

ARCHITECTURAL DESIGN DECISION KNOWLEDGE

MANAGEMENT SYSTEM

Shashi Lakshan Chandrasinghe

(179311P)

M.Sc. in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

ARCHITECTURAL DESIGN DECISION KNOWLEDGE

MANAGEMENT SYSTEM

Shashi Lakshan Chandrasinghe

(179311P)

This dissertation submitted in partial fulfillment of the requirements for the Degree of
MSc in Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this MSc Thesis Project Report does not

incorporate without acknowledgement of any material previously submitted for a

Degree or Diploma in any other University or institute of higher learning and to the

best of my knowledge and belief it does not contain any material previously published

or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works.

..

Shashi Lakshan Chandrasinghe Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this project report is acceptable for evaluation for the MSc Thesis (CS6997).

..

Dr. Indika Perera Date

ii

ACKNOWLEDGEMENT

My sincere appreciation is dedicated to my research supervisor Dr. Indika Perera for

his valuable support and guidance to complete the MSc Thesis Report successfully and

also I would like to express my gratitude to my friends and colleagues in MSc’ 17 who

supported to complete the task.

Finally, I would like to thank the academic and non-academic staff of Department of

Computer Science and Engineering of the University of Moratuwa.

iii

ABSTRACT

The software systems typically fail and deviate from its prescriptive architecture due to various
reasons such as incorrect architectural design, lack of experience and lack of domain
knowledge. After precise software requirements are gathered from customers, those
requirements should be converted into an appropriate design. Suppose if any inappropriate
design is constructed from these requirements, it may cause to reconstruct the system
implementation. So, a set of good architectural design decisions form a good system
architecture and those architectural design decisions should be documented or stored as
knowledge bases to use further.

Various methodologies exist to store architectural design decisions and trace them. Most of
them have some drawbacks such as lack of time to gather and store and additional cost to
maintain such knowledge bases. As the key objective, this report proposes an ontological
knowledge management system to solve above mentioned problems in software engineering
industry for avoiding the extra costs to redevelop or refine the software system
implementation.

Though the implemented solution is ontology-based knowledge management system, it seems
to be a simple web application to the end user. User-friendly web interfaces are implemented
to store and retrieve the architectural design decisions, based on completed or already initiated
software projects. Those design decisions would be useful for the professionals who design
the effective software architecture designs.

Finally, empirical and Likert questionnaires were conducted to prove that the implemented
solution works perfectly as a solution for the stated problems and this report ends mentioning
some limitations and future work with relevant to ontological knowledge management systems
and its technologies.

Keywords: knowledge bases, ontology, architectural design decisions

iv

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 1

INTRODUCTION 1

1.1 Background 2

1.2 Research Question 3

1.3 Motivations to Solve the Problem 4

1.4 Research Scope 5

1.5 Research Objectives 5

1.6 Overview of the Document 5

CHAPTER 2 7

LITERATURE REVIEW 7

2.1 Importance of Architectural Design Decisions 8

2.2 Challenges in Architectural Design Decisions 9

2.3 Some Knowledge Bases for Architectural Knowledge 11

2.4 Why Ontology Driven Software Engineering is Needed. 13

v

2.5 Strengths and Weaknesses of Having Ontology Driven Software Engineering

 16

2.6 Designing Ontology-based Knowledge Management System. 16

2.7 Problems in Ontology Development 17

2.8 Ontology Implementation 17

2.9 Ontology Validation 18

2.10 Basic Introduction to Ontology and Its Languages 19

2.10.1 RDF 20

2.10.2 RDFS 21

2.10.3 OWL 22

2.11 Ontology Generation 25

2.12 Ontology Supporting Tools 29

CHAPTER 3 31

METHODOLOGY 31

3.1 Qualities of a Software Architecture 32

3.2 Proposed Knowledge Management System 32

3.3 Automate the Proposed Knowledge Management System 33

CHAPTER 4 35

SOLUTION ARCHITECTURE AND IMPLEMENTATION 35

4.1 Steps to Model the Ontology 36

4.1.1 Step 1 - Determine the Domain and the Scope 37

4.1.2 Step 2 - Define the Classes and Taxonomy 37

4.1.3 Step 3 - Define the Properties of Classes 38

4.1.4 Step 4 - Define the Relationships Between Classes 40

4.2 Implementing the Ontology System. 42

4.2.1 Technology Stack Used to Implement the Ontology System. 44

vi

4.2.1 OWL File Generation 46

4.2.1 Implementation of Data Retrieval Functionality 47

CHAPTER 5 51

EVALUATION 51

5.1 Structural Evaluation 52

5.1.1 Ontology Classes 52

5.1.2 Ontology Data Properties 53

5.1.3 Individuals in Ontology 54

5.2 Evaluate the system performance 56

5.3 System Evaluation 59

5.3.1 Functionality Evaluation 59

5.3.2 User Interface Evaluation. 62

CHAPTER 6 65

CONCLUSTION 65

6.1 Research Contribution 66

6.2 Research Limitation 67

6.2 Future Work 67

REFERENCES 69

Appendix A How Ontology Concepts Affect to the User 74

Appendix B User Interface Evaluation 76

Appendix C Sample Java Classes for Proof of Implementation 78

vii

LIST OF FIGURES

Figure 2-1 Ontology Categorization in SDLC Phases 14

Figure 2-2 Design Architecture of Knowledge Management Portal 15

Figure 2-3 Ontology Development Process Using Apache Jena API 18

Figure 2-4 Ontology Evaluation Dimensions 19

Figure 2-5 Sample RDF Format 21

Figure 2-6 Sample RDFS Format 22

Figure 2-7 Sample OWL Content 24

Figure 2-8 Ontology Generation Process 25

Figure 2-9 Data Extraction Process Automation Using Apache Jena 26

Figure 2-10 Class Level Hierarchy in Family Ontology 27

Figure 2-11 Sample Visualization for People Ontology Using ‘Jambalaya’ Tab in
Protégé 30
Figure 3-1 : flow of developing the ontology-based knowledge management system.
 34
Figure 4-1 Properties of Decision Class 39

Figure 4-2 Class Diagram of Ontology System 41

Figure 4-3 System Architecture for Ontology System 42

Figure 4-4 Web Interface to Insert Architectural Design Decisions 43

Figure 4-5 Web Interface to Insert New Project Details 44

Figure 4-6 Package Structure of Source Code 45

Figure 4-7 Defining Ontology Classes Through Jena API 46

Figure 4-8 Defining the Data Property for Project class 46

Figure 4-9 Source Code for 'Project' individual 47

Figure 4-10 User Interface for Basic Search 48

Figure 4-11User Interface for Advanced Search 49

Figure 5-1 Ontology Class in Protégé 53

Figure 5-2 Data Properties with Domains and Ranges 54

Figure 5-3 Individual Values for Project Ontology Class 55

Figure 5-4 Individual Property Values for Project Class 55

Figure 5-5 SPARQL Search Query 56

Figure 5-6 Calculate Execution Time Programmatically 57

viii

Figure 5-7 Consecutive Execution Times on Search Functionality 57

Figure 5-8 A Sample Results of a SPARQL Query 58

Figure 5-9 Execution Times Over Size of OWL Files 59

Figure 5-10 Functionality Evaluation Based on Questionnaire 61

ix

LIST OF TABLES

Table 2-1 Sample Data of Architectural Knowledge 12

Table 5-1 OWL File Sizes Over Execution Times 58

Table 5-2 Appendix A - User Feedbacks 60

Table 5-3 Appendix C - User Feedbacks 63

x

LIST OF ABBREVIATIONS

Abbreviation Description

SDLC Software Development Life Cycle

RDF Resource Description Framework

RDFS Resource Description Framework Schema

OWL Web Ontology Language

JESS Java Expert System Shell

RDQL RDF Data Query Language

OWL-QL OWL Query Language

W3C World Web Consortium

SPARQL Simple Protocol and RDF Query Language

OOP Object Oriented Programming

RAM Random Access Memory

1

CHAPTER 1

INTRODUCTION

2

This chapter covers the background of the research work and illustrates the problem

statement with proposed solution and latter part contains the objectives and the

overview of the report.

1.1 Background

Software systems are constructed to satisfy the customer requirements and to attain the

business goals of organization at present. Therefore, the software architecture is

considered as the bridge between those business goals among stakeholders and acts as

the blueprint of a constructed software system [1]. Software architecture consists of

the earlier design decisions which are engaged to development and maintenance of the

Software Development Life Cycle (SDLC).

Software architect is a professional who is able to design the software or system

architecture by considering the other requirements such as low cost, time constraint,

performance, allocation of resources, and end-user satisfaction, etc., and has clear

understanding about the certain domain and having experience about handling

networking and computer systems such as hardware, software, internet, web portals

and security etc.

There are two different software architecture views those are prescriptive architecture

and the descriptive architecture. Prescriptive architecture of a system captures the

architectural design decisions which are made prior to the system construction and the

descriptive architecture describes how the system has been built.

Software are developed based on these concepts and used for long-time. But within

the lifespan of utilization of software, there will be a deviation between the prescriptive

architecture and the descriptive architecture which is called as architectural

degradation. Architectural degradation can be divided into two concepts. Those are

architectural drift and architectural erosion. Architectural erosion is the most critical

factor because it violates the prescriptive architecture while architectural drift does not

violate any prescriptive architectural design decisions. Both architectural drift and

architectural erosion have chances to exist by many reasons such as developers may

3

not have an idea about prescriptive architecture of the system, but they only focus on

the descriptive architecture due to the time constraints for software development.

An effective architect should consider on the architectural influences when design the

system architecture. The relevant influences that impact on system architecture are

stakeholders, development organization, background and experience of the architect

and the technical environment. Initial architecture or the prescriptive architecture

should be consistent for long time because a changing requirement to the prescriptive

architecture can consume high cost. Therefore, the architectural design decisions

should be very precise and consistent.

Obtaining the right architectural design decisions is the most challenging process in

the software industry. Lack of experience, lack of domain knowledge, and ineffective

communication among stakeholders can be the main reasons to fail the initial

architectural design decisions. During previous years, researchers have explored many

experiments to solve these issues. Most of them provided the solutions with

knowledge-based systems with different technologies.

1.2 Research Question

While developing complex software systems, architectural design decision are

considered as the first class entities since it affects all the concerns of each stakeholder

[2]. How the system architects find the architectural design decisions are properly

evaluated to the particular business domain.

When a new software project is initiated to implement, senior developers or architects

have to face many challenges such as developing the right design, and choosing the

appropriate technologies and resources etc. Inappropriate design decisions may

provide the results of an excessive budget for a software system with long-time period

of development.

4

There are few reasons for why initial architectural designs fail,

• Lack of domain knowledge

• Lack of experience in relevant field

• Not conducting enough evaluation techniques for selecting the correct design

decisions

When developers start a new project or a new feature for an existing software system,

it is hard to find similar implementations for the similar kinds of requirements.

1.3 Motivations to Solve the Problem

A knowledge-based system for architectural design decisions will be preferable

solution for software professionals to design a better software architecture with good

architectural design decisions. Therefore, implementing the knowledge-based system

is the major motivation and solution for above stated problems.

Earlier, researchers tried to solve problems by implementing such knowledge-based

systems using several technologies. Kruchten implemented a document-based

ontology, but it contained several issues [2]. Documents should be maintained in and

readers had to spend more time to retrieve the relevant information because it was a

manual task. It required more tools for some other requirements to deal with the

knowledge bases. So, the reader had to learn more for overcoming such stuff.

Furthermore, readers need to learn more about tools like protégé and to analyse [3].

However, this system led to create an ontology

Main motivation of this research is to focus on those issues, to mitigate them and to

develop with a user-friendly knowledge-based system with the following features,

• End-user can enter the data using a web interface

• End-user can analyse/retrieve information by using the same system

5

1.4 Research Scope

Identifying the most important factors which are relevant to the architectural design

decisions and identifying the most suitable technology stack to implement the

proposed solution which is the ontology-based knowledge management system. The

boundaries and the constraints are listed below.

• Ontology management system only supports for OWL version 1.

• Apache Jena will be used as the OWL generating tool.

1.5 Research Objectives

The main objective of this research is to find a solution for the above stated problems.

To achieve this main objective, there are several sub objectives established to be

accomplished for this research. The relevant sub objectives are;

• Identify and analyze the past experience about the system design from system

architects.

• Identify and analyze the literature of research in the similar context and the

current state of the research problems and the solutions.

• Define the research methodology to resolve the research problem with suitable

technologies.

• Conduct both theoretical and empirical evolutions to prove that the

implemented solution will help to solve the stated problems.

• Implement the ontology-based knowledge management system as the proposed

solution.

1.6 Overview of the Document

This thesis consists of six chapters. This initial chapter included background

knowledge on software architecture and the importance of the architectural design

decisions which describes that how they affect to the system existence. It also

described the research problem and motivation factors to solve the research problem.

Finally, it contained the research objectives.

6

The second chapter illustrates the findings on the literature survey of similar context.

It describes the important aspects of the ontology-based knowledge management

system for architectural design decisions. Literature survey also includes an

introduction to ontology and its technologies with the relevant technical tools.

The third chapter includes the research methodology which describes the solution by

using system diagrams and the technology stack.

The forth chapter narrates the solution architecture and compromises that how the

solution is implemented based on the methodology.

The fifth chapter describes that how the implemented solution is evaluated in both

theoretically and empirically. Finally, this chapter concludes with some information

on how this solution performs by comparing the existing solutions.

The final chapter is the conclusion of this thesis which describes the chapter by

illustrating the limitations and future work.

7

CHAPTER 2

LITERATURE REVIEW

8

This chapter covers the background studies of importance of architectural design

decisions and the existing knowledge-based systems to store and retrieve the

architectural design decisions.

2.1 Importance of Architectural Design Decisions

Architectural design decisions are considered as the first-class entities in the process

of software development. The necessity of a software system emerges from business

requirements from various stakeholders who engaged with the software system. Those

requirements can be functional or non-functional. Also, architectural decisions should

satisfy those requirements in high level manner [4]. In complex software designing

process, a group of architects or senior developers who are expertise in software

development process and procedures, assemble in a place or via online, discuss about

the design options and choose the best one which should fulfil the business

requirements. So, this process proposes that the architecture designing is a

collaborative process [5].

Philippe Kruchten defines three main categories of architectural design decisions [2]:

1. Existence decisions.

• These kinds of decisions are visible in the system implementation.

o Ex: Java messaging services should be used to send and

receive messages.

2. Property decisions.

• These decisions can help to formulate rules or guide lines.

o Ex: implementation should not use propriety libraries.

3. Executive decisions.

• These decisions do not connect to the design directly. Most

probably, these decisions are made by business environment and

created the impact on the development processes and the people in

the organization.

o Ex: development process decisions such as team should

follow the agile methodology.

9

Throughout this chapter, the literature review clearly says that a good set of

architectural design decisions make a good software architecture. A good software

architecture should fulfil the whole business needs of every stakeholder.

2.2 Challenges in Architectural Design Decisions

After identifying the business requirements for a complex software system, the initial

step or the software architecture design should be developed to initiate the system

development. But, obtaining architectural design decisions is a difficult task in

software architecture designing process because a set of architectural design decisions

formulate a software architecture which consider as the first-class entity to the software

system [6]. Some of the challenges in architectural design decisions are listed below.

• Violating the design rules and constraints

o If the architecture design contains violated rules and constraints, it may

lead to architectural drift when the architecture design is in the software

development phase. Therefore, it may require additional costs to

recover the architectural drift.

• Less experience and less technical knowledge

o Sometimes hiring well-experienced and technically skilled people

requires high costs for an organization. Therefore, business

organisations motivate the people who work within the organization,

for developing the architectural designing process. But it may provide

an output with wrong architectural design. In the middle of software

development phase, it may be realized that the architectural decisions

they made are wrong. So, it again requires the additional costs to

recover.

10

• Quality attributes trade-off

o Architectural decisions are constructed to fulfil the business

requirements which may be functional or non-functional. Non-

functional requirements are the quality attributes for the software

system. Those quality attributes can be named as performance, security,

availability, and fault tolerance etc. When the software architecture

satisfies the performance, it may lead to the system with less security

features. So, an architect should balance those quality attributes when

designing the software architecture.

• Globally distributed knowledge

o Today, many software organizations are operating in different locations

all over the world. Sometime, development and architecture tasks can

be divided to different locations. Therefore, it is difficult to assemble

and collaborate those people for effectively utilizing their knowledge.

• Insufficient knowledge bases of previous software architecture [7]

o The software architects typically make architectural design decisions to

form software architecture, but they fail to create documents in written

format on their ideas and rationales behind the design decisions. When

he/she leaves the organization, his/her cognitive is also lost to the

organization. So, knowledge of a person should be stored for future

architectural design decisions. Important aspects of such knowledge

bases are [8];

§ Used for education/training purposes.

§ Used for system analysis.

§ Used as a communication medium among stakeholders.

11

This research provides a solution to the problem which is mentioned above. This

research illustrates an ontology-based knowledge management system for

architectural knowledge.

2.3 Some Knowledge Bases for Architectural Knowledge

From early ages of software development, people used to store the architectural

knowledge for the purpose of reusing and tracing. Researchers suggested a several

mechanisms to create knowledge bases such as document based, monolithic system

based, web based, etc. Currently researchers are finding solutions to manage the

knowledge in the concept of ontology. Some of the mechanism used to create

knowledge bases are listed below.

• A web-based framework for managing architecture knowledge.

o Abdullah et.al [5] proposed a 3-tier web-based solution to manage the

architectural knowledge. The solution mainly focused on the scenarios

which indicated that users can create and evaluate scenarios through the

system. In the system, the data will be stored as the architectural

knowledge.

o Ali et.al [9] also suggested a web-based tool called PAKME to manage

architectural knowledge. This solution contained three types of search

functionality for the users.

§ Key-word based search functionality

§ Advanced search functionality

§ Navigation based search functionality

PAKME provides several interfaces or the templates to facilitate the

architectural knowledge before storing them. It also stores the scenario-

based knowledge.

12

• Automated systems for managing architectural knowledge.

o Ali et.al [4] recommended a template which is made by mining

architectural patterns that are applied to scenarios, for storing

architectural knowledge. Following table 2-1 shows how they store the

architectural knowledge though a template.

Table 1-1 Sample Data of Architectural Knowledge

Generic quality attribute Flexibility/Scalability (ASR entity)

Abstract scenario Application shall instantly notify

changes to the interested clients

(Scenario entity).

Abstract scenario Application shall be able to handle

simultaneous notification requests

from increased number of client

(Scenario entity)

Architecture Decision Event notification (Architecture

Decision entity)

Design option 1 Publish scribe (Alternative entity)

Design option 2 Java RMI (Alternative entity)

Design Pattern Publish on demand (Pattern entity)

o Tyree et.al [10] also proposed a template based automated system for

architectural knowledge and mainly focused on the design rationale.

• Documentation framework for managing architectural knowledge.

o Heesh et.al [11] introduced a document based framework which represents

the architectural knowledge with 4 different viewpoints such as a decision

detail view point, a decision relationship view point, a decision chronology

view point and a decision stakeholder involvement view point.

13

• Semantic web techniques for managing architectural knowledge.

o Present day, research engineers acquire the usage of semantic web

technologies for representing knowledge bases for the several domains

which have similar experiences [12]. Both human and computer can

understand and work in a collaborate environment through semantic web.

Later a rich conceptual schema called ontologies emerged to play a key role

of knowledge bases with managing and reasoning [13].

2.4 Why Ontology Driven Software Engineering is Needed.

In computer science, ontology become a conceptual trend to have knowledge bases

which focus on specific domains. Over the past two decades, many of software systems

failed due to lack of domain knowledge, lack of experience of software engineers and

the deviation from the initial design architecture. When the consideration of the life

cycle of a software system was emerged, it is constructed by several phases including

requirement gathering phase, design phase, implementation phase, testing phase and

maintenance phase. In each phase of SDLC has a specific domain knowledge. A

research [14] was conducted by Bhastia et.al and categorized ontologies in SDLC

phases. The following figure 2-1 shows that how they did the categorization.

14

Dillon et.al [15] pointed out the necessity of software engineering knowledge

management system which provided better communication of software engineering

domain knowledge among human and computers.

Requirement engineering considered as the initial phase of SDLC. Some of the

problems in this phase are [16];

o Mostly, the software engineers are not the domain experts.

o Incomplete and ambiguous requirements may tend to do reworks after

the system implementation.

o Need to contact customers time to time to grab the domain knowledge.

Figure 2-1 Ontology Categorization in SDLC Phases

15

Above stated problems can be solved by an ontology-based knowledge management

approach.

To test a software system successfully, test engineers should have the strong domain

knowledge within the context. One of researcher has implemented a software testing

knowledge management portal to share and retrieve the testing knowledge among the

software testers [17]. Mainly three categories of information were stored in the

knowledge management system. They are general information (project details), test

cases and test results. Figure 2-2 below, illustrates the architecture of above-mentioned

knowledge management system with five layers.

Figure 2-2 Design Architecture of Knowledge Management Portal

16

2.5 Strengths and Weaknesses of Having Ontology Driven Software Engineering

Bhaia et.al [18] analyzed the SWOT (Strengths, Weakness, Opportunities and Threats)

analysis of ontology driven software engineering.

• Strengths using ontology to drive software engineering

o Ability to share and reuse software engineering knowledge.

o Software engineering knowledge is available in the format

which is understandable by both human and machines.

o Effective communication media.

• Weakness of using ontology to drive software engineering

o No standardization to generate ontologies for software

engineering.

o Considerable time to develop an ontology which gain an extra

cost.

2.6 Designing Ontology-based Knowledge Management System.

At the beginning, ontology life cycle and the ontology development process were

introduced in 1997 [19]. Typically, designing an ontology can be divided into two

main sections that are conceptualization and specification [20]. Conceptualization

describes about organizing the knowledge. Specification describes about to grab the

informal knowledge from a specific domain.

Basic ontology design steps are [20]:

• Identifying the ontology goal and scope.

• Focusing the domain description.

• Identifying motivation factors and competence questions to build the

ontology.

• Identifying the relations among terms in the focused domain.

• Identifying the classes, attributes and relations among the classes.

• Implementing the ontology with supporting tools like protégé [21].

17

2.7 Problems in Ontology Development

• All ontology development approaches do not cover all the processes in

ontology life cycle but most of approaches are focused on the ontology

implementation activities. There is a lack of attention to other aspects such as

ontology management, learning and ontology evaluation.

• Mostly, the ontologies are not designed for general usage because ontologies

are typically developed for a single domain.

• Available tools do not cover all the necessary activities in ontology

development.

2.8 Ontology Implementation

To implement ontology-based knowledge management system, there is a tool to

support or code implementation approach with using apache Jena [22]. A domain

specific research was implemented by using protégé tool because it has a plug-and-

play environment [20]. Other thing that ontologies which are implemented by using

protégé, that can be exported into different formats such as RDFS and OWL.

If the ontology developer is capable of java programming, Apache Jena library can be

used to implement the ontology-based system. Jena API supports to create ontology

classes and properties which formulate a ontological model [23]. Basic building blocks

are represented by using ontology classes in Jena API. The main operations which are

union, intersection and difference, provided by Jena API. Those operations are used to

create new ontology models. The following figure 2-4 shows the development steps

for the ontology-based knowledge management system.

18

2.9 Ontology Validation

After implementing the ontology system, the system should be validated. RDF Data

Query Language (RDQL) [20], OWL Query Language (OWL-QL) can be used to

query the ontology knowledge management system. Otherwise the FaCT++ [17] and

HermiT which are the inbuilt reasoners in the protégé, can be used to evaluate the

ontology system. As a conclusion of ontology evaluation tools, there are six

dimensions with respect to the quality of ontology system [24].

1. Human understandable

2. Logical consistency

3. Modelling issues

4. Ontology language specification (whether the syntax is correct)

5. Real world representation

6. Semantic applications (how to map the ontology to a software system)

Figure 2-3 Ontology Development Process Using Apache Jena API

19

2.10 Basic Introduction to Ontology and Its Languages

Ontology is a data model of knowledge with a set of concepts within a certain domain

and the relationships among those concepts. In philosophy, ontology is the study of

what exists in general [25]. Basically, the word ontology come up with ‘onto’ and

‘logia’. ‘onto’ means existence or being real and ‘logia’ means science or study.

If particular entity such as a person in human domain want to be considered, particular

person might have many relationships among other individuals; attributes and

properties would describe those relationships. The languages which supported for the

ontologies, are RDF (Resource Description Framework), RDFS (Resource Description

Framework Schema) and OWL (Web Ontology Language).

There are four main types of ontologies.

• Top-level ontology or Upper ontology

o Represents very general concepts

Figure 2-4 Ontology Evaluation Dimensions [24]

20

• Domain ontology

o Fundamental concepts according to a generic domain

• Task ontology

o Fundamental concepts according to a general activity or task

• Application ontology

o Specialized ontology focused on a specific task and domain

To contain a universal understanding of the web resources between software and

people, to share the domain knowledge, and to analyse the domain knowledge are the

main reasons behind the implementation of ontology. Ontology can be applied for

different domains such as software process domain, healthcare domain, education

domain, aviation domain, etc.

2.10.1 RDF

RDF [26] is considered as the first ontology language and was developed my W3C

(World Wide Web Consortium). RDF can describe the information in a general

manner. So, computer applications easily understand the RDF content which is

modelled with a form of subject-predicate-object. Subject is considered as the ‘thing’

which is the class in Object Oriented Programming, and predicate description about

the relationship between Subject and Object. Object is the value which is assigned to

the Predicate. This is called ‘triple’ terminology in RDF.

21

2.10.2 RDFS

RDFS [27] is much richer than the RDF semantically. RDFS could describe the

resources in a concept of classes, properties and values. Resources are like instances

and properties are like attributes. The best thing is to create statements on resources

and type of the relationship. When considering for adding new properties to the classes

of ‘thing’, (‘thing’ is the root class of any other class) there might be some limitation

on RDFS while OWL would solve those problems.

Figure 2-5 Sample RDF Format

22

2.10.3 OWL

OWL [28] is the current trending ontology language. It is more expressive compared

to the RDF and RDFS. It is considered as the next generation of the web (i.e. web 3.0)

and has three sub languages which are OWL Full, OWL DL and OWL Lite. OWL2 is

the latest updated version, extended from OWL1 and has new features compare to

OWL1. OWL basics are classes, individuals, properties and special classes. Every

OWL class would be a sub class of ‘OWL: Thing’ which is the root class in OWL.

Instances of a class are called individuals. Below example shows how to define a class

using OWL.

<owl:class rdf:ID= “Man”>

<rdfs:subClassOf rdf:resource:“#Person” />

</owl:class>

Figure 2-6 Sample RDFS Format

23

Name of the class would be defined by ‘rdf:ID’. The hierarchy of the classes can be

defined by ‘rdfs:subClassOf’ element. Man is the sub class of the Person class. Very

complex classes can be expressed by adding Boolean operators such as union,

complement and intersection.

Individuals are the instances of a class and are constant.

<Man rdf:ID = “Sam” />

OWL properties show the relationship between instances of two classes. Following

example shows how instances are related to each other.

<owl:ObjectProperty idf:ID = “isSister”>

<owl:domain rdf:resource = “#Woman” />

 <owl:range rdf:resource = “#Person” />

 </owl:ObjectProperty>

‘ObjectProperty’ relates to class. ‘Woman’ is a sister of ‘Person’ class instance.

24

Figure 2-7 Sample OWL Content

25

2.11 Ontology Generation

The process of ontology generation is shown in Figure 2-6.

Figure 2-8 Ontology Generation Process

26

The data extraction is relevant to specific domain such as software process domain,

and healthcare domain, etc. Several techniques are used to extract the data such as a

python script, and apache Jena API which is open source and semantic framework.

Apache Jena is limited with Java language and provides data extraction as well as

generating RDF and OWL files using extracted data. The limitation of Apache Jena

narrates that it can unable to generate OWL2 which is the latest ontology web

language. Data extraction process can be automated using Apache Jena. A sample

scenario is described in figure 2-6. Data in extraction process can be XML, JSON, or

text. The sources of data may include lot of unwanted stuff which is needed to be

filtered out by the programmer.

Sometimes the fields to be extracted from sources would be changed based on the

requirements in time to time. So, the programmer needs to change the program logic

to extract the data. Data format of source files might be changed completely to a

different format then the programmer spends a huge effort to change the program logic

to extract data.

Figure 2-9 Data Extraction Process Automation Using Apache Jena

27

The output of the OWL/RDF model which is implemented using Apache Jena, is the

real OWL or RDF file. Apache Jena also can be used to read an OWL or RDF file to

query for further analysis. Other than Apache Jena, protégé tool can be used to generate

OWL files.

The following diagram describes a sample ontology modelling scenario of family

ontology [29]. A family may contain the roles such as mother, father, son, daughter,

grandfather, uncle and aunt. The main super class of any entity is the Person class

which has two sub classes such as Man and Woman. How human entities are related

to each other is shown by figure 2-8.

Figure 2-10 Class Level Hierarchy in Family Ontology

28

After setting all needed classes in the family ontology, properties (data types and

objects) need to be defined with their domain and range values. The user defined

classes (Grandfather, Father, Uncle, Son) are the sub classes of Man class. So, their

domain must be Man class and their range must be Person class. Special case for

Nephew is a subclass from both Man class and Woman class. So, its domain and range

classes should be Person class. The domain for data types properties must be Person

class and the range must be literal values such as integer, and string. Sample object

properties for family ontology is given below.

isHuband – the domain is Man and the range would be Woman

isSon – the domain is Man and the range would be Person

Data type properties somewhat like;

hasName – the domain is Man and the range would be String

hasAge – the domain is Man and the range would be integer

The next step would be the process of adding the individuals for the classes in family

ontology which indicates adding real values for each property. Protégé tool can be

used to create above family ontology then ontology visualization can be illustrated

from ‘Jambalaya’ tab [30].

29

2.12 Ontology Supporting Tools

Protégé is the most popular free and open source ontology editor and consists of user-

friendly interfaces to interact with users easily. Protégé is developed by Stanford

university in 2013. Both industry and the academic utilize protégé tool to build

ontology and analyse the existence of ontologies. Complex and simple ontologies can

be illustrated using protégé tool. Other than above functionalities, third party libraries

(jar files) can be added to the protégé tool such as JESS (Java Expert System Shell) jar

for rule-based reasoning.

Several tables such as ‘Jambalaya’ which is an inbuilt plugin and ‘OntoGraf’, can be

used to visualize the generated ontology. Figure 2-9 shows sample ontology

visualization using ‘Jambalaya’ tab in protégé.

Other than protégé tool, some other tools are available as ontology editors such as

Neon Toolkit [31] which is specially designed for heavy-weight project, SWOOP [32]

which is for small domain projects and OWLGrEd [33] which is a graphical ontology

editor for OWL.

30

Figure 2-11 Sample Visualization for People Ontology Using ‘Jambalaya’ Tab in

Protégé

After conducting the literature, it is obvious to say that ontologies are the most suitable

knowledge bases for the stated research problem.

31

CHAPTER 3

METHODOLOGY

32

This chapter describes how ontology can be used to retrieve the architectural design

decisions from an ontology-based knowledge management system. To decide which

design architecture is best for the system implementation, a broad software design

experience and knowledge are the essential facts. So, this research is intending to

implement the ontology-based knowledge management system to fulfil the experience

gap of software designers.

3.1 Qualities of a Software Architecture

The non-functional requirements often create the quality requirements for a software

system. Some of the main quality requirements for a software system are [34];

• Functionality

o Software system should meet the stated functionalities.

• Reliability

o Ability of a software system functions under stated conditions.

• Usability

o How end users learn and understand the software system.

• Efficiency

o About the performance of the software system.

• Maintainability

o Ability to modify the software system with less effort.

• Portability

o Ability to transfer the software system to another environment.

A good software architecture design should balance these quality attributes.

3.2 Proposed Knowledge Management System

The proposed system is the ontology-based knowledge management system for

architectural design decisions. The architectural design decisions are impacted by

33

organizational changes, development methodologies, cost, time to complete and the

stakeholders. Some decisions may relate to other architectural decisions and those

relations can be categorized based on how they tightly coupled with each decision.

At the first stage, the system need to store the information of each architectural

decision for a software system [2]. That information are the properties of the OWL

class which is represented an architectural design decision. Stored information can be

illustrated as below.

• Architectural decision identifier

• Architectural decision title

• The rationale behind the decision

• Scope

• Cost

• Risk

Other than above information, there will be more points if other facts are important to

get the architectural design decision.

3.3 Automate the Proposed Knowledge Management System

At the first stage, the experience or the knowledge should be gathered from

experienced developers or system architects. In order to gather such information, a

web user interface needs to be implemented. Therefore, the end user can insert his/her

knowledge through the web interface easily. Then collected information will be stored

in a database to retrieve for further processing.

After that, an OWL file needs to be generated using apache Jena API with stored

information, then OWL file helps to analysis or process the data retrieval activity.

Another web interface needs to be implemented to retrieve the data upon querying the

ontology using SPARQL. That web interface may involve simple and advanced search

functionalities to retrieve the relevant information.

34

Figure 3-1 : flow of developing the ontology-based knowledge management system.

Finally, iterative process will be selected to develop the ontology-based knowledge
management system for the proposed solution.

35

CHAPTER 4

SOLUTION ARCHITECTURE AND IMPLEMENTATION

36

Ontology development is a creative process as well as there is no proper and correct

methodology to develop an ontology system [35]. There are some similarities as well

as differences between ontology development and object-oriented development. In

both cases, classes and relations need to be defined but reasons of selecting a class in

Object Oriented Programming (OOP) are different than ontology development. OOP

designs are based on the operational properties while Ontology designs are based on

structural properties. In general, concepts are considered as classes in ontology

designing. After reading several literatures, they illustrated that iterative process is the

most applicable methodology to develop an ontology.

Practically, below abstract steps need be followed to develop an ontology system.

• Identifying and defining the classes in ontology.

• Define the class taxonomic. (class hierarchy)

• Define class properties with their allowed values.

• Define the instances for relevant classes.

When designing the application, it should be more extendable, intuitive and

maintainable. This research has followed some steps to design the model of ontology

which lines with above general steps.

4.1 Steps to Model the Ontology

Mainly 5 steps were followed to implement the overall ontology system. First two

steps are the most time-consuming steps since if there is a mistake happened in those

steps, this study need to revise of those two steps.

37

4.1.1 Step 1 - Determine the Domain and the Scope

This is the initial and important step and affects the overall ontology system. The

domain of this research is only about software architectural knowledge. Again, a

software architectural knowledge is a vast area. Therefore, this research has chosen a

little part of it which is only aided to the architectural design decision from several

stakeholders. When determining the domain and scope, there are some questions to

answer.

1. For what purpose, we are going to use the ontology.

This ontology system is used to gain the appropriate architectural solutions for similar

architectural design issues.

2. Who are the users of ontology system.

The people who design the architecture of a software solution and can be software

architect, senior developers, or any person who has the knowledge to design the

software architecture.

3. Some questions of end users.

There are some additional questions like competency questions or similar questions

from end users.

Ex: what characteristics should I want to consider when choosing a software

architecture.

4.1.2 Step 2 - Define the Classes and Taxonomy

This step is a time consuming while this research needs to think of several aspects

when defining the classes. Here mainly the concepts of classes generated from the real

38

world. Also, this research might struggle to differentiate classes and properties. Six

main classes were identified in out ontology system.

1. Stakeholder

2. Requirement

3. Decision

4. Project

5. Alternative

6. Decision history

When defining the taxonomy of classes, this research can use three main approaches

such as top-down, bottom-up and combination of both.

• Top-down

o It starts with most general or the abstract classes in the ontology domain

and then composes into sub classes.

• Bottom-up

o It starts with specialized classes and then go up.

• Combination

o It is mixture of both top-down and bottom-up approaches. This is most

practical approach to define the taxonomy.

According to requirements of this research, this research do not need the class

taxonomy because this research mainly focus on architectural decisions itself.

4.1.3 Step 3 - Define the Properties of Classes

Class properties are the internal structure of class and can be either object properties

or data properties. Object properties are the instances of a class. Also, those instances

are properties are in another class. Data properties are somewhat like name, colour,

age, etc. which may consider as numeric, string, values and Boolean etc. Below

39

illustrated figure 4-1 shows the properties, this research has selected for ‘Decision’

class of this ontology system.

Each ontology class comprises with unique index to identify each separately.

Furthermore, below points describes above properties of ‘Decision class’.

• Title

o Tells the architectural design decisions.

§ Ex: Choosing a database system for a

telecommunication system.

• Rationale

o It is a brief description about why selecting the relevant

architectural decision.

• Related decision

o This points to a similar kind of architectural decision.

Figure 4-1 Properties of Decision Class

40

• Category

o According to Kruchten [2], there are three major categories of

design decisions such as;

§ Existence decisions

§ Property decisions

§ Executive decisions

Above categories were described in Chapter 2.

• State

o Values for ‘State’ property depend on the organizational wise

and this research have selected some values for State property

such as;

§ Initial

§ Approved

§ Rejected

§ Obsolesced

• This is similar to ‘Rejected’ but cannot be fully

rejected. So, it can be considerable.

• Proposed By

o The stakeholder who propose the architectural decision.

Other properties of other ontology classes are simple, and we can understand them by

observing at those property names.

4.1.4 Step 4 - Define the Relationships Between Classes

These relationships are important aspects when we consider implementing the

ontology system. Following figure 4-2 shows the classes, attributes and relationships

between those classes.

41

Figure 4-2 Class Diagram of Ontology System

Above provided figure illustrates that a project includes business requirements which

is obtained from several stakeholders such as business analysts, project clients, etc.

The requirements can be either functional or non-functional. To fulfil those

requirements, a proper and precise architecture is needed. Moreover, to design such

architecture, a good set of architectural design decisions are needed. One of those

architectural decision can be selected from other similar decisions which are called as

alternatives. Furthermore, decision history will be maintained separately.

After completing the forth step, implementation of ontology system can be started. To

implement such system, several approaches can be used such as tool support like

42

protégé, and program support which is used by a programming language such as Java,

PHP.

4.2 Implementing the Ontology System.

For implementing an ontology system, there is no proper standard system architecture.

Below figure 4-3 shows how the system architecture is composed for this ontology

system.

Figure 4-3 System Architecture for Ontology System

End users of the system can insert their architectural knowledge through the web

interface. Those inserted data will be stored in a database. Below illustrated figure 4-

4 shows specific web interface to insert data.

43

Figure 4-4 Web Interface to Insert Architectural Design Decisions

According to the above web interface, this research firstly needs to select a project

from the drop down filed. Otherwise, web user can insert a new project via another

web interface which is shown in figure 4-5.

44

After selecting the project, stakeholder needs to be selected or else a new stakeholder

can be inserted into the system like inserting a new project previously. Then

requirement details for the architectural decision needs to be inserted with the decision

details. Finally, alternatives and decision history details are to be inserted for

generating the ontology.

4.2.1 Technology Stack Used to Implement the Ontology System.

As previously mentioned, ontology systems can be implemented by using either tool

support or program support. If tool support is selected to implement the ontology, then

the ontology developer needs to learn the tool also. Therefore, for implementing this

ontology system, we choose the Apache Jena [22] because it is convenient for any

programmer. To develop the web application which includes web interfaces to insert

and retrieve knowledge, Spring Boot [36] framework is used because it is less

configurable, embedded with apache tomcat [37] web server and easy to combine with

Figure 4-5 Web Interface to Insert New Project Details

45

other systems such as database systems. To build the project and to manage third party

libraries, apache maven [38] is used. But it is not just a build tool. It supports for entire

life cycle for project development. AngularJS version 1 [39] is used to implement

front-end the web application which has main two interfaces to insert and retrieve the

knowledge. Single Page Application development is the main reason is to choose the

AngularJS framework and easy for validation and integration with the backend

services.

System code base is packaged according the layers such as model, service, repository

and service layers and easy to maintain and keep clean code. Below mentioned figure

4-6 shows how the source code is wrapped into packages.

Figure 4-6 Package Structure of Source Code

46

Inserted data will be stored in MySQL [40] database with suitable relationships among

entities, which are mapped from ontology classes.

4.2.1 OWL File Generation

Apache Jena API provides simple methods to implement ontology classes, their

properties and the relationships. First, we need to implement ontology classes. Below

figure 4-7 indicates the java source code for ontology classes.

After defining the ontology classes, data properties and objects properties need to be

defined with their domain and range values. Below figure 4-8 shows that how to define

a data property for ‘Project’ class.

Figure 4-8 Defining the Data Property for Project class

Figure 4-7 Defining Ontology Classes Through Jena API

47

After defining the ontology classes using Jena API, individuals need to be created.

Here individuals are somewhat similar to the objects in OOP programming. Below

figure 4-9 shows that how to initiate an individual for ‘Project class’ using Jena API.

In this system, the data which creates individuals, are stored in the database. Moreover,

after creating individuals, an OWL file is created which represents the software

architectural design decision ontology.

Figure 4-9 Source Code for 'Project' individual

4.2.1 Implementation of Data Retrieval Functionality

To retrieve the information from ontology system, SPARQL (Protocol and RDF Query

Language) is used. SPARQL is mainly a query language for semantic web. It is not

much difficult to learn SPARQL and is similar to SQL queries. Triple patterns are

somewhat similar to RDF graph triple. Those patterns are the basic component for

SPARQL. Basic structure for the ‘SELECT’ statement is;

48

 SELECT <variables>

 WHERE {

 <graph pattern>

 }

Similar to SQL, SPARQL ‘SELECT’ queries can be embedded with ‘WHERE’,

‘ORDER BY’, ‘LIMIT’ and mathematical operations. The main purpose and

functionality of this ontology system is the sharing of knowledge among the relevant

people such as software design architects, and senior developers etc. To accomplish

this purpose, two main web interfaces including Basic Search and Advanced Search,

are developed. Below figures 4-10 and 4-11 illustrate the user interfaces with certain

search functionalities.

Figure 4-10 User Interface for Basic Search

49

There are two text boxes which has two labels that are ‘Project’ and ‘Decision title’.

Those two text boxes are capable of auto filtering when the user starts typing. After

clicking the SEARCH button, it will filter design decisions from this ontology system.

The system is capable for searching only by project wise or decision wise or both

values.

Advanced Search functionality is another a web interface and similar to the Basic

Search. But it consists of three more additional fields that are ‘Stakeholder’,

‘Requirement’, and ‘Proposed By’. Through the ‘Advanced Search’, the system

operates more filtering process for results from Architectural Knowledge Management

System of this research’s system. Figure 4-11 shows that how ‘Advanced Search’ User

Interface is designed.

 Figure 4-11User Interface for Advanced Search

50

Instead of using a programming language, protégé tool can be used to retrieve the

architectural knowledge from an ontology system. But there is a requirement for the

knowledge of using the protégé tool. After implementing this ontology system, end-

user can only interact with web interfaces which is more user-friendly for them. Few

of java classes for implemented system are included in Appendix C.

51

CHAPTER 5

EVALUATION

52

The implemented system and the ontology are evaluated in this chapter. When

considering the ontology evaluation, there are two important aspects such as quality

and correctness [41]. Quality of ontology combines with ontology verification and

ontology validation. Ontology verification indicates building an ontology system

correctly. Likewise, ontology validation indicates building the correct ontology

system. Evaluation mainly depends on metrics. Those metrics provide the comparable

results which help to get the decisions on the evaluated system.

There are three main ontology types [41]:

• Structural metrics

o Syntax and semantics are concerned.

• Functional metrics

o Intended usage and components of ontology are concerned.

• Usability profiling

o Communication aspects of ontology are concerned.

When considering the structural metrics, Chapter 4 describes that how syntax and

semantics are selected on the specific domain in this research.

5.1 Structural Evaluation

Implemented ontology (i.e. OWL file) will be evaluated through protégé tool to check

whether it contains correct semantics and syntaxes.

5.1.1 Ontology Classes

After uploading the .owl file to the protégé tool, it shows the ontology classes which

are implemented programmatically. Below figure 5-1 shows that how they are

illustrated in class tab in protégé.

53

Implemented solution encompasses with six main ontology classes such as:

• Alternative

• Decision

• Decision History

• Project

• Requirement

• Stakeholder

And protégé tool also is illustrated same ontology classes. Therefore, the ontology

class implementation is valid according to the above evidence.

5.1.2 Ontology Data Properties

For the ‘Project’ ontology class authors have defined some data properties such as

ProjectID, and ProjectName, etc. Data property tab in the protégé tool shows the

Figure 5-1 Ontology Class in Protégé

54

properties with the domain and range values in ‘Project’ ontology class and indicates

that the ontology implementation is valid with the data properties. Such kind of sample

is illustrated in below figure 5-2.

 Figure 5-2 Data Properties with Domains and Ranges

5.1.3 Individuals in Ontology

Ontology individuals are the real data values of the ontology classes and similar to the

Objects and Classes in Object Oriented Programming. Protégé tool has a tab which is

called ‘Individual’ and shows the read data values relevant to the ontology class and

properties. Following figures (5-3 and 5-4 figures) show a sample of an individual of

the uploaded .owl file.

55

Figure 5-4 Individual Property Values for Project Class

After analysing the .owl file with the protégé tool, it is confirmed that the implemented

ontology is semantically and syntactically correct.

Figure 5-3 Individual Values for Project Ontology Class

56

5.2 Evaluate the system performance

Main objective of this research is to provide a knowledge base for architectural design

decisions which is the intended usage of the solution that is provided by the authors.

After feeding the data to the system, it creates an owl file which is the architectural

design decision ontology. Then, the owl file is evaluated by a search query to visualize

the architectural knowledge which is the intended usage of ontology. Different sizes

of owl files are evaluated by their average executed times. Hardware specification of

the computer system is listed below and has been used to evaluate the ontological

knowledge base.

• Processor: 2.7 GHz dual-core Intel Core i5 processor

• RAM: 8 GB

• Operating System: MacOS Mojave

A SPARQL is used to get the relevant architectural knowledge. Following figure 5-5

illustrates it.

Figure 5-5 SPARQL Search Query

Some lines of java added to the program file and gets the execution time in

milliseconds. Following figure 5-6 shows that how authors calculate the execution

time through programmatically.

57

Figure 5-6 Calculate Execution Time Programmatically

Three consecutive execution times are added, then obtain the average time as the

execution time to below chart and figure 5-3 indicates some consecutive execution

time. The initial time massively distinguish compared to the other execution times

although it holds the ontology loading time to the system as well.

 Figure 5-7 Consecutive Execution Times on Search Functionality

58

After executed the search query, the results are located into a table which contains the

important details of an architectural design decisions. Figure 5-4 shows sample results

of a SPARQL query.

Five different sizes of owl files have been selected to evaluate the ontology, and those

owl details are listed below table.

Table 5-1 OWL File Sizes Over Execution Times

OWL file size (KB) Execution time (milliseconds) Number of decisions

16 3 1

25 2.6 25

36 2.8 50

52 3.6 75

80 3.6 100

The results shown in table 5-1 are converted into a bar chart which have x axis labelled

as OWL file size and y axis labelled as execution times in milliseconds. Following

Figure 5-8 A Sample Results of a SPARQL Query

59

chart (figure 5-9) illustrates relevance to such details. There are no ample differences

in execution time with increasing the size owl file. Therefore, it indicates that the

performance of the implemented ontology based on architectural knowledge

management system is better than even the bulk data of knowledge. It might be an

impact if the owl file includes minimum 20 megabytes to execute the SPARQL query,

but it may require more than one million records to reach certain size.

5.3 System Evaluation

System evaluation is divided into two main strategies that are functionality evaluation

and user interface evaluation. Both strategies are evaluated through questionnaires

which is given to the users.

5.3.1 Functionality Evaluation

Ten people were selected who has a knowledge about ontology concepts and the tools

like protégé and Apache Jena. They were allowed to go through the implemented

system and give their feedbacks to the questionnaire (Appendix A). Questionnaire is

constructed with several questions. Five of them are selected as scenarios. Those

scenarios are evaluated and create an impact to functionalities of the system. Each

 Figure 5-9 Execution Times Over Size of OWL Files

60

question is made with scale which is called as Likert scale and contains 1 to 5 scales

for this research. The scales are described the following:

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

Following table 5-2 illustrates the scenario number and the point value which are

obtained by the user who involved in this research.

Table 5-2 Appendix A - User Feedbacks

User Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 1 2 1 4 2

2 1 2 1 4 2

3 2 2 1 5 2

4 2 2 1 4 1

5 3 2 1 5 2

6 1 3 1 4 2

7 2 2 2 4 2

8 2 1 1 4 2

9 3 2 1 4 2

10 2 2 1 4 2

Average

Value

1.9 2 1.1 4.1 1.9

61

Following chart (figure 5-10) illustrates the average point values which captured from

each scenario. Each scenario is explained after the figure 5-10.

Figure 5-10 Functionality Evaluation Based on Questionnaire

• Scenario 1:

o Ease of ontology creation through the system but without knowing any

ontology concepts.

• Scenario 2:

o Ontology creation is consistent through the system.

• Scenario 3:

o Manage the ontology through system without protégé tool. (i.e. Querying

the ontology.)

• Scenario 4:

o faced some difficulties when using the system. (i.e. it asks about whether

the system can be considered as a traditional system which get the results

from database)

62

• Scenario 5:

o Overall satisfaction on system functionalities.

According to the above chart, many users were able to manage the ontology system

without facing any difficulties. The users attained their accomplishment to move the

intended usage to the ontology. Mostly, the users provided the point two for scenario

2 because they face some difficulties to use with consistency of the ontology system.

Furthermore, it requires reasoning and inferencing techniques to validate and check

whether the ontology has a proper consistent.

 5.3.2 User Interface Evaluation.

The solution is completely web based and may require strong web interfaces to convey

the ideas to the end user. For this kind of evolution, evaluators might have the

knowledge about ontology concepts, but it is not much important to evaluate the user

interfaces of the system. Later, ten users were selected and allowed them to go through

the system. They included some additional architectural decisions to the system,

queried on that information and finally provided some feedbacks to given

questionnaire (Appendix B). This questionnaire is constructed based on some

scenarios like previous questionnaire. Five questions of new questionnaire were

selected to evaluate the user interfaces and provided scales which are same as previous

questionnaire, and which is used for functionality evaluation. The relevant feedbacks

information is listed in below table 5-3.

63

Table 5-3 Appendix C - User Feedbacks

User Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 1 2 2 4 1

2 2 1 2 4 1

3 1 2 1 4 2

4 1 1 2 5 1

5 2 1 2 4 1

6 1 2 2 4 2

7 1 2 2 4 1

8 1 2 2 5 1

9 1 2 2 4 1

10 1 2 2 5 1

Average 1.2 1.7 1.9 4.3 1.2

Then the feedback data is illustrated with their scenarios in following figure 5-11.

Figure 5-11 User Interface Evaluation Results

64

• Scenario 1:

o User can manage the system without any instructions.

• Scenario 2:

o User can learn system functionalities easily and quickly.

• Scenario 3:

o Web interfaces are made of well-organized elements.

• Scenario 4:

o Web interfaces may require additional enhancements or improvements.

• Scenario 5:

o User can recover from mistakes easily.

Evaluation of Feedback on user interfaces indicates that the system has strong

interfaces, and users are satisfied with the system. According to the above illustrated

chart, scenario one and five have the highest score which conveys that the user can

handle the system without any instructions and can easily recover their mistakes.

Above evaluated methodologies are covered with two main evaluation metrics which

is described in the beginning of this chapter and those two metrics are:

• Structural metrics

o Authors evaluated through the protégé tool.

• Functional metrics

o System performance evaluation and functionality evaluation are

wrapped with this metric.

Throughout the evaluation process, authors have successfully achieved the project

objectives with some limitation which will be described in chapter six.

65

CHAPTER 6

CONCLUSTION

66

Typically, the software projects fail due to wrong architectural design decisions.

Inappropriate architectural design decisions may lead to construct inappropriate

architectural design which is the footprint or the initial step of any kind projects which

may be smaller or larger. So, knowledge bases are emerged as a key solution for such

kind of problems. Nowadays, researchers are typically finding the knowledge bases

through ontological aspects because ontologies are the future trend of knowledge

which is made of semantics. Semantics are the relationships among the data elements

and helps to find the strong relationships among data.

6.1 Research Contribution

The main research objective is to construct an ontology-based knowledge management

system for architectural design decisions. Authors have identified the important

aspects on architectural design decisions and developed a knowledge base with step

by step. Initially authors identified the domain and defined the ontology classes and

the taxonomy with data properties and object properties. With the help of Apache Jena

authors implemented a system with containing ontology creation (OWL file) and

ontology querying programmatically.

Architects or any senior software engineers who has strong experience on architectural

designing can input the data into the system through web interfaces of the system.

Furthermore, any user who needs the knowledge on architectural designing can make

query/queries into the system by providing inputs to the search queries through a web

interface. After that, the previously inputted data or the past knowledge which is stored

on architectural design decisions, will be displayed when it is needed.

In chapter five, authors performed evaluations for the implemented solution based on

structural metrics and functional metrics. Those evaluations have proved that the

implemented solution possesses the quality and the correctness which is considered as

the important aspects of ontology evaluations. So, the industry or the organizations can

get the real benefit of architectural designing from the implemented solution with some

enhancements of the system such as distributed knowledge base.

67

6.2 Research Limitation

Even though many tools are available for ontology creation and analysis, only protégé

tool is the popular one and has vast functioning domain for ontologies written in RDF,

RDFS, OWL and OWL2. So, ontology specialists or expertise people have to learn

those kinds of tools thoroughly. In this research, authors have attempted to find a

solution without any tool-based solutions but implemented a web-based ontology for

users who may have or may not have knowledge of tools like protégé. Although

Apache Jena is the library, authors have used it to implement the ontology, but it

supports only Java programming language currently. But Apache Jena still does not

support for OWL2 which the latest ontology language is.

Unable to edit and save the existing ontology file is another limitation of Apache Jena

library. But it can be resolved if the user opens the owl file by using the protégé tool.

Then the user has to completely learn the protégé tool. Rather than Apache Jena, some

ontology developers implemented some other libraries such as OWLAPI [42] to create

and manipulate the ontology files, but the above mentioned limitations are still exist

on those libraries.

6.2 Future Work

Implemented solution is a web-based system which has three tier architecture and was

implemented as a proof of concept for the research objective. Existing solution does

not directly create the ontology when the end-user clicks the ‘create ontology’ button

since the fed data are stored in the database and then those data are mapped into an

ontology. So, it requires a mechanism to edit the existing ontology file

programmatically.

Many Organizations maintain the architectural design documentations and other

important documentation. So, feeding those data into another system may be an extra

burden to the important people in those organizations. Therefore, the implemented

solution can be enhanced to grab the architectural knowledge from those

documentations by using some annotations. Finally, to establish the implemented

68

solution from this research to any organization, there will not be extra work and the

system would help organizations to keep their projects success.

69

REFERENCES

[1] B. Len, P. Clements, and R. Kazman, Software Architecture in Practice (2nd

Edition). Addison-Wesley Professional; 2 edition (2003-04-19) (1656), 2003.

[2] P. Kruchten, “An ontology of architectural design decisions in software

intensive systems,” in 2nd Groningen workshop on software variability, 2004,

pp. 54–61.

[3] V. Jain and M. Singh, “Ontology development and query retrieval using protégé

tool,” Int. J. Intell. Syst. Appl., vol. 9, pp. 67–75, 2013.

[4] M. A. Babar, I. Gorton, and B. Kitchenham, “A framework for supporting

architecture knowledge and rationale management,” in Rationale Management

in Software Engineering, Springer, 2006, pp. 237–254.

[5] R. Abdullah, Z. M. Shah, and A. M. Talib, “A Framework of Tools for

Managing Software Architecture Knowledge,” Comput. Inf. Sci., vol. 4, no. 2,

p. 2, 2011.

[6] A. Jansen and J. Bosch, “Software architecture as a set of architectural design

decisions,” in Software Architecture, 2005. WICSA 2005. 5th Working

IEEE/IFIP Conference on, 2005, pp. 109–120.

[7] N. Choobdaran, S. Mehran Sharfi, and M. R. Khayyambashi, “An Ontology-

Based Approach For Software Architectural Knowledge Management,” J.

Math. Comput. Sci., vol. 11, pp. 93–104, 2014.

[8] K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet, “Ontology-based software

architecture documentation,” in Software Architecture (WICSA) and European

Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP

Conference on, 2012, pp. 121–130.

[9] M. A. Babar and I. Gorton, “A tool for managing software architecture

knowledge,” in Sharing and Reusing Architectural Knowledge-Architecture,

Rationale, and Design Intent, 2007. SHARK/ADI’07: ICSE Workshops 2007.

Second Workshop on, 2007, p. 11.

70

[10] J. Tyree and A. Akerman, “Architecture decisions: Demystifying architecture,”

IEEE Softw., vol. 22, no. 2, pp. 19–27, 2005.

[11] U. Van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for

architecture decisions,” J. Syst. Softw., vol. 85, no. 4, pp. 795–820, 2012.

[12] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Sci. Am., vol.

284, no. 5, pp. 34–43, 2001.

[13] I. Horrocks, “Ontologies and the semantic web,” Commun. ACM, vol. 51, no.

12, pp. 58–67, 2008.

[14] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontologies for software

engineering: Past, present and future,” Indian J. Sci. Technol., vol. 9, no. 9,

2016.

[15] T. S. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based software

engineering-software engineering 2.0,” in Software Engineering, 2008. ASWEC

2008. 19th Australian Conference on, 2008, pp. 13–23.

[16] H.-J. Happel and S. Seedorf, “Applications of ontologies in software

engineering,” in Proc. of Workshop on Sematic Web Enabled Software

Engineering"(SWESE) on the ISWC, 2006, pp. 5–9.

[17] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, and J. Xiang, “An ontology-

based knowledge management system for software testing,” in The Twenty-

Ninth International Conference on Software Engineering and Knowledge

Engineering (SEKE), 2017, pp. 522–525.

[18] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “SWOT Analysis of Ontology

Driven Software Engineering,” Indian J. Sci. Technol., vol. 9, no. 38, 2016.

[19] O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez, “Ontological

engineering: what are ontologies and how can we build them?,” 2007.

71

[20] G. Brusa, M. L. Caliusco, and O. Chiotti, “A process for building a domain

ontology: an experience in developing a government budgetary ontology,” in

Proceedings of the second Australasian workshop on Advances in ontologies-

Volume 72, 2006, pp. 7–15.

[21] A. LeClair and R. Khedri, “Conto: a protégé plugin for configuring ontologies,”

Procedia Comput. Sci., vol. 83, pp. 179–186, 2016.

[22] “Apache Jena,” 2018. [Online]. Available: https://jena.apache.org/. [Accessed:

21-Mar-2019].

[23] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.

Wilkinson, “Jena: implementing the semantic web recommendations,” in

Proceedings of the 13th international World Wide Web conference on Alternate

track papers & posters, 2004, pp. 74–83.

[24] M. Poveda-Villalón, M. Suárez-Figueroa, and A. Gómez-Pérez, “Validating

ontologies with oops!,” Knowl. Eng. Knowl. Manag., pp. 267–281, 2012.

[25] H. Sack, “Ontology as Central Concept in Philosophy.” [Online]. Available:

https://www.youtube.com/watch?v=mXdswAsFxO0. [Accessed: 21-Mar-

2019].

[26] “Resource Description Framework.” [Online]. Available:

https://en.wikipedia.org/wiki/Resource_Description_Framework.

[27] “RDFS,” 2010. [Online]. Available: https://www.w3.org/2001/sw/wiki/RDFS.

[Accessed: 22-Mar-2019].

[28] “OWL,” 2012. [Online]. Available: https://www.w3.org/OWL/. [Accessed: 21-

Mar-2019].

[29] “Ontology-based modelling and querying.” [Online]. Available: http://www-

inf.it-sudparis.eu/~gaaloulw/KM/Labs/Lab2/Ontology-based-modeling.htm.

72

[30] M.-A. Storey, M. Musen, J. Silva, C. Best, R. Fergerson, and N. Ernst,

“Jambalaya: Interactive visualization to enhance ontology authoring and

knowledge acquisition in Protégé,” Proc. 7th Int. Conf. Intell. user interfaces

(IUI ’02), p. 239, 2002.

[31] “This is a static HTML export of the Neon-Toolkit Wiki.,” 2014. [Online].

Available: http://neon-toolkit.org/wiki/Main_Page.html. [Accessed: 21-Mar-

2019].

[32] ““Swoop,” 2007. [Online]. Available:

http://semanticweb.org/wiki/Swoop.html. [Accessed: 21-Mar-2019].

[33] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Spro, “OWLGrED : a

UML Style Graphical Editor for OWL Interoperation with Protégé,” Computer

(Long. Beach. Calif).

[34] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif, “Quality

characteristics for software architecture,” J. Object Technol., vol. 2, no. 2, pp.

133–150, 2003.

[35] N. F. Noy, D. L. McGuinness, and others, “Ontology development 101: A guide

to creating your first ontology.” Stanford knowledge systems laboratory

technical report KSL-01-05 and~…, 2001.

[36] “Spring Boot.” [Online]. Available: https://spring.io/projects/spring-boot.

[Accessed: 20-Mar-2019].

[37] “Apache Tomcat.” [Online]. Available: http://tomcat.apache.org/. [Accessed:

15-Mar-2019].

 [38] “Apache Maven Project.” [Online]. Available: https://maven.apache.org/.

[Accessed: 15-Mar-2019].

[39] “AngularJS Tutorial.” [Online]. Available:

https://www.w3schools.com/angular/. [Accessed: 02-Mar-2019].

[40] “MySQL.” [Online]. Available: https://www.mysql.com/. [Accessed: 02-Mar-

2019].

73

[41] and D. S. Hlomani Hlomani ∗, “Full-Text,” vol. 1, pp. 1–5, 2014.

[42] “OWLAPI.” [Online]. Available: https://github.com/owlcs/owlapi. [Accessed:

02-Mar-2019].

74

Appendix A How Ontology Concepts Affect to the User

Do you know what an ontology or knowledge base is?

1. Yes

2. No

Do you feel or understand the ontology concept when you use the system?

1. Yes

2. No

Have you experience with protégé?

1. Yes

2. No

Have you ever tried out to create an ontology through protégé?

1. Yes

2. No

If you have experience with protégé, do you think ontology creation using the

implemented system is very easy?

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

Do you think that the ontology creation through the system is consistent?

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

75

5. Disagreed

Without knowing protégé tool, have you abled to manage the ontology through the

system.

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

Without knowing ontology concepts and ontology tools like protégé, do you feel

any difficulties with the system.

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

Are you completely satisfy with the system?

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

76

Appendix B User Interface Evaluation

I can use the system without any user instructions

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

I can learn the system (functionalities) very quick and easily

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

Web interfaces consist well organized elements (text inputs and labels)

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

It may need more enhancements/improvements

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

77

I can recover from mistakes easily

1. Strongly agreed

2. Agreed

3. Slightly agreed

4. Slightly disagreed

5. Disagreed

78

Appendix C Sample Java Classes for Proof of Implementation

Some important java classes are illustrated below for the proof of implementation.

• Decision.java

79

• OntologyService.java

80

• QuerySearch.java

