CHARACTERIZATION OF LOCALLY AVAILABLE MICA MINERALS FOR CAPACITOR APPLICATIONS

Thise Appuhamilage Erangi Indika Siriwardhane

(139462P)

Degree of Master of Science

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

FEBRUARY 2019

CHARACTERIZATION OF LOCALLY AVAILABLE MICA MINERALS FOR CAPACITOR APPLICATIONS

Thise Appuhamilage Erangi Indika Siriwardhane

(139462P)

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Materials Science and Engineering

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

FEBRUARY 2019

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institution of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non –exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the partial fulfilment of the requirements for the Degree of Master of Science in Materials Science and Engineering under my supervision.

Name of the supervisor: Prof. S U Adikary

Signature of the Supervisor:

Date:

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me the possibility to complete this project. I am greatly indebted to Sri Lanka Standards Institution (SLSI) for sponsoring me to follow this M.Sc. programme and granting leave when necessary in completing this project.

I would like to express my heartfelt gratitude to the supervisor of my research, senior lecturer of Department of Materials Science and Engineering, Prof. S U Adikary, for his untiring reviews, prompt feedback and unwavering guidance. I would like to express my sincere thanks to the senior lecturer of Department of Materials Science and Engineering and our research coordinator Dr. Santha Amarasinghe, for his valuable advices and guidance given throughout this study. I would deeply thankful to all academic and technical staff members of Department of Materials Science & Engineering to their support given to me while I am carrying out this study.

I also acknowledge, Dr. (Mrs.) Iresha Kottegoda, Principal Research Scientist, Materials Technology Section of Industrial Technology Institution (ITI), for her valuable support.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of Industrial Technology Institution (ITI), to conduct experiments, especially Ms. Dilini Colombage for SEMs and Mr. Sujith Karunadasa for XRDs. Special thank goes to Dr. Sandun Dalpathadu, Managing Director of Polyzon Industries (Pvt) Ltd., who provided me all the samples, from different locations in Sri Lanka.

Also I would like to thank Mr. T G G Dharmawardena, former Director General of SLSI, and Mr. Kapila Abeygunawardane Senior Deputy Director (Engineering Standardization) for their endless encouragement and invaluable support given to me throughout the study to succeed this research.

My special thanks go to my parents and my family members for the moral support they have given to me to success this study.

Abstract

Mica is a group of minerals of the hydrated alumino silicate of iron, magnesium, potassium, lithium and sodium etc. Commercially, the two most widely used micas in the electrical industry are the muscovite and phlogopite types. Phlogopite is the widely available mica type in Sri Lanka.

Micas from different mining locations (Mathale, Mailapitiya, Badulla and Kebethigollewa) in Sri Lanka were characterized using XRD and SEM methods. Two different methods, namely ceramic method and flake method were used to study the dielectric properties of locally available mica. Dielectric behaviour of mica characterized above has been investigated by measuring capacitance (C) and loss tangent (D) at selected frequencies, with a precision LCR meter in a controlled environment. Then the relative permittivity, ε_r for each specimen was calculated and behaviour of ε_r with frequency was studied. Five flake specimens each obtained from four different locations and five ceramic disc specimens each prepared with powdered mica of two different locations were used for the study. Size, shape and method of preparation of the specimens were kept constant throughout the experiment. Graphs between ε_r and log_{10} [frequency] of silvered mica flakes, and that of silvered mica discs were plotted separately. Accordingly, samples prepared by both methods have also been compared. Finally, average loss tangent D_{avg} values of silvered mica were plotted as a function of average relative permittivity, (ε_r) avg at defined frequencies and investigated location wise.

Scanning Electron Microscopic (SEM) analysis of Mathale and Mailapitiya samples confirmed that they have typical mica like flaky structures with layers. The XRDs of mica samples from different locations revealed different crystal structures & poly types. Sample from Mathale revealed two crystal structures Phlogopite 1 M and Phlogopite 3T, while Mailapitiya sample revealed two crystal structures Phlogopite 1 M and Biotite. Phlogopite 1 M and Hendricksite (Zinc- rich mica) were found fairly abundantly and Wustite (Fe_{0.92} O) was found in small concentrations in Badulla sample, while Phlogopite 3T was found abundantly in Kebethigollewa sample.

Dielectric properties including dielectric constant (ε_r) and dielectric loss tangent (D) have been done in the frequency range from 1 kHz to 1MHz. The results showed that the dielectric constant (ε_r) and loss tangent (D) decrease with the increasing frequency at room temperature. As per the results, Kebethigollewa flake mica and sintered Mathale mica were the best types with higher ε_r and lesser D, at low radio frequency ranges. However, flake mica showed comparatively higher ε_r values than that of mica dielectrics obtained from the same source and manufactured by ceramic method. These results are also found compatible with the results of similar studies carried out by the researches in different countries.

Hence, it can be concluded that locally available mica can be applied as dielectrics for capacitors within low radio frequency range. Even though both methods can be used, flake method is more suitable for applications which require higher ε_r values while ceramic method is better, where low capacitance applications are required. Ceramic method may be further developed by using other techniques such as slip casting method. Kebethigollewa and Mathale mica flakes are the best sources in terms of dielectric properties.

TABLE OF CONTENTS

Declaration			Ι		
Acknowledgement					
Abstract				III	
Table of content			IV		
List of Figures			VI		
List of Tables			VII		
Lis	st of A	ppendice	es	VII	
1.	1. INTRODUCTION				
	1.1	Gener	al	1	
	1.2	Backg	round of the study	2	
	1.3	Object	tives	3	
2	LITE	LITERATURE SURVEY			
	2.1	Mica	Mica Group		
		2.1.1	Crystal structure	5	
		2.1.2	Compositions of mica	5	
		2.1.3	Main types of mica	6	
		2.1.4	Different forms of mica	7	
		2.1.5	Properties of Mica	7	
	2.2	Sri Lankan Mica Industry			
	2.3	Capac	itors	9	
		2.3.1	Introduction to capacitors	9	
		2.3.2	Dielectric constant (k_{\epsilon}) or relative permittivity ($\epsilon_r)$	9	
		2.3.3	Mica capacitors	11	
		2.3.4	Studies on mica capacitors	14	
	2.4	Radio	Frequencies (RF) and Capacitors	17	
3.	METHODOLOGY			18	
	3.1	Materials Used		18	
	3.2	Apparatus			
	3.3	Experi	mental Procedure	20	
		3.3.1	Specimen Preparation and measurement	20	

		3.3.2	Measure	ement of Capacitance	25
4. RESULTS AND DISCUSSION				27	
	4.1	X-Ray Diffraction results			27
		4.1.1	Mica sam	pple -Mathale	27
		4.1.2	Mica sar	nple -Badulla	28
		4.1.3	Mica sam	nple -Mailapitiya	29
		4.1.4	Mica sam	nple - Kebethigollewa	30
	4.2	SEM 1	results		32
	4.3	Result	s of water	absorption tests	33
	4.4	Dielec	ctric Prope	erties versus Frequency at room temperature	34
		4.4.1	Mica F	lakes	35
			4.4.1.1	Mathale	36
			4.4.1.2	Mailapitiya	37
			4.4.1.3	Badulla	38
			4.4.1.4	Kebethigollewa	39
		4.4.2	Sintere	d mica samples	45
			4.4.2.1	Mathale	45
			4.4.2.2	Mailapitiya	46
			4.4.2.3	Comparison of Dielectric properties of	47
				sintered mica	
		4.4.3	Compar	ison of sintered specimens and flakes	49
			4.4.3.1	Mathale	49
			4.4.3.2	Mailapitiya	50
5. CONCLUSIONS				52	
6.	6. RECOMMENDATIONS				54
REFERENCE LIST				55	

LIST OF FIGURES

Figure 2.1:	Orthorhombic & Monoclinic Crystal Systems	4
Figure 2.2 :	Mica crystal structure	5
Figure 2.3:	Phlogopite mica crystal structure	6
Figure 2.4 :	Different forms of mica	7
Figure 2.5 :	A parallel plate capacitor	10
Figure 2.6:	Frequency dependence of dielectric properties	11
Figure 2.7 :	Stacked layer arrangement	12
Figure 2.8 :	Sintered Mica Chips	13
Figure 2.9 :	Stacked mica capacitors	13
Figure 2.10:	Capacitance-frequency of the mica	15
Figure 2.11:	Relation of D and capacitance with frequency	16
Figure 3.1:	Mica samples used in the study	18
Figure 3.2:	LCR Hi tester	21
Figure 3.3:	Several specimens before sintering	22
Figure 3.4:	Several specimens after sintering	22
Figure 3.5:	Application of silver paste on mica flakes	24
Figure 3.6:	Measurement of capacitance of sintered pellets	25
Figure 4.1:	XRD Pattern of Mathale mica sample	27
Figure 4.2:	XRD Pattern of Badulla mica sample	28
Figure 4.3:	XRD Pattern of Mailapitiya mica sample	29
Figure 4.4:	XRD Pattern of Kebethigollewa mica sample	30
Figure 4.5:	Comparison of XRD Patterns	31
Figure 4.6:	SEM micrographs of Mathale mica sample	32
Figure 4.7:	SEM micrographs of Mailapitiya mica sample	33
Figure 4.8:	ε_r and D of Mathale	36
Figure 4.9:	ε_r and D of Mailapitiya	37
Figure 4.10:	ε_r and D of Badulla	38
Figure 4.11:	ε_r and D of Kebethigollewa	39
Figure 4.12:	$(\varepsilon_r)_{avg}$ of Mathale and Kebethigollewa mica	40

Figure 4.13:	$(\varepsilon_r)_{avg}$ of Mathale and Mailapitiya mica flakes	41
Figure 4.14:	$(\varepsilon_r)_{avg}$ of Mathale and Badulla mica flakes	41
Figure 4.15:	Davg of Mathale and Kebethigollewa mica flakes	43
Figure 4.16:	Davg of Mathale and Mailapitiya mica flakes	43
Figure 4.17:	Davg of Mathale and Badulla mica flakes	44
Figure 4.18:	Relative permittivity (ϵ_r) of Mathale sintered mica	46
Figure 4.19:	Loss Tangent (D) of Mathale sintered mica	46
Figure 4.20:	Relative permittivity (ε_r) of Mailapitiya sintered mica	47
Figure 4.21:	Loss Tangent (D) of Mailapitiya sintered mica	47
Figure 4.22:	Comparison of (ϵ_r) $_{avg}$ and D $_{avg}$ of sintered mica	48
Figure 4.23:	Comparison of (ϵ_r) $_{avg}$ and D_{avg} of flakes and sintered	49
	specimens of Mathale Mica	
Figure 4.24:	Comparison of (ϵ_r) $_{avg}$ and D_{avg} of flakes and sintered	50
	specimens of Mailapitiya Mica	

LIST OF TABLES

Table 2.1:	Mica poly types	4
Table 2.2:	Dielectric materials	9
Table 2.3	Summary of mica film capacitor capacitances	14
Table 4.1:	Sintered mica discs-Mathale and Mailapitiya	33

LIST OF APPENDICES

Appendix	Description	
Appendix-A	Individual results-capacitance and loss tangent	58
Appendix-B	XRDs	64