LB/DON/137/2014

Geographic Validity Aware Content Retention in Vehicular

Networks

cs/02/103

Harsha Jude Perera

168252R

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Computer Science

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Department of Computer Science

University of Moratuwa

Sri Lanka

004-18"

August 2018

ii

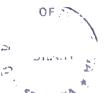
TH 3996

743996

(CD-Rom- Not working)

DECLARATION

I declare that this is my own work and this MSc Research Report does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.


Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Harsha Jude Perera

7-16/08/2018 Date

I certify that the declaration above by the candidate is true to the best of my knowledge and that this project report is acceptable for evaluation for the MSc Research.

UOM Verified Signature Dr. H.M.N. Dilum Bandara

Abstract

In Vehicle-to-Vehicle (V2V) communication, interest-based content dissemination carries equal importance. For example, a group of vehicles involved in a safari may communicate with each other about the location of rare animals. These messages are useful only within a certain geography and within a certain timespan. Hence, messages injected into the V2V network should be retained within these boundaries regardless of the highly dynamic nature of the underlying V2V network. To ensure that the content is retained within the V2V network both efficiently and with high certainty, it is important to address problems such as how and when to disseminate content, how to maintain order and honor priorities of content, how many replicas to maintain, and when to evict the content. However, if the content message is passed every time a pair of vehicles comes into each other's range, it will lead to message implosion while sub-optimally utilizing the wireless links, power, and content storage. Therefore, to ensure that all the vehicles get the message without high certainty and efficiency, it is imperative to identify with what probability a message should be disseminated.

In this research, we identify this probability value that could lead to successful retention of the message within the network given the parameters such as the valid geographical boundary, time span, and vehicle arrival rate. We developed a model that estimates the minimum probability that needs to be maintained to ensure that the specific content is seeded among other nodes. The model was developed for straight roads, T-junctions, and four-way intersections by varying other parameters such as the valid geographic area, vehicle speed, and density. Simulation bases analysis shows that the proposed model could reasonably estimate the minimum probability that needs to be met for the message to be replicated in other nodes.

Acknowledgements

My sincere appreciation goes to my family for the continuous support and motivation given to make this thesis a success. I also express my heartfelt gratitude to Dr. Dilum Bandara, my supervisor, for the supervision and advice given throughout to make this research a success. Finally, Yet Importantly I also thank my friends who supported me in this whole effort.

٧

Table of Contents

Ał	ostract			iv
1	Intro	oduc	tion	. 1
	1.1	Mo	tivation	. 1
	1.2	Pro	blem Statement	. 2
	1.3	Obj	ectives	3
	1.4	Out	line	. 3
2	Lite	ratur	re Review	. 4
:	2.1	Unc	lerlying Network	. 4
	2.1.	1	Mobile Ad-hoc Networks	. 5
	2.1.2	2	Vehicular Ad-hoc Network (VANET)	. 8
	2.1.	3	DSRC - Dedicated Short-Range Communications	10
	2.2	V2V	V Standards	12
	2.2.	1	IEEE 802.11p (WAVE)	13
	2.2.2	2	IEEE 1609	14
	2.2.	3	SAE J2735	14
	2.3	Roi	iting in Vehicular Networks	15
	2.3.	1	Broadcasting Techniques in Well Connected Networks	16
	2.3.2	2	Position-based Routing	17
	2.3.	3	Location Services	18
	2.3.4	4	Geocasting	19
	2.3.	5	Multicasting	20
	2.3.0	5	GeoNet (Geographic addressing and routing)	20
-	2.4	Con	itent dissemination	21
	2.4.	1	Geographic Opportunistic Routing	22
	2.4.2	2	Delay Tolerant Networks	22
	2.4.	3	Vehicle Gossiping	23
	2.5	Sim	ulation Tools	24
	2.5.	1	OMNeT++	24
	2.5.2	2	SUMO (Simulation of Urban MObility)	24
	2.5.	3	Veins	25

	2.5.	4 MiXiM		
	2.5.	5 Integration of the Tools25		
	2.5.	6 Data Extraction Tool		
	2.6	Summary		
3	Res	earch Methodology 27		
	3.1	Proposed System and Approach		
	3.2	Selection of Simulation Tools		
	3.3	Model Generation		
	3.3.	I Straight Road		
	3.3.2	2 T-Junction		
	3.3.	3 Four-way Junction		
	3.4	Customizing Veins		
	3.5	Data Extraction		
	3.6	Summary		
4	Perf	Formance Evaluation		
	4.1	Evaluation Scenarios		
	4.2	Message passing within the area of interest – Straight road		
	4.3	Message passing within the area of interest and soft boundary – Straight road		
		Message passing within the area of interest – Straight road, in low vehicle density		
	4.5	Message passing within the area of interest – Soft boundary on the straight road, in low vehicle density		
	4.6	Message passing within the area of interest on T-junction		
	4.7	Message passing within the area of interest and soft boundary on T-junction 48		
	4.8	Message passing within the area of interest in T junction, in low vehicle density		
	4.9	Message passing within the area of interest and soft boundary on T-junction , in low vehicle density		
	4.10	Message passing within the area of interest on Four-way 55		
	4.11	Message passing within the area of interest and soft boundary on Four-way		

4.12	Message passing within the area of interest on Four-way, in low vehicle density	. 60
4.13	Message passing within the area of interest and soft boundary in Four-wa in low vehicle density.	
4.14	Summary	. 64
Cor	nclusion	. 66
5.1	Research Limitations	. 67
5.2	Future work	. 67

List of Figures

Figure 3.1 Vehicle movement in a straight road.	28
Figure 3.2 Vehicle movement in the T junction.	
Figure 3.3 Vehicle movement in a four-way junction.	. 29
Figure 3.4 Parameters for model generation	
Figure 3.5 T junction vehicle arrival rates.	
Figure 3.6 Four-way junction vehicle arrival rates.	
Figure 3.7 Node count with the message with time within the AOI	
Figure 4.1 Number of nodes with a message within AOI, when $p = 0.008$	
Figure 4.2 Number of nodes with a message within AOI, when $p = 0.012$	
Figure 4.3 Number of nodes with a message within AOI when $p = 0.016$	
Figure 4.4 Number of nodes with a message within AOI and soft boundary, when	
= 0.006.	39
Figure 4.5 Number of nodes with a message within AOI and soft boundary, when	
= 0.010.	40
Figure 4.6 Number of nodes with a message within AOI and soft boundary, when	
0.014	-
Figure 4.7 Number of nodes with a message within AOI, when p =0.05	
Figure 4.8 Number of nodes with a message within AOI, when $p = 0.065$	
Figure 4.9 Number of nodes with a message within AOI, When $p = 0.80$	
Figure 4.10 Number of nodes with a message within AOI and soft boundary, when	
= 0.035.	
Figure 4.11 Number of nodes with a message within AOI and soft boundary, wher	
= 0.050.	
Figure 4.12 Number of nodes with a message within AOI and soft boundary, when	 . n
= 0.065.	
Figure 4.13 Number of nodes with a message within AOI, when $p = 0.008$	
Figure 4.14 Number of nodes with a message within AOI, when $p = 0.012$	
Figure 4.15 Number of nodes with a message within AOI, when $p = 0.016$	
Figure 4.16 Number of nodes with a message within AOI and soft boundary, whe	
= 0.01.	
Figure 4.17 Number of nodes with a message within AOI and soft boundary, when	
= 0.014.	
Figure 4.18 Number of nodes with a message within AOI, when $p = 0.110$	
Figure 4.19 Number of nodes with a message within AOI, when $p = 0.135$	
Figure 4.20 Number of nodes with a message within AOI, when $p = 0.160$	
Figure 4.21 Number of nodes with a message within AOI and soft boundary, when	
	.53
Figure 4.22 Number of nodes with a message within AOI and soft boundary, wher	
	. 54
Figure 4.23 Number of nodes with a message within AOI and soft boundary, wher	
= 0.130.	.54
Figure 4.24 Number of nodes with a message within AOI, when $p = 0.005$	
Figure 4.25 Number of nodes with a message within AOI, when $p = 0.009$	
Figure 4.26 Number of nodes with a message within AOI, when $p = 0.009$.	
i gare into i tumoer of nodes with a message within riot, when p 0.014	

Figure 4.27 Number of nodes with a message within AOI and soft boundary, when p = 0.007
Figure 4.28 Number of nodes with a message within AOI and soft boundary, when p $= 0.012$
Figure 4.29 Number of nodes with a message within AOI, when $p = 0.035$ 61
Figure 4.30 Number of nodes with a message within AOI, when $p = 0.05061$
Figure 4.31 Number of nodes with a message within AOI and soft boundary, when p
= 0.030
Figure 4.32 Number of nodes with a message within AOI and soft boundary, when p
= 0.045

List of Tables

Table 2.1 Routing protocol types
Table 2.2 Broadcasting strategies in VANET
Table 3.1 Node count with the message within the AOI
Table 4.1 Model parameters and values for the scenario message passing within the
area of interest in straight road
Table 4.2 Summary of message passing within the area of interest in straight
road
Table 4.3 Model parameters and values for the scenario, message passing within the
area of interest and soft boundary in straight road
Table 4.4 Summary of message passing within the area of interest and soft
boundary in the straight road41
Table 4.5 Model parameters and values for the scenario, message passing within the
area of interest in the straight road in low vehicle density
Table 4.6 Summary of message passing within the area of interest in the
straight road in low vehicle density
Table 4.7 Model parameters and values for the scenario, message passing within the
area of interest and soft boundary in the straight road, in low vehicle
density
Table 4.8 Summary of message passing within the area of interest and soft
boundary in the straight road, in low vehicle density
Table 4.9 Model parameters and values for the scenario, message passing within the
area of interest in T junction
Table 4.10 Summary of message passing within the area of interest in T
junction
Table 4.11 Model parameters and values for the scenario, message passing within the
area of interest and soft boundary in T junction
Table 4.12 Summary of message passing within the area of interest and soft
boundary in T junction
Table 4.13 Model parameters and values for the scenario, message passing within the
area of interest in T junction, in low vehicle density
Table 4.14 Summary of message passing within the area of interest in T
junction, in low vehicle density
Table 4.15 Model parameters and values for the scenario, message passing within the
area of interest and soft boundary in T junction, in low vehicle density. 53
Table 4.16 Summary of message passing within the area of interest and soft boundary in T junction, in low vehicle density
Table 4.17 Model parameters and values for the scenario, message passing within the
area of interest in Four-way
Table 4.18 Summary of message passing within the area of interest in Four-
way
Table 4.19 Model parameters and values for the scenario, message passing within the
area of interest and soft boundary in Four-way
Table 4.20 Summary of message passing within the area of interest and soft
boundary in Four-way

area of interest in Four-way, in low vehicle density
way, in low vehicle density
Table 4.23 Model parameters and values for the scenario, message passing within the area of interest and soft boundary in Four-way, in low vehicle density62Table 4.24 Summary of message passing within the area of interest and soft boundary in Four-way, in low vehicle density
area of interest and soft boundary in Four-way, in low vehicle density 62 Table 4.24 Summary of message passing within the area of interest and soft boundary in Four-way, in low vehicle density
Table 4.24 Summary of message passing within the area of interest and soft boundary in Four-way, in low vehicle density
boundary in Four-way, in low vehicle density
Table 4.25 Straight road high level result comparison message retention 64
Table 4.25 Straight foad high level result comparison, message retention
Table 4.26 T Junction High Level Result comparison, message retention
Table 4.27 Four-way junction, high level result comparison, message retention65

List of Abbreviations

ABS ASTM	Anti-lock braking system American Society for Testing and Materials
ССН	Control Channel
DREAM	Distance Routing Effect Algorithm
DSRC	Dedicated Short Range Communication
DTN	Delay Tolerant Networks
FCC	Federal Communications Commission
GPS	Global Positioning System
GLS	Grid Location Service
IDE	Integrated Development Environment
IVC	Inter-Vehicle Communication
IEEE	Institute of Electrical and Electronics Engineers
ITS	Intelligent Transportation System
LAN	Local Area Network
MAC	Media Access Control Layer
MANET	Mobile Ad hoc Network
MSG	Message
MSG PSD	Message Passed
MSG RET	Message Retained
NED	Network Description (Language)
OBU	On-Board Unit
ON	Opportunistic Network
PHY	Physical layer
RSU	Road Side Unit
SAE	Society of Automotive Engineers
SCT	Signed Certificate Timestamp
SUMO	Simulation of Urban Mobility
VANET	Vehicular Ad-hoc Network
Veins	Vehicles in Network Simulation
V2I	Vehicle to Infrastructure
V2V	Vehicle to Vehicle
V2X	Vehicle to Any other
WAN	Wide Area Network
WAVE	Wireless Access in Vehicular Environment