.66 2103.33 2083.33 

 

In this experiment, the system reached the instability due to ‘Out of memory’ error and 

bottleneck was visible in the Synchronous remote components. This concluded that either the 

bottleneck is within the database or the operating system limits the performance. 

5.2.1.7 Analysis 

The results of all three cases above are analyzed based on following criterion. The system 

without using the framework is taken as the baseline. 

The percentage of the performance deviation of the other cases is calculated according to the 

Equation 3. 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 % 

=  
(𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑇𝑃𝑆𝑥  − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑇𝑃𝑆𝑏𝑎𝑠𝑒)

𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑇𝑃𝑆𝑏𝑎𝑠𝑒
 × 100 

Equation 3: Performance overhead percentage calculation 
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The error margin relative to limiting TPS of base is calculated using the Equation 4.  

𝐸𝑟𝑟𝑜𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 % =
𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑇𝑃𝑆𝑏𝑎𝑠𝑒
× 100  

Equation 4: Error margin calculation 

Complete result analysis and calculation of the experiment is listed in Table 5-7. 

Table 5-7: Final calculation of the results and comparison to the error margin. 

Case Error margin Without sampling 

throughput 

deviation 

With sampling 

throughput 

deviation 

Case 1 2.54% 0.84% 1.693% 

Case 2 2.20% 1.47% 1.47% 

Case 3 0.604% 0.402% 0.806% 

Case 4 0.471% 0.157% 1.729% 

Case 5 0.470% 0.626% 2.039% 

  

The final results in the Table 5-7 shows that the performance impact of using ‘concor’ 

framework is significantly lower and, in most cases this value is even within error margin. 

Compared to the impact of a bottleneck, this performance drop is insignificant. Furthermore, 

in the real world scenarios, the systems are not expected to run in full potential and a safe 

margin is kept for the system to be stabilized.  

5.2.2 Experiment 2: Overhead of thread pool switching 

Since runtime reconfiguration of thread pool is also a part of the research, another experiment 

is designed to observe the impact on a thread pool addition and deletion, as follows.  

In runtime, each of the components are configured to a stage and each stage is served with a 

specific thread model. When a thread pool is configured in runtime, there might be a 

performance impact in throughput due to two reasons. 

● If the thread model changes from Multi-threaded to Single threaded, the system starts 

to act upon new thread model resulting performance decrease. 

● Due to new queue, slight changes may occur in the throughput. 
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The experiment is designed to run in a constant TPS. In order to isolate the second case, in the 

experiment a thread pool is added as similar to the existing thread pool of the stage. For the 

deletion the same thread pool will be removed. Then the TPS in simulator side will be observed 

for the changes for 5 seconds.  

The results in Table 5-8 were collected in the experiment with multi-threaded thread pool. A 

1000 TPS constant throughput is maintained throughout the experiment.  

Table 5-8: Throughput impact on thread pool addition and removal  

 operation t s (t + 1) s (t + 2) s (t + 3) s (t + 4) s 

Attempt 1 Add 1000 1000 1001 999 1000 

Delete 996 1004 1000 1000 1000 

Attempt 2 Add 1000 999 1001 1000 1000 

Delete 999 1001 1000 1000 1000 

Attempt 3 Add 1000 1000 1000 1000 1000 

Delete 1000 1000 1000 1000 1000 

 

Results in Table 5-8 shows that the addition of a thread pool does not show any TPS impact, 

yet deletion of a thread pool may show a performance drop in the immediate second. Since this 

change is significantly low, this does not affect upon the overall performance. 

5.3 Analysis 

The results of the tests shows that the framework is capable of exposing the internal structure 

and realtime performance information in relatively low cost. The performance cost due to the 

instrumentation is relatively low and the features provided to disable instrumentation on 

production also provides the performance overhead production. However, in the real life 

scenarios, the systems are not expected to run on full potential. The performance difference 

introduced by the framework, in most cases, is not significant enough to alter the estimated 

performance measures.  
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Furthermore, the dynamic changes introduced within the research, especially the dynamic 

concurrency, are also tested against the load and the result shows lesser impact on the 

performance on those changes. In most cases, the value provided by the framework outweighs 

the performance penalty. 

5.4 Summery 

This chapter was mainly focusing on testing and evaluating the PoC implementation related to 

research. The evaluation was conducted on two aspects as follows. The framework should 

operate within the acceptable performance overhead limits and the dynamic changes should 

not introduce additional significant performance impacts to the system. The results shows that 

the framework is within the required bounds.  
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Chapter 6 

6 CONCLUSION AND FUTURE WORKS 

6.1 Conclusion 

There are multiple objectives of this research. First one being the instrumentation, the output 

of this research, ‘concor’ framework, abstracts out the instrumentation probing point placement 

mechanism. The framework was built using the SEDA architecture as the base. This 

architecture provides properly defined stage separation mechanism and, these boundaries of 

the components were selected as the most suitable probing points.  

The stat collection mechanism is designed using sampling as the main data collection 

mechanism. For a configured number of request, the sampling contexts were sent to collect the 

data. This result the low overhead data collection compared to the probing of each message. A 

Web UI based tool is also provided with the framework, so that not only the flow stats itself 

but also the internal topology of the application is also can be visualized graphically.  

Apart from the instrumentation, the ability to reconfigure the system in runtime is also provided 

with the framework. This is useful in designing the system as the designer have the room to 

correct the concurrency problems even in runtime. Furthermore, this effectively prevents rocky 

developers making concurrency related mistakes within the application.  

While this framework provides those features, there is a risk that this additional features may 

reduce the performance of the application altogether. In order to prove that this framework does 

not affect the runtime performance, two experiments were designed. In first experiment, a 

sample application build with ‘concor’ framework is tested until reaching the unstable point 

against increasing TPS. This experiment results showed that the specific features does not 

provide a significant additional burden to the production runtime. 

In the second experiment, runtime thread configuration is tested against stable TPS. This 

experiment showed that the reconfiguration does not effect on the run time significantly. 

This concluded that ‘concor’ framework does provide a solution for the runtime 

reconfiguration and instrumentation at the same time. Yet they are other problems need to be 

solved within this research like the possible reference leak, Thread local values and Enforcing 

behaviors across the platform. These aspects are discussed in the future works section. 
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6.2 Future Works 

As mentioned above, following problems are still exists within the application.  

A careless developer may expose an internal mutable object from one stage and modify that in 

another stage, which may cause concurrency issues. This is a common issue in current 

development practices, yet the static nature of the thread pools mitigates this issue for some 

extend. A proper guideline or a proper solution should be researched to prevent this fault being 

occur. 

A careless developer may reuse the same single threaded component in different places making 

the specific single threaded component being accessed from multiple threads effectively. This 

will raise concurrency issues. A proper mechanism should be investigated to prevent the single 

threaded components being reused in multiple places. 

The thread local value transfer between stages is not yet implemented. This is a mandatory 

feature for the use cases such as MDC and MySQL transactions. A proper low overhead 

solution should be investigated to solve the thread local value transfer between stages. 

This framework is designed as a proof of concept using plain java. This concept can be used in 

other environments like .Net and python also. Research should be conducted on implementing 

this mechanism in other platforms and the related problems.  

One of the biggest limitation of this framework is the inability to coexist with the other java 

data flow based frameworks like RxJava. Research should be conducted to analyze and propose 

better ways of integrating this concept in those frameworks. 
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APPENDIX A: Sample simple task implementation 

public class MOInTranslator implements SimpleTask<String, MOMessage> { 
 
 private static final Logger logger = LoggerFactory.getLogger(MOInTranslator.class); 
 
 private static final Gson GSON = new Gson(); 
 
 @Override 
 public MOMessage apply(String s) throws Throwable { 
     logger.debug("Translating message [{}]", s); 
     Msg msg = GSON.fromJson(s, Msg.class); 
     return new MOMessage(msg.msisdn, msg.shortCode, msg.message); 
 } 
} 
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APPENDIX B: Sample single threaded task implementation 

public class MOSessionManagerWrapper implements SingleThreadedTask<MOMessage, MOMessage> { 
 
 private static final Logger logger = LoggerFactory.getLogger(MOSessionManagerWrapper.class); 
 
 private SessionManagerI sessionManagerI; 
 
 public MOSessionManagerWrapper(SessionManagerI sessionManagerI) { 
     this.sessionManagerI = sessionManagerI; 
 } 
 
 @Override 
 public MOMessage apply(MOMessage moMessage) throws Throwable { 
 
     logger.debug("Resolving session for [{}]", moMessage.getFrom()); 
 
     moMessage.setSession(sessionManagerI.getSession(moMessage.getFrom())); 
 
     logger.debug("Session has been successfully resolved"); 
     return moMessage; 
 } 
 
} 
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APPENDIX C: Sample Synchronous remote task implementation 

 

public class EndPointResolver implements SynchronizedRemoteTask<MOMessage, MOMessage> { 
 
 private static final Logger logger = LoggerFactory.getLogger(EndPointResolver.class); 
 
 private Map<String, Optional<RemoteInfo>> remoteInfoCache = new ConcurrentHashMap<>(); 
 
 @PostConstruct 
 public void init() { 
     Executors.newSingleThreadScheduledExecutor() 
             .scheduleAtFixedRate(() -> remoteInfoCache.clear(), 1, 1, TimeUnit.SECONDS); 
 } 
 
 @Autowired 
 private ServerConfigRepository serverConfigRepository; 
 
 @Override 
 public MOMessage apply(MOMessage moMessage) throws Throwable { 
 
     logger.debug("Resolving destination information"); 
 
     Optional<RemoteInfo> remoteInfo = 
serverConfigRepository.findByRemoteId(moMessage.getSession().getApplication()); 
 
     remoteInfo.ifPresent(moMessage.getSession()::setApplicationInfo); 
 
     logger.debug("Destination information resolved"); 
     return moMessage; 
 } 
} 

 

  



51 

 

APPENDIX D: Sample Synchronous remote task implementation 

public class ATMessageSender implements TransitionTask<MOMessage, MOMessage> { 
 
 private static final Logger logger = LoggerFactory.getLogger(ATMessageSender.class); 
 
 private OkHttpClient client; 
 
 private AtomicReference<DurationData> durationData = new AtomicReference<>(new DurationData()); 
 
 @PostConstruct 
 public void init() { 
     client = new OkHttpClient(); 
     client.dispatcher().setMaxRequestsPerHost(400); 
 
     Executors.newSingleThreadScheduledExecutor() 
             .scheduleAtFixedRate( 
                     () -> logger.info("Connection Count [{}]| average time [{} ms]", 
client.connectionPool().connectionCount(), durationData.getAndSet(new DurationData()).avg()) 
                     ,  1, 1, TimeUnit.SECONDS); 
 } 
 
 
 @Override 
 public void apply(MOMessage moMessage, Continuation<MOMessage> continuation) throws Throwable 
{ 
 
     logger.debug("Sending message to remote server"); 
 
     Request request = new 
Request.Builder().url(moMessage.getSession().getRemoteInfo().getServerInfo().get(0).getUrl()) 
             .post(RequestBody.create(MediaType.get("text/plain"), moMessage.getResponse())) 
             .build(); 
 
     logger.debug("Message preparation completed"); 
 
     long before = System.currentTimeMillis(); 
 
     client.newCall(request).enqueue(new Callback() { 
         @Override 
         public void onFailure(Call call, IOException e) { 
             logger.error("An error occurred while sending the message"); 
             durationData.updateAndGet(data -> data.addDuration(System.currentTimeMillis() - before)); 
             continuation.onError(() -> e); 
         } 
 
         @Override 
         public void onResponse(Call call, Response response) throws IOException { 
             logger.debug("Message successfully delivered"); 
             durationData.updateAndGet(data -> data.addDuration(System.currentTimeMillis() - before)); 
             continuation.continuing(() -> moMessage); 
             if (response.body() != null) { 
                 response.body().close(); 
             } 
         } 
     }); 
 
     logger.debug("Message sent to the remote server"); 
 } 
} 
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APPENDIX E: Sample Catch task implementation 

public class Catching implements CatchTask<MOMessage> { 
 
 private static final Logger logger = LoggerFactory.getLogger(Catching.class); 
     
 @Override 
 public MOMessage onError(Throwable e) throws Throwable { 
     logger.error("An error occurred while executing the request", e); 
     return null; 
 } 
} 
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APPENDIX F: Sample Flow composition 

 

Flow<String> flow = Flows.<String>create("mo-flow") 
             .map(new MOInTranslator(), "translator") 
             .mapSingleThreaded(moSessionManagerWrapper, "session Manager") 
             .map(moRouter, "Router") 
             .mapSynchronizedRemote(endPointResolver, "End Point Resolver") 
             .map(new ATTranslator(), "AT translator") 
             .bind(atMessageSender, "Message sender") 
             .forEach(new MOTransLogger(), "trans logger") 
             .catching(new Catching(), "Error Handler") 
             .build(); 

 


