
A COMPONENT BASED USER INTERACTIVE DESIGN

PATTERN RECOMMENDATION TOOL

Udagamage Don Nilani Damayanthika Gunasekara

179319X

M.Sc. in Computer Science

Department of Computer Science Engineering

University of Moratuwa

Sri Lanka

May 2019

A COMPONENT BASED USER INTERACTIVE DESIGN

PATTERN RECOMMENDATION TOOL

Udagamage Don Nilani Damayanthika Gunasekara

179319X

This dissertation submitted in partial fulfillment of the requirements for the Degree

of MSc in Computer Science specializing in Software Architecture

Department of Computer Science Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLEATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: ……………… Date:…………….

Name: U.D.N.D. Gunasekara

The supervisor/s should certify the thesis/dissertation with the following declaration.

I certify that the declaration above by the candidate is true to the best of my

knowledge and that this report is acceptable for evaluation for the CS5999 PG

Diploma Project.

Signature of the supervisor: …………………………. Date: ………………...

Name: Dr. Indika Perera

ii

Abstract

In today's context, growth of software industry is very rapid and the complexity of the

software systems is increasingly high. To cope with the growing complexity, enhancement in

the existing system is required. Design patterns offer effective ways of developing high

quality products by providing best practices, design knowledge and reusable

implementations. For a novice developer it is a hard task to select a proper design pattern to

the knowledge he has. There are research studies carried out to suggest design patterns for a

given problem scenario, but they are not focused on how the design pattern is to be selected.

In this paper the researcher proposes a user interactive component based design pattern

recommendation tool, to learn concepts behind selecting and suggesting design patterns for a

given problem. A proof of concept is developed to evaluate the suggested tool which

supports 23 design patterns described by the Gang of Four (GoF). For each pattern a set of

weighted design pattern selection criteria has been defined. The user is responsible for

identifying the components in the problem scenario and selecting suitable design pattern

criteria and relationships for each identified component. Also user is asked to state the

problem scenario and it is evaluated in Watson Assistant. Based on the selected criteria

weightages and confidence received from the Watson assistant, appropriate design pattern is

suggested with generated simplified class diagrams and the design reasoning. The tool will

suggest only one design pattern. With the results of the survey conducted for novice

developer, 84.8% of users were able to learn something related to design patterns by using

the tool and for the test scenario tested the recommendations were 83.3% accurate. Further

improvements can be suggested in the usability, accuracy, design reasoning and support, for

more design patterns to reach the production level and additionally can also add more user

interactions by introducing a virtual teacher as in the form of chat bot.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my research

supervisor, Dr. Indika Perera for his continuous guidance, knowledge shared and

patience extended towards my research.

And my sincere gratitude goes towards all my colleagues and friends for their kind

support given to continue my research, by providing ideas and sharing their

experiences.

Finally, I would also like to thank my parents for always encouraging and guiding

myself towards wisdom with an unconditional love throughout my life.

iv

TABLE OF CONTENT

DECLEATION ... i

Abstract .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENT .. iv

LIST OF FIGURES ... vii

LIST OF ABBREVIATIONS .. x

LIST OF APPENDICES ... xi

INTRODUCTION ... 1

1.1 Design Patterns ... 3

1.2 Structure of the Design pattern ... 3

1.3 Design pattern selection criteria ... 4

1.4 Problem .. 4

1.5 Objectives ... 5

1.5.1 General Objectives ... 5

1.5.2 Specific Objectives .. 6

1.6 Suggested System ... 6

LITERATURE REVIEW... 7

2.1 Introduction .. 8

2.2 Design patterns ... 8

2.2.1 Purposes and the Scopes of the design patterns ... 11

2.2.2 Relationship between Design patterns ... 12

2.2.3 Case studies on Design Patterns .. 20

2.3 Similar Researches ... 21

2.3.1 Automated Framework to Select Suitable Design Pattern....................... 21

2.3.2 Recommendation System for Design Patterns... 22

2.3.3 Design Pattern Recommendation... 22

2.3.4 Interactive Design Pattern Recommendation .. 23

2.3.5 A solution strategy method for Design pattern selection 23

v

2.3.6 Design pattern selection based on MAS technology 24

2.3.7 Design Patterns Searching System using Case-based Reasoning 25

METHODOLOGY ... 26

3.1 Introduction .. 27

3.2 Proposed Solution ... 27

3.2.1 Graphical User Interface for user to interact with the system 27

3.2.2 Design pattern framework providing the best matching design pattern 27

3.2.3 Map user data with design pattern framework ... 28

SOLUTION ARCHITECTURE AND IMPLEMENTATION 29

4.1 Introduction .. 30

4.2 High level architecture ... 30

4.2.1 User Design Panel .. 31

4.2.2 Design pattern selection framework .. 32

4.2.3 Knowledge base ... 34

4.3 Implementation ... 40

4.3.1 Watson Assistant configuration ... 40

4.3.2 Graphical user interface-web page .. 43

4.3.3 Design pattern selection framework service .. 48

4.3.4 Knowledge base ... 49

DATA ANALYSIS AND EVALUATION ... 50

5.1 Introduction .. 51

5.2 Analysis on adding design patterns .. 51

5.3 Evaluation on design pattern selection criteria ... 53

5.4 Evaluation on developed sample prototype application 53

5.4.1 Evaluation of different problem scenarios ... 54

5.4.2 Evaluation on same scenario with different users 58

CONCLUSION .. 62

6.1 Research contribution ... 63

6.2 Research Limitation ... 64

6.3 Future Work and conclusion .. 64

References .. 66

vi

APPENDIX A: Survey Questioner 01.. 70

APPENDIX B: Survey Questioner 02.. 77

vii

LIST OF FIGURES

Figure 2.1: Design pattern Relationships…………………………………….......... 13

Figure 2.2: Categorization of design patterns relationships...................................... 14

Figure 2.3: Revised Classification... 15

Figure 2.4: Layered structure of the design patterns... 16

Figure 2.5: The structure of the Prototype-Abstract Factory.................................... 18

Figure 2.6: The frequency of occurrences of design pattern..................................... 19

Figure 2.7: Classification of Pattern Couplings... 20

Figure 4.1: High level architectural diagram of the suggested system................... 30

Figure 4.2: High level overview of the User design panel....................................... 31

Figure 4.3: High level architecture of Design Pattern Framework.......................... 33

Figure 4.4: Added Intents in defined Watson Assistant skill................................... 41

Figure 4.5: Adding examples to an intent.. 41

Figure 4.6: WA - Request JSON.. 42

Figure 4.7: WA Response JSON.. 42

Figure 4.8: Problem Description... 43

Figure 4.9: Design Panel... 44

Figure 4.10: Component creation model window.. 45

Figure 4.11: Design Pattern suggestion request.. 46

Figure 4.12: Generated UML diagram.. 47

Figure 4.13: Design reasoning.. 47

Figure 4.14: Design pattern suggestion request... 49

Figure 4.15: ER diagram of the database... 49

Figure 5.1: Participant count with respect to designation.. 51

Figure 5.2: Importance of adding design pattern to the program solution design..... 52

Figure 5.3: Experience in applying design patterns... 52

Figure 5.4: Pattern selection criteria usage.. 53

Figure 5.5: Watson assistant selected intents and confidence................................... 56

Figure 5.6: Accuracy of the returned intent from Watson Assistant......................... 56

Figure 5.7: Accuracy of the design pattern suggestion frame work.......................... 57

viii

Figure 5.8 Completeness of the generated class diagrams.. 57

Figure 5.9: Usability of the developed application.. 58

Figure 5.10: User interaction involved in the form of thinking and analyzing the

given scenario..

59

Figure 5.11: Learning experience with identifying criteria to think when doing a

solution design...

59

Figure 5.12: Understandability of the generated pattern selection reasoning............ 60

5.13: Value addition to the knowledge.. 60

5.14: Developed application as a design pattern learning tool.................................. 61

ix

LIST OF TABLES

Table 2.1: Design patterns its intent and aspects.. 8

Table 2.2: Purposes and the Scopes of the Design patterns................................... 12

Table 2.3: Types of design patterns relationships and reasoning........................... 14

Table 2.4: Relationships categorization.. 16

Table 4.1: Pattern categories and pattern criteria... 35

Table 4.2: Pattern criteria and weightages.. 37

Table 5.1: Different problem scenario... 54

Table 5.2: Evaluation Results on different problem scenarios......................... 55

x

LIST OF ABBREVIATIONS

Abbreviation

Description

GoF Gang Of Four

AST Abstract Syntax Trees

DAO Data Access Objects

DPR Design Pattern Recommender

GQM Goal-Question-Metric

XML Extensible Markup Language

GSSMatrix Global Semantic Similarity Matrix

QMP Query-Matching-Pattern

QSPQ Query-Similarity- Previous Query

QAS) Question-Answer-Session

CIK Collaborative-Implicit-knowledge

DPS Design Pattern Selection

MAS Multi-Agent System

FCA Formal Concept Analysis

CBR Case Based Reasoning

WA Watson Assistant

xi

LIST OF APPENDICES

Appendix

Description Page

Appendix - A Survey Questioner 01 70

Appendix - B Survey Questioner 02 77

1

CHAPTER 1

INTRODUCTION

2

In today’s context software systems are heavily used in all most all the domains.

There are large numbers of software development companies all around the world to

develop the software systems. Apart from the knowledge in business domain, it is

important to have a well experienced development team in order to deliver a quality

software product.

When it comes to software systems, complexity is increasing rapidly. Software

systems become more complex while achieving extendibility, ease of maintenance

and qualitative attributes such as performance, security, usability, accuracy. The best

way to address this complexity problem would be to develop the system based on a

quality software design. The software system design should be flexible,

maintainable, extensible and reusable. This reveals the importance of a well-formed

and accurate software system design.

The software system design is carried out by an experienced person, which is most of

the time done by a software architect. But there is a responsibility for the developers

to do code level designing. To engage in these tasks, it is required to have an

understanding on coding standards, design patterns, architectural patterns, and

system integration patterns and so on.

The first step in designing software would be, knowing the software design patterns

and how to use them properly. This will reduce the development cost and

maintenance cost. For a well experienced developer this will not be a big task but, for

a new developer it would not be an easy task.

Selecting the most suitable design pattern is a critical issue that novice developers

face when designing a solution for a problem. It is mainly due to largely available

design patterns and lack of expertise knowledge required on design pattern selection.

3

1.1 Design Patterns

In the software engineering domain, there are number of design patterns which are

available and those design patterns are used according to the problem domain.

Design patterns are introduced to the code with the guidance of an expert of the

software development practice.

Design patterns are a generic well proven solution to common design problems

which are repeatedly used [1]. Expertise knowledge in designing area is a plus point

where it leads to a product with high quality, which functions in an effective way.

The benefits of the design patterns can be stated as increasing the flexibility,

maintenance and reusability of software design, contributing to the extensibility of

software, capturing the design knowledge based on hands on experience in software

design, documenting the best practices which solves many different types of

problems, a communication tool between software developers which provide a

mechanism to share workable software solutions between developers and working

organizations [2][3].

In general, a pattern has four essential elements [1] which are,

 The pattern name – which is used to describe a design problem

 The problem - which describes when to apply the pattern

 The solution – which describes the elements that used to make up the design,

responsibilities, their relationships, and collaborations

 The consequences – which refers to results and trade-offs of applying the

pattern

1.2 Structure of the Design pattern

Design patterns can be described using a consistent format. According to following

template each pattern can be divided into sections. The template helps to form a

4

uniform structure to the information provided and compare it. This makes design

patterns easier to learn, and use [1].

The template consists of the following sections.

 Pattern Name and Classification

 Intent

 Motivation

 Applicability

 Structure

 Participants

 Collaborations

 Consequences

 Implementation

 Sample Code

 Known Uses

 Related Patterns

1.3 Design pattern selection criteria

It might be hard to find the design pattern which addresses a design problem. To

select the relevant design pattern, as the first step it is needed to consider how a

design patterns can solve a design problem, for that it is required to go through the

intent section which is mentioned under design pattern template. Then it is needed to

figure out how the patterns are interrelated. Next is to figure out the purpose of the

pattern which could be creational, structural or behavioral. Then it is needed to

examine the design whether there is any reason for redesign. As the last step it is

required to identify what could vary in the design that is made.

1.4 Problem

Once the problem domain is clearly defined the next step would be identifying major

components of the system, relationships between components, and behaviors of the

5

components. Then the next step would be selecting and applying the most suitable

design pattern or design patterns.

For an expert developer who has a keen knowledge of design patterns and its use

cases, can easily select best fitting pattern to particular design problem [4]. But for a

novice developer it is a different story. The main reasons are, novice developers do

not have a clear understanding of the problem domain or tangible definition of it [5]

and lack of knowledge in design patterns [4].

There should be a practical way of getting knowledge which facilitates novice

developers on selecting most suitable design pattern for their software solution

design.

1.5 Objectives

The prime objective of this research is to explore the existing researches carried out

to recommend the most suitable design pattern to model a given software solution

and to combine them with new findings related to selecting the appropriate design

pattern and finally to come up with a tool which facilitates novice developers to

model software solution with recommended design patterns.

1.5.1 General Objectives

 To come up with a design pattern recommendation tool which helps

novice developers to model their software solution with recommended

design patterns and get familiar with design patterns, selecting proper

design patterns and its applicability.

6

1.5.2 Specific Objectives

 To come up with user interactive software solution designing panel which

enables the user to,

o Create objects/components

o Assign values to the objects according to role of the

objects/components and its behaviors

o Make relationships between created objects/components

 To come up with design pattern understanding mechanism

 To come up with detailed analysis of the 23 design patterns [1].

 To come up with design pattern selection framework

 To come with an algorithm which matches design patterns and the

software solution designed

 To come with an algorithm which priorities the design pattern

recommendations made

 To come up with design pattern recommendation reasoning panel

1.6 Suggested System

To address the mentioned problem, the solution provided is a user interactive design

pattern recommendation tool. The recommendation tool will provide graphical user

interface to model the user problem in a graphical manner. This will be used to get

the user data into the system.

A design pattern selection framework is introduced to the system to make pattern

selection decisions. There is a mapping algorithm in order to map the user data with

the design pattern selection framework.

7

CHAPTER 2

LITERATURE REVIEW

8

2.1 Introduction

The research works that have been done related to the problem domain were

identified and has been thoroughly understood. In this section the research findings

are arranged in an order for easy of understanding and for the clarity.

2.2 Design patterns

Even though there are plenty of design patterns available in the current context, this

is only focused on the design patterns explained by GoF [1]. The below table is used

to represent the design pattern intents and aspects as they have mentioned in the GoF

[1]. The content of this table is directly taken from GoF [1] but under different

topics.

Table 2.1 : Design patterns its intent and aspects.

Name Intents Aspect(s) That Can Vary

Abstract

Factory

“Provide an interface for creating

families of related or dependent

objects without specifying their

concrete classes.”

“families of product

objects”

Adapter “Convert the interface of a class into

another interface clients expect.

Adapter lets classes work together

that couldn't otherwise because of

incompatible interfaces.”

“interface to an object”

Bridge “Decouple an abstraction from its

implementation so that the two can

vary independently.”

“implementation of an

object”

Builder “Separate the construction of a

complex object from its

representation so that the same

construction process can create

different representations.”

“how a composite object

gets created”

9

Chain of

Responsibility

“Avoid coupling the sender of a

request to its receiver by giving more

than one object a chance to handle the

request. Chain the receiving objects

and pass the request along the chain

until an object handles it.”

“object that can fulfill a

request”

Command “Encapsulate a request as an object,

thereby letting you parameterize

clients with different requests, queue

or log requests, and support undoable

operations.”

“when and how a request

is fulfilled”

Composite “Compose objects into tree structures

to represent part-whole hierarchies.

Composite lets clients treat individual

objects and compositions of objects

uniformly.”

“structure and

composition of an object”

Decorator “Attach additional responsibilities to

an object dynamically. Decorators

provide a flexible alternative to sub

classing for extending functionality.”

“responsibilities of an

object without sub

classing”

Façade “Provide a unified interface to a set of

interfaces in a subsystem. Facade

defines a higher-level interface that

makes the subsystem easier to use.”

“interface to a subsystem”

Factory Method “Define an interface for creating an

object, but let subclasses decide

which class to instantiate. Factory

Method lets a class defer instantiation

to subclasses. ”

“subclass of object that is

instantiated”

Flyweight “Use sharing to support large

numbers of fine-grained objects

“storage costs of objects”

10

efficiently.”

Interpreter “Given a language, define a

representation for its grammar along

with an interpreter that uses the

representation to interpret sentences

in the language.”

“grammar and

interpretation of a

language”

Iterator “Provide a way to access the elements

of an aggregate object sequentially

without exposing its underlying

representation.”

“how an aggregate's

elements are accessed,

traversed”

Mediator “Define an object that encapsulates

how a set of objects interact. Mediator

promotes loose coupling by keeping

objects from referring to each other

explicitly, and it lets you vary their

interaction independently.”

“how and which objects

interact with each other”

Memento “Without violating encapsulation,

capture and externalize an object's

internal state so that the object can be

restored to this state later.”

“what private information

is stored outside an

object, and when”

Observer “Define a one-to-many dependency

between objects so that when one

object changes state, all its

dependents are notified and updated

automatically.”

“number of objects that

depend on another object;

how the dependent

objects stay up to date”

Prototype “Specify the kinds of objects to create

using a prototypical instance, and

create new objects by copying this

prototype.”

“class of object that is

instantiated”

Proxy “Provide a surrogate or placeholder

for another object to control access to

“how an object is

accessed; its location”

11

it.”

Singleton “Ensure a class only has one instance,

and provide a global point of access

to it.”

“the sole instance of a

class”

State “Allow an object to alter its behavior

when it’s internal state changes. The

object will appear to change its class.”

“states of an object”

Strategy “Define a family of algorithms,

encapsulate each one, and make them

interchangeable. Strategy lets the

algorithm vary independently from

clients that use it.”

“an algorithm”

Template

Method

“Define the skeleton of an algorithm

in an operation, deferring some steps

to subclasses. Template Method lets

subclasses redefine certain steps of an

algorithm without changing the

algorithm's structure.”

“steps of an algorithm”

Visitor “Represent an operation to be

performed on the elements of an

object structure. Visitor lets you

define a new operation without

changing the classes of the elements

on which it operates.”

“operations that can be

applied to object(s)

without changing their

class(es)”

2.2.1 Purposes and the Scopes of the design patterns

Design patterns have a scope and the scope can be either class level or object level.

This is the applicability of the design patterns. Based on the purpose the design

patterns have been categorized as Creational, structural and Behavioral.

12

Table 2.2 : Purposes and the Scopes of the Design patterns

 Purpose

 Creational Structural Behavioral

Scope Class Factory Method

Adapter (class) Template Method

Interpreter

Object Abstract Factory

Builder

Prototype

Singleton

Adapter (object)

Bridge

Composite

Decorator

Flyweight

Facade

Proxy

Chain of

Responsibility

Command

Iterator

Memento

Mediator

Observer

Strategy

State

Visitor

2.2.2 Relationship between Design patterns

2.2.2.1 Relationships between Design Patterns

This section summarizes the research done by Zimmer [6]. They have discussed

about organizing design pattern relationships in to different categories, revise the

design patterns and their relationships and arranging them in to different layers.

They have represented a catalog for design patterns, and it was done according to the

following criteria.

1. Jurisdiction (class, object, compound)

2. Characterization (creational, structural, behavioral)

Their major research outcomes were as follows:

 Done a classification for relationships between design patterns

 A new generalized design pattern formed using several other design patterns

13

 A structuring of design patterns with several layers

When considering the relationships between design patterns, two factors stood out

from the rest which are direction of the relationship and the strength of the

relationship. The direction can be unidirectional which can be either forward or

backward and bidirectional. Strength of the relationships was measured based on the

tightly coupled or loosely coupled basis.

Categories of relationships

According to the GoF relationships between design patterns are depicted in figure

2.1.

Figure 2.1: Design pattern Relationships

Source: [6]

For the above design pattern relationships, classification was done according to the

criteria mentioned in table 1. X and Y denote design patterns.

14

Table 2.3: Types of design patterns relationships and reasoning

Relationship Reason

X uses Y in its solution The problem addressed by X has a sub

problem which is similar to the problem

addressed by Y

Solution Y is a part of solution X

X is similar to Y

X and Y addressing similar kind of

problems but not the similar solutions.

X can be combined with Y

The most commonly the combination of

X and Y

After doing the classification, the categorization of relationships is visualized as in

figure 2.2.

Figure 2.2: Categorization of design patterns relationships

Source: [6]

They have come up with a new design pattern called, Objectifier which is responsible

for objectification of behaviors in design patterns.

15

Two design patterns can be related in different ways, a pair of patterns like Abstract

Factory / Prototype can be combined as similar patterns. So, it is difficult to organize

the relationships in different categories. In order to assign relationships to the most

adequate category, the classification of relationships is revised.

Figure 2.3: Revised Classification

Source: [6]

According to the Figure 2.3, it can be shown that the “X uses Y” has become the

most frequent relationship. Based on this relationship the design patterns were

divided in to three different layers, which are called:

• Basic design patterns and techniques.

• Design patterns which address typical software problems.

• Design patterns which specific to an application domain.

The layered structure of the design patterns is represented in figure 2.4.

16

Figure 2.4: Layered structure of the design patterns

Source: [6]

2.2.2.2 Relationships classification between Object-Oriented Design Patterns

Summarization of the research done by Noble [7] is as follows. They have proposed

a two-level classification scheme containing Primary Relationships and Secondary

Relationships. Primary relationships were categorized in to three sections as uses,

refines, and conflicts, whereas secondary relationships were categorized in to nine

sections.

Table 2.4: Relationships categorization

Source: [7]

Primary Relationships

Uses

Refines

Conflicts

“One pattern uses another pattern”

“A specific pattern refines a general pattern”

“A pattern addresses the same problem as another pattern”

Secondary

Relationships

Used by

Refined by

Variant

Variant Uses

“A smaller pattern is used by a larger pattern”

“A general pattern is refined by a specific pattern”

“A variant pattern refines a more well-known pattern”

“A variant of one pattern uses another pattern”

17

Similar

Combines

Requires

Tiling

Sequence of

Elaboration

“A pattern is similar to another pattern”

“Two patterns combine to solve a single problem”

“A pattern requires the solution of another pattern”

“A pattern uses”

“A sequence of patterns from the simple to the complex”

2.2.2.3 Composite Design Patterns

The following sections are summarization of the research done by John [8]. The

report contains details regarding the composite design patterns and a summary of this

report is discussed below.

Template Method-Factory Method

The template method separates an operation in to two parts, variant and invariants.

The variant parts are also called as primitive operations, which are defined in a

subclass. It specifically considers on responsibility. But factory method defers

behaviors to a subclass.

Both patterns have the scope as class; therefore these patterns are less flexible but

tend to be simpler and more efficient. These results in a light weight application at

both compile and run time.

Prototype-Abstract Factory

Instead of sub classing Abstract Factory to parameterize types of the product,

Prototype can be used. In order to do a single concrete a Factory is needed to

configure the appropriate prototype. Even though it is costly, using prototype can

reduces the number of classes that are introduced by the Abstract factory.

“As a rule, PROTOTYPE will work wherever FACTORY METHOD will, and with

more flexibility, but also with higher run-time cost.”

18

Figure 2.5: The structure of the Prototype-Abstract Factory

Source : [8]

Composite-Decorator

Composite implements the Component interface and it defines what you can treat

uniformly. For Decorator to work properly it is needed to have a common interface.

It is hard to decorate a component transparently unless both component and

decorator share an interface.

Composite-Decorator composition adds weight to the argument for a uniform

interface.

Composite-Flyweight

The Composite pattern can produce a lot of overhead if it is applied at too fine in

granularity. Because it will create components for each element even though, those

elements will be redundant. So, in such situations Flyweight can be applied because

it reduces the redundancy by avoiding component creation for duplicated elements.

But sharing components can cause problems.

19

Composite-Iterator-Visitor

Iterator traverse through the composites without thinking how they are linked

together and it enables reuse of common traversal. Visitor lets you perform (or not

perform) type specific work at each point in the traversal. But it seems like classes

which are closely coupled would need someone to be responsible on coupling.

2.2.2.4 Coupling of Design Patterns: Common Practices and Their Benefits

This is the summarization of the research work done by William, James and Bieman

[9]. In this paper they have done a qualitative assess on goodness of design pattern

coupling by considering effects on maintainability, reusability and factorability. 16

papers were used to analyze the 23 design patterns in the GoF[1]. The analysis was

based on the pattern occurrences and pattern coupling. Pattern coupling was

categorized under coupling types such as tightly and loosely. The interaction types

were coupled as intersection as “talks to” or “uses a”, composite and embedded as

“has a”.

Figure 2.6: The frequency of occurrences of design pattern

Source: [9]

20

Figure 2.7: Classification of Pattern Couplings

Source: [9]

2.2.3 Case studies on Design Patterns

2.2.3.1 Visitor versus Interpreter Pattern

The following is the summarization of the research done by Mark, Paul, Tijs and

Jurgen [10]. In this paper they have discussed about selection of Visitor and

Interpreter design patterns which are based on Abstract Syntax Trees (AST). AST is

the based interpreter for Rascal programming language. They have used quantitative

methods to understand the consequences of selection choices made.

They have gone through five realistic scenarios related with maintainers and have

come up to a conclusion. The solution implemented with Visitor pattern is more

maintainable than a solution implemented using Interpreter Pattern. But in some

trivial situations, solutions based on the Interpreter pattern are more maintainable.

Further, they have mentioned the importance of giving attention towards the

consequences when selecting design patterns.

21

2.2.3.2 Strategy Design Pattern

In this paper the author describes strategy pattern and its usage in .net frame work

and according to them strategy pattern defines a family of algorithms that

encapsulates one another, making sure that the algorithms are interchangeable within

the family it has been developed into[11]. It also enables an algorithms behavior to

be selected at runtime [11].

2.2.3.3 Strategy Pattern as Payment Pattern for Internet Banking

They have analyzed the internet banking system and how the payment process is

done [12]. With the support of analyzed details they were able to formalize a

payment pattern which is equal to Strategy pattern [12].

2.2.3.4 Factory Design Pattern for Database Connection and Daos in Struts

Framework

This paper discusses the way that the factory design pattern can be used to manage

data objects and database connection in Struts Framework [13]. The reason behind

selecting Factory pattern was its capability of separating application and a family of

classes [13]. It is a simple way where the family of products can be extended with

minor changes in application code [13].

2.3 Similar Researches

2.3.1 Automated Framework to Select Suitable Design Pattern

This section summarized research paper done by Rizwan and Waleed [14]. They

have proposed an automated framework to select suitable design pattern based on the

attributes of the design patterns which are mentioned by Gang of Four authors (GoF)

. They use two repositories called New Repository and original repository. New

Repository contains problems and most relevant design pattern solutions for those

problems. Original repository contains the attributes of the design patterns which

helped to identify the better solution for a given problem. The attributes are pattern

name, structure, intents, applicable and descriptions.

22

First a developer needs to express his problem as a question and checks against the

new repository. If similar matching problem is found, then an output will be provided

with the relevant design pattern solution If no match is found within the new

repository then the problem will be matched with the original repository (GoF

repository). To select criteria from the Original repository it is needed to answer

some questions and those questions are built upon the properties of the design

patterns.

2.3.2 Recommendation System for Design Patterns

Following is the summarization of the research done by Palma, Farzin, Guéhéneuc

and Moha [15]. Design Pattern Recommender (DPR) prototype is proposed to

suggest design patterns and it is based on the Goal-Question-Metric (GQM)

approach. Maximum number of questions that the system may ask is 11. DPR uses a

ranking based selection approach. It is a two-fold solution. In the primary-level, DPR

proposes design patterns for a specific problem context. In the secondary level, based

on the recommendations one or more design patterns will be implemented for the

initial model by the developer. They also have a knowledge base used for the DPR

process. This was inspired from previous work.

2.3.3 Design Pattern Recommendation

This section summarizes the research done by Suresh, Naidu and Kiran [16]; They

proposed a system to evaluate the user scenarios effectively with the help of

information retrieval techniques and recommends pattern. As the recommendation

technique, Social recommendation is used. It recommends patterns based on the past

behavior of similar users. Two search scenarios are provided to find the suitable

pattern. In scenario 1, find the intent of the user query and retrieve appropriate

questions related to the intent from the pattern repository. While giving the answers,

points are given and based on the points a recommendation is given. In scenario 2,

search for the similar type of query from the history database. If a match is found

23

then suggest the pattern, if not continue with the scenario 1. The used pattern

repository is based on the XML.

2.3.4 Interactive Design Pattern Recommendation

Summarization of the research done by Issaoui,Bouassida, and Abdallah [17] as

follows. They have proposed user interactive, semi-automated solutions to suggest

design patterns which better fits with the designer’s design. Design structure and

intention were their major concerns. It is a two -phase approach. As the first

approach semantic similarity matrix is calculated and it is called as GSSMatrix

(Global Semantic Similarity Matrix). GSSMatrix is used to approximate the

similarity between the developer drown design and design patterns available in its

knowledge base. In GSSMatrix keywords of the patterns are represented by the lines

and terms of patterns are represented by the columns. GSSMatrix scores are

calculated for all available design patterns and max score is used to determine the

best fitting design pattern. The second phase is user interactive, and the system is

interacted with the developer by asking questions. The questions were asked with the

intention of reformulating the intentions of the design patterns which were selected

in the first phase. Based on developer’s answer the recommendation system lists the

possible design patterns for recommendation. This process is repeated until best

matching design pattern is selected.

2.3.5 A solution strategy method for Design pattern selection

The brief summary of the research done by Sahly and Sallabi [18] is given under this

section. In the proposed approach they have categorized the system users into three

levels which are Novice, advanced beginner and Expert. This categorization is based

on answers of three questions. Once the user level is identified pattern

recommendation is done. It is based on four iterative steps which are Identify Design

Problem, Retrieving Patterns, Recommendations and Evaluations.

24

In the first step, identify the design problem through queries submitted. To retrieve

patterns four algorithms are used and those are Query-Matching-Pattern (QMP) to

find the similarity between intents and the given query, Query-Similarity. Previous

Query (QSPQ) to find the similarities between requested query and previous users’

query. Question-Answer-Session (QAS) to narrow down the selection process by

finding patterns based on question-answering and Collaborative-Implicit-knowledge

(CIK) to transfer of implicit knowledge through collaboration with communities of

users to find the pattern. In the third step it provides three types of recommendations.

Those are the recommending patterns, recommending how to apply patterns and

Recommending pattern sequences. As the last step evaluation is done through user

feedback on the system in the form of question-answering.

2.3.6 Design pattern selection based on MAS technology

The summary of the research done by Eiman, Salah, Maha, Zabata and Omar [19] is

given in the following paragraphs. The paper describes new design pattern

architecture (DPS) to select design pattern and it is based on a Multi-Agent System

(MAS). Their goal is to provide most relevant design pattern recommendation in

order to reduce development efforts, assist and facilitate the new developers in

selecting the most appropriate design pattern for their problem. This is a continuous

work on the research proposed in [10]. MAS architectures can be represented as a

social organization of independent software. This independent software’s are called

as an agent. They are flexible, reasonable, autonomous, learnable and corporate with

the environment. There are three layers which are Interface Layer to establish the

interaction between user and the system, Application Services Layer to hold eight

components which are used to implement the core functionality of the system and

Infrastructure Layer to provide access to the data. They have used ten agents and

each agent has their own responsibility of performing specific functions.

25

2.3.7 Design Patterns Searching System using Case-based Reasoning

The summarization of the research conducted by Muangon and Intakosum [20] is in

following paragraphs. In this approach they have used both Formal Concept Analysis

(FCA) and Case Based Reasoning (CBR). CBR is a powerful tool which is used in

problem solving systems and FCA is a technique used to analyze data. These two

approaches have been used to solve the index limitation Problem. When the system

gets a new user problem description, then the system retrieves similar cases which

are support for the problem. For that similarity functions are used. The output

solutions are suggested to the user and those outputs are stored in the system as new

knowledge which can be used to solve new problems. If the solutions suggested are

not satisfying the user expectations, then system provides alternative methods by

using FCA. As the first step FCA discovers related cases and the description of those

related cases are presented to the user. In the second step relevant indexes are

generated in order to complete the problem description. As the final step CBR is used

to keep new experiences in data retrieval and revising processes which enables

solving similar kind of problem in the future. Evaluation was done using prototype

technique.

26

CHAPTER 3

METHODOLOGY

27

3.1 Introduction

In fulfilling the research outcome, the work has been done under three major

sections, which are getting required data from the user in an interactive manner,

defining a framework to select design pattern and lastly developing an algorithm to

map user data with design pattern framework. This would suggest the best suited

design patterns to the user.

3.2 Proposed Solution

For the proposed solution, a user interactive design pattern recommendation tool was

built which consisted of three major sections. Those are;

 Graphical User Interface for user to interact with the system

 Design pattern framework providing the best matching design pattern

 Map user data with design pattern framework

3.2.1 Graphical User Interface for user to interact with the system

A graphical user interface is provided to the user in order to interact with the system.

It has a design panel which enables the user to design his software solution with

objects and their relationships.

Each component needs to select the relationships with other components and the

pattern criteria which match with the component. The required user inputs are

defined in a way in which it helps to map user data with the design pattern selection

framework.

3.2.2 Design pattern framework providing the best matching design pattern

In order to build up a design pattern selection framework it is required to have a deep

analysis on previous research done as well as the own findings. According to the

research papers that have been followed, there are few concerns that we need to

focus on. The concerns are the relationships between the design patterns,

combinations of design patterns, tradeoff between combining design patterns and the

consequences of using them. Therefore, the design pattern selection framework is

built based on two major concerns, those are;

28

 Relationships between design patterns

 Consequences of applying design patterns

3.2.3 Map user data with design pattern framework

There are algorithms to map user data in to design pattern selection framework. The

problem descriptions entered by the user is checked against the defined Watson

assistant intent. If it is matched, the entity and the confidence recoded will be

considered for further use. The user selected pattern criteria are used to identify the

possible patterns. Using the Watson Assistant response and the selected pattern

criteria the most suitable pattern is selected.

User input given under the relationships and the common criteria are used to

determine the object, which is a possible candidate for the object in the suggested

design pattern’s class diagram. If any matches are found it will replace the default

object in the class diagram and if not, it will show the default class diagram for the

selected pattern.

Once the pattern is selected, the design pattern selection reasoning will be provided

to the user.

29

CHAPTER 04

SOLUTION ARCHITECTURE AND IMPLEMENTATION

30

4.1 Introduction

In implementing the suggested solution, four main sections have been identified,

1. Graphical User Interface

2. Watson Assistant

3. Pattern Selection Algorithm

4. Pattern Selection Knowledge Base

4.2 High level architecture

The below diagram depicts the suggested architecture diagram of the system.

Figure 4.1: High level architectural diagram of the suggested system

The user can provide his problem in the User design panel by creating objects as

components and mentioning their interconnections. In this process the system gives

options to the user to select an order to specify the object description. Data is

communicated in the form of JSON and the data is passed to the Design Pattern

selection framework. Based on the user’s inputs the system identifies the object and

using the knowledge base and the defined algorithms the best matching design

pattern is suggested. The UML class diagrams of the suggested pattern and the

reasoning are composed in to a response and finally the response is passed back to

the GUI.

Design pattern

selection framework

Knowledge

Base

User Design Panel

JSON

JSON

Watson Assistant

31

4.2.1 User Design Panel

The user design panel is mainly compact with four sections,

1. Problem description

2. Design panel

3. Suggested design pattern with UML class diagram

4. Reasoning description

Figure 4.2: High level overview of the User design panel

4.2.1.1 Problem Description

The user is required to enter the problem description which is going to be model in

the design panel. Based on the problem description provided, candidate intent is

displayed. If it aligns with the problem description the user can select the intent.

Design Panel

UML class diagram Reasoning

Problem Description

32

4.2.1.2 Design Panel

Design panel is responsible for getting user inputs and making the request with all

the components. Their relationships are sent to the Design pattern selection

framework.

In order to proceed with designing the system, the user should understand the

problem context and should analyze each component and its relationships. Thereafter

the system can help the user to model the problem in the design panel.

Using the user interface, a user can create components in the design panel. When a

component is created the system itself prompt options to the user where he can add

definition to the component created. The component definition includes details about

component creation, structuring, behaviors and relationships.

4.2.1.3 UML class diagram

The suggested pattern would be displayed in the form of UML class diagram for the

user to have more clarity on the design pattern structure.

4.2.1.4 Reasoning

Simple descriptive reasoning is included to understand why the pattern is considered

as the best matching pattern.

4.2.2 Design pattern selection framework

Design pattern selection framework is built based on the data in the knowledge base.

The pattern selection algorithm is based on the problem description, pattern criteria

rank, total pattern rank score, related patterns and the consequences of using them.

The frame work can be divided in to following subsections,

1. Request manipulator

2. Design pattern selector

3. UML class generator

4. Response generator

33

JSON

request

JSON

response

Request

manipulator

Design pattern

selector

UML class

generator

Response

generator

Figure 4.3: High level architecture of Design Pattern Framework

4.2.2.1 Request manipulator.

The attributes and its values in the JSON request are mapped to request manipulation

object. The object is used for further processing and more values are added to it

during the processing operations that are used to create the response JSON as well.

4.2.2.2 Design Pattern Selector.

Design pattern suggestion is made by going through three steps,

1. Design pattern suggestion based on the problem description

2. Design pattern suggestion based on the design pattern criteria

3. Design pattern suggestion based on the related pattern

4.2.2.2.1 Design pattern suggestion based on the problem description

Problem description is matched with candidate design pattern intents if any. This will

help to suggest design pattern for the problem directly. The candidate design patterns

are recorded in the request manipulation object to further use.

4.2.2.2.2 Design pattern suggestion based on the design pattern criteria

For each design pattern there is a set of criteria which is used to distinguish a pattern.

These criteria are named as design pattern criteria. Each design pattern criteria are

assigned with a rank. The same pattern criteria can be used to define more than one

pattern and can have different ranking as well.

34

The possible design pattern per component is selected based on the pattern criteria

selected per component by the user. If the same design pattern is suggested for more

than one component, then those components are considered as one set of connected

components which matched with the same suggested pattern. The possible design

patterns and their scores are calculated by considering the pattern ranks which are

recoded in the request manipulation object.

4.2.2.2.3 Design pattern suggestion based on the related pattern

If there is more than one suggestion for a component/set of components it checks the

previously suggested design pattern for the same scenario and check for the related

patterns. If a related pattern is found, then the related pattern is accepted as the best

matching design pattern.

4.2.2.3 UML class diagram generator

Using the values set in the request manipulation object, the UML class diagram is

generated as a JavaScript file. The generated UML diagram has the components

model by the user as the objects. Based on the given information descriptions the

UML diagram is decided. UML diagram information is stored in the request

manipulation object.

4.2.2.4 Response generator

Suggested design pattern/s and the UML class diagram information are taken from

the request manipulation object and those are added to the response object. Apart

from that, reasoning description is generated using both request manipulation object

details and the relevant reasoning information in the database. The response object is

sent back to the GUI in the form of JSON.

4.2.3 Knowledge base

The knowledge base focuses on two major areas as, how user understand the

scenario and how to select the best matching design pattern for the scenario.

Watson assistant is used to identify the intention of the user input. In this case the

user input is the problem description as of the user’s perspective which is the way

that the user has understood the problem. To capture the varying problem

35

descriptions, even for the same scenario, a skill set was added to WA and it was

trained with possible examples of expressing the same idea in different ways. The

skill set can be exported as a JSON file.

As the second area, identification of the best matching design pattern by defining a

set of criteria has been done. For each design pattern possible criteria have been

defined and weighted accordingly.

The process of adding weightages was done through set of iterations of revisiting all

[criteria and testing with scenarios where the pattern needs to be applied was known.

The criteria defined were organized under two levels, which mean the criteria were

put under different categories. The categories, design pattern criteria [21]-[30] and

their weightages are depicted in the below tables.

The weightages are assigned based on the relevance to the design pattern. Weightage

of 8 is given when the specific criteria is enough to suggest the design pattern. If a

criterion is somewhat relevant but not specific to the design patterns, those are

weighted with 1. The maximum weightage 8 is determined by assuming a pattern

that would have less than 8 nonspecific but relevant pattern criteria. If it is more than

8, then the maximum weightage value must be reassigned to a higher value.

Table 4.1: Pattern categories and pattern criteria

Pattern

Category

Pattern criteria

Object structure Less number(less than 5) of constructor arguments

Has incompatible Interface.

Resolve incompatible interface.

Required object aggregation to have the complete object.

Object creation Consider the new operator as harmful

Subclass selection happens at runtime.(polymorphism)

Object creation happens, step by steps.

36

Object creation can happen on demand/may not need all the

time.

Object count Allow to create multiple instances.

Required only one instance with global point of access to it.

The number of objects required is high.

Object

representation

Have multiple representations.

Large numbers of subclasses are possible, mostly created to

represent different appearance.

The appearance can be added as a responsibility dynamically.

System count System consists of subsystems and belongs to a subsystem.

System consists of subsystems and connected with subsystem

classes.

Work Do complex communication between connected objects.

Have so many relationships/connections.

Access rights are granted based on the user.

Do update observers.

Get updates on specific values.

Object creation

cost

Object creation is expensive.

Use IO/DB connections.

Object state Need to store previous state of the object.

Behavior is based on a state.

Consequences Application doesn’t need object identity.

Some features of the object can be reused.

Algorithm Use algorithms to select at run time

Have identical classes which work on variation of the same

algorithm.

Same algorithm steps can be sub classed

Implementation The object implementation should be selected at run time

Collection Many unrelated operations are required.

Add operations frequently.

37

Table 4.2: Pattern criteria and weightages

Pattern criteria

S
in

g
le

to
n

F
ac

to
ry

 M
et

h
o

d

B
u
il

d
er

A
b

st
ra

ct
 F

ac
to

ry

 P
ro

to
ty

p
e

A
d

ap
te

r

B
ri

d
g
e

C
o

m
p
o

si
te

D
ec

o
ra

to
r

F
ac

ad
e

P
ro

x
y

F
ly

w
ei

g
h
t

C
h
ai

n
 o

f
re

sp
o
n

si
b
il

it
y

C
o

m
m

an
d

In
te

rp
re

te
r

It
er

at
o

r

M
ed

ia
to

r

M
em

en
to

O
b

se
rv

er

S
ta

te

S
tr

at
eg

y

T
em

p
la

te
 M

et
h
o

d

V
is

it
o

r

Need only one

instance with global

access to it.

8 1 1 0

Has a super class 0 8 0 1

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Object creation

selected at run time

0 8 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Object is Complex 0 0 8 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Object is created part

by part

0 0 8 0

Object creation

involves with

algorithms/preprocessi

ng etc

0 0 8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Has multiple

representations

0 1 8 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Has handful(5) of

constructer parameters

0 0 8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Has families of

related/dependent

objects

0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Has parallel class

Hierarchies

0 0 0 8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

Object creation is

expensive

0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Use Io/Db connections 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

38

Has incompatible

Interface

0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Resolve incompatible

interface

0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The object

implementation should

be selected at run time

0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Required object

aggregation to have

the complete object.

0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Large number of

subclasses are

possible, mostly

created to represent

different appearance

0 0 0 0 0 0 0 0 8 0 0 0

0

0 0 0 0 0 0 0 0 0 0 0

The appearance can be

added as a

responsibility

dynamically.

0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System consists of

subsystems and belong

to a subsystem

0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

System consists of

subsystems and

connected with

subsystem classes

0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

Object creation can

happen on

demand/may not need

all the time.

0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

Access rights are

granted based on the

user

0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1

The number of objects

required is high(more

than 100).

0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

Application doesn’t

need object identity.

0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

Some features of the

object can be reused.

0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 1 0 0 0 0 0 0 0

39

Gets a request which

does not have

specified handler to

handle it.

0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0

Sender is decoupled

from the receiver.

0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0

Need request history 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0

Required undo

operations

0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0

Request need to be

handled in different

time and in different

order.

0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0

Required

translation/interpretati

ons of something to

something

0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

Has collection

manipulations.(may

have different

collection but same

data)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1

Do complex

communication

between connected

objects

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0

Has so many

relationships/connecti

ons

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0

Need to store previous

state of the object

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0

Do update observers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

Get updates on

specific values

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

Behavior is based on a

state

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 8 0 0 0

Use algorithms to

select at run time

0 8 0 0

40

Has identical classes

which works on

variation of the same

algorithm

0 8 0

Some algorithm steps

can be sub classed

0 8 0

Many unrelated

operations are

required.

0 8

Add operations

frequently.

0 8

Design pattern criteria with pattern category and their weightages are stored in a

database. Other than the data relating to pattern identification, there are set of other

data which relates to the design patterns, structure, participant, applicability,

consequences, related patterns, and reasoning.

The required tables are created in a way that the user input mapping can be done

easily. The main research outcome of this project is the data identified and store data

in the knowledge base.

4.3 Implementation

In order to do the testing and evaluation, a sample prototype is implemented as a

proof of concept. It is a single page web application which allows the user to model

his problem.

The major components involved are,

1. Watson Assistant configuration

2. Graphical user interface-web page

3. Design pattern selection framework service

4. Knowledge base –database and the WA JSON

4.3.1 Watson Assistant configuration

General usage of Watson Assistant is with chat bot applications. It can be trained to

identify the intents and entities of a given chat input according to the way it is been

41

configured by the chat bot application developer. In this prototype the concept of

identifying intent is used in identifying the intent of the problem provided by the user

under problem description.

In WA, design patterns are configured as intents under a skill set and possible word

phrases are given for the training.

.

Figure 4.4 : Added Intents in defined Watson Assistant skill

As an example, consider the builder pattern. To check if any user input has the intent

similar to the builder pattern, possible ways of expresing the same intent should be

added as example for the builder entity.

Figure 4.5 : Adding examples to an intent

42

The WA can be accessed via REST api calls. The supported request/response format

is JSON.

As an example, consider a scenario where we need to convert a PDF document to a

Word document.

The problem description would be similar to this;

“Given PDF document should be converted to a Word document. The PDF document

is comprised of complex objects which have multiple representations as well. Text,

images, tables should be identified correctly and should be convert to word supported

format”

The request JSON is shown in figure 4.6.

Figure 4.6: WA - Request JSON

The response JSON is shown in figure 4.7.

Figure 4.7: WA Response JSON

43

The important information extracted from the response is the intent and the

confidence, and these two values will be used in design pattern selection logic.

4.3.2 Graphical user interface-web page

Consider a situation where a task is given to add logger functionality to the existing

code base, simply this would be a Jira story or sub story which covers a unique

requirement. This same example is used to explain the tool in next section as well.

The graphical user interface is a single page web application implemented using

HTML, JavaScript, Joint.js and Bootstrap.

In the first section the user is asked to enter the problem description in a descriptive

manner, including technical jargon and it is checked for the intent.

Figure 4.8: Problem Description

A RSET api call to WA, is made from front end where the intent and the confidence

taken from the WA response are set in the design pattern recommendation request.

Using the design panel, the user is asked to model the problem. In here proper

understanding of the objects involved, their connection with other objects and

purpose of each object should be identified properly.

44

Figure 4.9: Design Panel

To create a component there is a button “Create”. When the button is clicked it will

load a modal window. The model window has several options to be selected by a

user. These options help the user to identify the areas which need to be taken in to

account when a system is designing. The options are related to the object’s

relationships, object representation and the pattern selection criteria.

45

Figure 4.10: Component creation model window

Once the problem modeling is done the submit button is and then the design pattern

suggestion request is created and send via a REST api call to the backend.

46

Figure 4.11: Design Pattern suggestion request

Design pattern reasoning and the generated UML class diagram are set in the Design

pattern suggestion response. By reading the response UML diagram and the Design

reasoning they are set in under the relevant div elements.

47

Figure 4.12: Generated UML diagram

Figure 4.13: Design reasoning

48

4.3.3 Design pattern selection framework service

The design pattern selection framework is a spring boot application which exposes

REST apis. The main responsibility of this service is determining the best design

pattern for user specific problem.

As the first step the design pattern suggestion request object is processed. For each

component which is involved with the design, are evaluated with the selected pattern

criteria. Each design pattern criteria are given a weight based on the support of

representing the design pattern intent. Same criteria have different weights under

different patterns. After considering weights of each criterion, design pattern with the

highest score will be selected. At the same time if the WA suggested pattern has

more than 0.75 of confidence it is selected as the best pattern. If the same component

is eligible for more than one design pattern, then the second pattern is selected based

on the related patterns.

Once the design pattern is selected, the user created component details will be used

to determine the relevant classes in the design structure. If proper matching is found,

then the default class values will be replaced. When the user design is closer to the

correct design the quality of the class diagram will be improve. Simply the accuracy

of the UML diagram depends on the user design.

After generating the required code segment related to the UML diagram, the other

required details for design reasoning are queried from the database.

As the final step design pattern suggestion response is created using UML diagram

details and the design reasoning details. The response is rendered appropriately in the

front end and updates the relevant div elements.

49

Figure 4.14: Design pattern suggestion response

4.3.4 Knowledge base

The knowledge base is consisted of the database and the WA json. The database has

stored all the related data.

Figure 4.15: ER diagram of the database.

50

CHAPTER 5

DATA ANALYSIS AND EVALUATION

51

5.1 Introduction

To evaluate the developed prototype two surveys were conducted focusing IT

professionals with different experience levels. These surveys were introduced to

analyze and gather data on two different aspects.

First aspect was to identify the criteria that need to be fulfilled in order to learn

design patterns and how to select them. The survey questions were to gather data on

importance of the design patterns in solution designing, variations of knowledge on

design patterns with the experience level, background knowledge required to

understand the design pattern, background knowledge level they have and

availability of reference resources to learn design pattern.

The second aspect was to evaluate the developed application in terms of usability,

importance and expected learning outcome.

5.2 Analysis on adding design patterns

The IT professional who have participated in this survey belonged to different

designation levels in the industry. Visual representation of designations distribution

of the participants is depicted in figure 5.1.

Figure 5.1: Participant count with respect to designation

52

Next focus was to identify importance of adding design pattern to the solution design

in order to improve the quality of the design. According to the survey data 48.8%

strongly agreed and 43.9% agreed. In total 92.7% agreed on adding design pattern

would improve the quality of the program solution design.

Figure 5.2: Importance of adding design patterns to the program solution design

Even though it is important to introduce the design patterns to the current design, the

knowledge/experience on design patterns of IT professionals did not meet a

significant level. The percentage of knowing more than 6 design patterns was 29.3%.

Figure 5.3: Experience in applying design patterns

53

5.3 Evaluation on design pattern selection criteria

In order to identify the matching design pattern of a scenario, the problem scenario

should be analyzed first. To analyze, it is required to identify the aspect which needs

to be considered. Simplified version of possible aspects was defined as the pattern

selection criteria. The applicability of the defined criteria was evaluated with the

participant responses.

Figure 5.4: Pattern selection criteria usage

5.4 Evaluation on developed sample prototype application

The implemented sample prototype is evaluated in several ways and under different

evaluation criteria,

Evaluation scenarios

1. Different problem scenarios

2. Same problem scenario with different users

Evaluation criteria

1. WA – selected pattern(intent) and confidence

a. Accuracy

2. Suggested design pattern

a. Accuracy

3. Generated diagram

54

a. Accuracy

b. Completeness

4. Design reasoning

a. Understandability

b. Clarity

5. Usability

To do the evaluation, the set of problems were selected which were used to explain

the design patterns by experienced personal.

5.4.1 Evaluation of different problem scenarios

The set of problems considered are given in the table below.

Table 5.1: Different problem scenario

No Problem scenario Expected Design pattern

1 Create a Database connection class. Singleton

2 Introduce logger to the existing system. There

should be two loggers called ConsoleLogger and

FileLogger. Which logger to be selected is

mentioned in a property file.

Factory Method

3 Convert PDF document to word document. For

the simplicity assume that conversion process

needs only text, image, and table conversions.

Builder

4 The ABC system is using AWS services. But

now they need to move to the similar service in

Azure. Even though request format is somewhat

similar it cannot call them directly due to

incompatibilities.

Adapter

5 In an airport there are limited tracks which are

available for landing. Assume that number of

flights can come to the airport is greater than the

number of available tracks. Communications

Mediator

55

with the pilots are possible and need to develop a

system to avoid the conflicts that can be

occurred at flight landing.

6 Create a remote controller to control both Fan

and the AC. Fan and AC are separated systems.

Façade

Evaluation results are shown in the below table.

Table 5.2: Evaluation Results on different problem scenarios

Problem

no

intent Confidence Selected

pattern

Class

diagram

completeness

1 Prototype 0.87 Not

suggested

No diagram

2 FactoryMethod 0.48 Factory

Method

Complete

3 Builder 0.75 Builder Complete

4 Adapter 0.26 Adapter Default

5 Mediator 0.43 Mediator Incomplete

6 Facade 0.53

Facade Default

56

Figure 5.5: Watson assistant selected intents and confidence

Even though the intent was suggested by the WA, some of the intent was not

matched with expected result which is the expected design pattern. According to

figure 5.6, 83.3% was identified correctly and 16.7% was identified incorrectly.

Figure 5.6: Accuracy of the returned intent from Watson Assistant

The design pattern suggestion frame work performed at 83.3% accuracy in

identifying the correct pattern.

57

Figure 5.7: Accuracy of the design pattern suggestion frame work

When a design pattern was suggested, the quality of the generated class diagram was

evaluated as well. The generated class diagram can be in one of these states,

complete, default, incomplete, not generated, and incorrect. Complete would be, if

the generated diagram is correct and user defined components are also added to the

diagram in a correct way. Default is referred to the default diagram where the generic

diagram is provided for the design pattern. Incomplete means that the diagram is

generated but some links, classes are missing. When the diagram is not related with

the pattern or not supported with the default structure then it is considered as

incorrect. The complete diagram was generated with the percentage of 33.3%.

Figure 5.8 Completeness of the generated class diagrams

58

5.4.2 Evaluation on same scenario with different users

The same problem scenario was tested with different users. The main purpose of

testing with the same scenario was to check the different ways of understanding the

same scenario, different ways of designing the solution and the pattern criteria

selected. After modeling the problem solution, user feedback was collected in the

form of a survey.

Usability of the developed prototype, learning experience, quality of the reasoning

provided and value added to the knowledge on design pattern were measured using

the survey.

According to the survey 38.5% of users were able to use the application at ease,

23.1% were neutral 30.8% of users found it hard to use it at the beginning.

Figure 5.9: Usability of the developed application

Since the all the input should be given by the user, the user should think before they

proceed with modeling the solution. It makes the user interaction with the application

strong. 69.3% of users found that the application is more interacted with the users

and 30.8% were found it as neutral.

59

Figure 5.10: User interaction involved in the form of thinking and analyzing the

given scenario

The learning experience gained through the application can be calculated as 84.8%.

The design pattern criteria provided the users with a different learning experience.

Figure 5.11: Learning experience with identifying criteria to think when doing a

solution design

From the users involved in the survey, 61.5% of users had found the pattern selection

reasoning provided was understandable enough to grab the idea behind it.

60

Figure 5.12: Understandability of the generated pattern selection reasoning

The percentage of users who have accepted that the overall process gained them

more knowledge is 92.3%.

Figure 5.13: Value addition to the knowledge

The developed application had been identified as a design pattern learning tool by

69.3% of users who participated in the survey.

61

Figure 5.14: Developed application as a design pattern learning tool

62

CHAPTER 6

CONCLUSION

63

Designing phase of a software application is much more critical and requires high

attention, because it decides the future of the software application. If the application

is developed based on a quality design, then it reduces the future hassles more likely

to happen when maintaining the application, adding extensions and doing

modifications. If the design can include the expert experience which is achieved

through developing similar applications, then possible future burdens can be reduced.

Usage of design pattern in a proper way helps to add expert experience to the

application design.

But the problem is most of the developers do not have required knowledge on design

pattern. Even though there are thousands of resources available on the internet,

sometimes it is difficult to understand design patterns for novice developer.

6.1 Research contribution

The research mainly focuses on defining a frame work to select best matching design

pattern by analyzing the problem scenario. The main difference in this research is the

framework asks user to do the analysis of the scenario and give input accordingly.

The reason why the analysis part is given to the user is, then the user will be able to

learn how to select a pattern and what needs to be considered when designing a

solution. It will help to improve their knowledge and analytical skills required in

designing an application.

Most important part of the design pattern selection framework is the set of criteria

defined for each pattern to have identified them uniquely. The defined pattern criteria

should be simple enough to be identified by the users and should be specific enough

to identify a candidate design pattern.

The suggested design pattern selection tool is more user interactive. It asks the user

to design the solution by considering the purpose of each object involved with the

design, and how to form them together.

The application provides a UML diagram if any pattern suggestion is found. This

gives a chance to the user to compare own design and the generated UML diagram,

which will help user to find his mistake if there are any. Under design pattern

64

selection reasoning it describes why the pattern is selected and the UML structure

using an example. This will further help the user to understand the situation and the

pattern applicability as well.

6.2 Research Limitation

The main limitations in this framework are, it can only identify 23 design patterns,

and the current application is able to identify possible one design pattern at a time for

a given problem scenario. This is focused on object-oriented programming. The

pattern selection has strong relationships with the defined pattern selection criteria

list, if user select them without thinking then it will produce incorrect results.

To use this application, the user should have development experience and knowledge

on object-oriented concepts and object-oriented principles.

6.3 Future Work and conclusion

The suggested user interactive design pattern selection framework is developed as a

sample application only covering the happy path. The application should cover the

negative scenarios as well.

The logic is implemented to find a candidate design pattern for a given scenario, it

should be modified to suggest multiple design patterns if there any. Along with the

multiple design pattern suggestion, the UML class generation process should be

changed to cater more than one design pattern. The UI should be improved to use the

application easily.

The framework should allow adding new patterns and it needs to provide an interface

to add them.

The created skill set in Watson Assistant should be trained further to identify the

intent correctly, and latterly it can be added in a form of chat bot to the application in

order to get more attraction with the user and get expected user inputs. The chat bot

can be defined as a virtual teacher.

Adding design pattern to the design would improve the quality of the design, but the

IT professionals has less knowledge on design patterns. To understand design

65

patterns properly, the basic understanding on object-oriented concepts and object-

oriented principles are required. Along with this and the guidance of an experienced

developer a high-quality application can be developed enriched with proper design

patterns.

66

References

1] E.Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of

Reusable Software,” Addison-Wesley, 1994.

[2] T. Erl, “SOA Design Patterns,” Prentice Hall, New York, 2008.

[3] J. Knox, “Adopting Software Design Patterns in an IT Organization: An

Enterprise Approach to Add Operational Efficiencies and Strategic Benefits,” M.S.

thesis, AIM program, Dept of Computer and Information Science, University of

Oregon,2011

[4] I. Sommerville, “Software Engineering,” Addison-Wesley, Boston, 2004.

[5] D.K. Kim, C. Khawand, C. el, “An approach to precisely specifying the problem

domain of design patterns,” Journal of Visual Languages and Computing, vol.18,

no.6, pp. 560-591,2007.

[6] W.Zimmer, "Relationships between Design Patterns," Proceedings of the First

Conference on Pattern Languages and Programming, Addison-Wesley, 1994.

[7] J. Noble, "Classifying Relationships between Object-Oriented Design Patterns,"

Australian Software Engineering Conference (ASWEC), pp.98–107, USA, 1998.

[8] J. Vlissides, "Pattern Hatching Composite Design Patterns (They Aren’t What

You Think)," C++ Report, June 1998.

[9] B. William, M. McNatt James, Bieman, "Coupling of Design Patterns: Common

Practices and Their Benefits," Computer Software & Applications Conf. (COMPSAC

2001), USA, Octomber 2001.

67

[10] M. Hills, P. Klint, T.V.D Storm, and J. Vinju, "A Case of Visitor versus

Interpreter Pattern," Proceedings of the 49th international conference on Objects,

models, components, patterns, pp.228-243, Switzerland, June 28 - 30, 2011.

[11] R. Bala, K. K. Kaswan, "Strategy Design Pattern," International Journal of

Science and Research, vol.3, no.8, August 2014.

[12] A.Meiappane, J.Prabavadhi, V. Prasanavenkatesan, “Strategy pattern: payment

pattern for internet banking”, International Journal of Information Technology and

Engineering (IJITE), March 2012.

[13] M. D. Parsana, J. N. Rathod and J. D. Joshi, "Using Factory Design Pattern for

Database Connection and Daos (Data Access Objects) With Struts Framework,"

International Journal of Engineering Research and Development, vol.5, no.6, pp.39-

47, December 2012.

[14] M. R. J. Qureshi and W. Al-Geshari , “Proposed Automated Framework to

Select Suitable Design Pattern,” International Journal of Modern Education and

Computer Science, vol.9, no.5, pp.43- 49 , 2017

[15] F. Palma, H. Farzin, Y.G Guéhéneuc and N Moha, “Recommendation System

for Design Patterns in Software Development: An DPR Overview,”

Recommendation Systems for Software Engineering (RSSE), 2012.

[16] S. S. Suresh, M. M. Naidu and S. A. Kiran, “Design Pattern Recommendation

System (Methodology, Data Model and Algorithms) ,”International Conference on

Computational Techniques and Artificial Intelligence, 2011

[17] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "A New Approach for

Interactive Design Pattern Recommendation," Lecture Notes on Software

Engineering vol. 3, no. 3, pp. 173-178, 2015.

68

[18] E. M. Sahly and O. M. Sallabi, “Design pattern selection: A solution strategy

method,” International Conference on Computer Systems and Industrial Informatics,

Sharjah, UAE, pp.1-6, 2012.

[19] E. M. Salah, M. T. Zabata, and O. M. Sallabi. "Dps: Overview of design pattern

selection based on mas technology," Distributed Computing and Artificial

Intelligence, Springer, Cham, pp.243-250, 2013.

 [20] W. Muangon and S. Intakosum, “Case-based Reasoning for Design Patterns

Searching System,” International Journal of Computer Applications, vol. 70, no. 26,

pp. 16–24, 2013.

[21] P. Kuchana, Software Architecture Design Patterns in Java. 2nd ed. Auerbach

Publications. 2004

[22] E. Freeman, E. Robson, B. Bates and K. Sierra, Head first design patterns.

O'Reilly Media, Inc. 2004.

[23] “Design Patterns,”. [Online]. Available:

https://sourcemaking.com/design_patterns . [Accessed Dec.12,2018].

[24] Baeldung, “Introduction to Creational Design Patterns,” Nov. 27, 2018.

[Online]. Available: https://www.baeldung.com/creational-design-patterns.

[Accessed Dec.12.2018].

[25] Jonathan Aldrich,“Design Patterns,” 2011. [Online]. Available :

https://www.cs.cmu.edu/~aldrich/courses/15-214-12fa/slides/10-12-design-

patterns.pdf. [Accessed Dec.24, 2018].

[26] “Dessign Patterns,” [Online]. Available: https://www.oodesign.com/. [Accessed

Jan .10, 2019].

https://www.oodesign.com/

69

[27] “Design Patterns in Java,” [Online]. Available:

https://www.javatpoint.com/design-patterns-in-java. [Accessed Jan .15, 2019].

[28] “Software Design Patterns,” [Online]. Available:

https://www.geeksforgeeks.org/software-design-patterns/. [Accessed Jan .18, 2019].

[29] D. Banas. Design Patterns Video Tutorial (Aug .19, 2012). Accessed:

Feb. 2, 2019. [Online Video]. Available:

https://www.youtube.com/watch?v=vNHpsC5ng_E&list=PLF206E906175C7E07

[30] C. Okhravi. Design Patterns in Object Oriented Programming (Dec. 28, 2016).

Accessed: Feb. 12, 2019. [Online Video]. Available:

https://www.youtube.com/playlist?list=PLrhzvIcii6GNjpARdnO4ueTUAVR9eMBp

c.

https://www.javatpoint.com/design-patterns-in-java
https://www.geeksforgeeks.org/software-design-patterns/
https://www.youtube.com/watch?v=vNHpsC5ng_E&list=PLF206E906175C7E07
https://www.youtube.com/playlist?list=PLrhzvIcii6GNjpARdnO4ueTUAVR9eMBpc
https://www.youtube.com/playlist?list=PLrhzvIcii6GNjpARdnO4ueTUAVR9eMBpc

70

APPENDIX A: Survey Questioner 01

71

72

73

74

75

76

77

APPENDIX B: Survey Questioner 02

78

79

