

AUTHENTICATION AND DEVICE DISCOVERY

AS A SERVICE FOR DEVELOPING LIQUID

SOFTWARE APPLICATIONS

Pasindu Chandrasekara

(179309R)

Degree of Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

AUTHENTICATION AND DEVICE DISCOVERY

AS A SERVICE FOR DEVELOPING LIQUID

SOFTWARE APPLICATIONS

Pasindu Chandrasekara

(179309R)

Thesis submitted in partial fulfillment of the requirements for the Degree of MSc in

Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgment to any material previously submitted for a Degree or Diploma in

any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in partial print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

-- ----------------------------------

Signature Date

The above candidate has carried out research for the Masters thesis under my

supervision.

Name of the Supervisor: Dr. Indika Perera

--- -------------------------------------

Signature of the Supervisor Date

ii

ABSTRACT

In this era where an average person consumes at least two computing devices, the

applications that are developed for these devices should have the transformability

among them. It not only ensures the users are not interrupted when switching

between devices but also allows them to use the power of computing whenever,

wherever. These kinds of applications with maximum transformability among

computing devices are known by the term “Liquid Software”. Even though this

concept of Liquid Software can be identified as a subsection of ubiquitous

computing, it can prevail alone, whereas it is not the case for ubiquitous computing

which cannot exist without liquid software. There are many architectural concerns

that need to be addressed when developing liquid software applications. Application

security and device discovery are two of the main architectural concerns of liquid

software. Ensuring security while also maintaining liquidity in applications is a

challenging task. In the application level granularity, device discovery when

combined with proper authentication could provide a secure liquid experience to the

users. But developing solutions while also addressing these concerns would require

considerable amount of design and development effort. This research introduces a

service model that could provide out-of-the-box authentication and device discovery

features to assist development of liquid software applications. The authentication

mechanism presented through this service model is mainly based on an

authentication server and is also capable of providing service level security. The

device discovery mechanism of the proposed service model is based on QR codes

which could be controlled at the application level in order to be integrated with the

authentication mechanism while hiding the complexity of device registration. The

proposed Authentication and Device Discovery as a Service model could be either

consumed by web applications to adhere to liquid concepts or extended by

development teams in order to plug in their own services.

Keywords: liquid software, ubiquitous computing, device discovery, multiple device

ownership

iii

ACKNOWLEDGEMENT

This study would not have been possible without the guidance and the help of several

individuals who extended their valuable assistance in the preparation and completion

of this dissertation.

First and foremost, I’m grateful to my supervisor, Dr. Indika Perera, for his guidance,

patience and providing me with an excellent atmosphere for the completion of this

research work.

I thank all the teaching and administrative staff of University of Moratuwa, for their

service and support.

Special thanks to all my colleagues whose commitments and support contributed to

this project in numerous ways.

Finally, I would like to extend my gratitude to my family who encouraged me with

all their heart and soul to make this study a success.

iv

Table of Contents

INTRODUCTION .. 1

1.1 Liquid Software .. 4

1.2 Problem ... 6

1.3 Motivation ... 7

1.4 Objectives .. 8

1.4.1 Goals ... 8

LITERATURE REVIEW .. 9

2.1 Important Architectural Considerations ... 12

2.3 Liquid Software Design Space .. 14

2.4 Architectural Examples and Proof of Concepts 21

2.5 Authentication as a Service ... 22

METHODOLOGY ... 24

3.1 Basic Design Decisions ... 27

3.2 Software Development Process ... 28

3.3 User Authentication ... 29

3.4 Device Discovery ... 31

3.5 Authentication and Device Discovery as a Service 34

IMPLEMENTATION .. 39

4.1 Users and Devices ... 41

4.2 Securing the Application Front end ... 45

4.3 API Gateway ... 46

4.3.1 Service Registry ... 51

4.4 Liquid QR Code Scanner .. 52

EVALUATION ... 53

v

5.1 Quality of the Service Model ... 61

5.2 Concept Evaluation .. 62

5.3 Limitations .. 73

CONCLUSION ... 74

6.1 Future Work ... 76

REFERENCES ... 77

vi

List of Figures

Figure 1- Liquid Software Design Space[3] .. 15

Figure 2- Master-Slave vs. Multi-Master[4] .. 17

Figure 3- Granularity Alternatives[4] .. 18

Figure 4- Software Development Life Cycle ... 29

Figure 5- Device Discovery Scenario .. 33

Figure 6- Basic Security Concept... 35

Figure 7- High-level design of the Authentication Service.. 37

Figure 8 - Technology Stack .. 40

Figure 9- Client Settings .. 45

Figure 10 - Keycloak.json Configuration ... 46

Figure 11 - Proof of Concept Map Application ... 55

Figure 12- Keycloak Login Page ... 56

Figure 13- Configuring Identity Providers ... 56

Figure 14- Generated QR code from the Device Discovery Service 57

Figure 15 - Liquid QR Code Scanner... 59

Figure 16 - Application Loaded with state in the target device 60

Figure 17- SonarQube Dashboard - GateKeeper .. 62

Figure 18 - Feedback - Motivation ... 66

Figure 19 - Feedback - User Registration .. 66

Figure 20 - Feedback - Social Login Providers ... 67

Figure 21 - Feedback - Share to Device Functionality... 68

Figure 22 - Feedback - Continuity of the application .. 68

Figure 23 - Feedback - Hassle-Free Transition .. 69

Figure 24 - Feedback - QR Code Scanner Accuracy ... 70

Figure 25 - Feedback - QR Code Scanner Failures .. 70

Figure 26 - Feedback - Single Sign-On .. 71

Figure 27 - Feedback - Application state transfer .. 72

Figure 28 - Feedback - Motivation ... 72

file:///C:/Users/Admin/Downloads/Thesis_Draft_Revised_179309R.docx%23_Toc9188108
file:///C:/Users/Admin/Downloads/Thesis_Draft_Revised_179309R.docx%23_Toc9188114

vii

List of Tables

Table 1- Liquid Software Design space and positioning of the technologies[3] 20

Table 2 - Service Endpoints ... 43

Table 3 - Service Endpoints ... 63

1

CHAPTER 1

INTRODUCTION

2

Liquid Software concept comes into the computing world alongside the concept of

multiple device ownership. Today for anyone, it is the current norm to use at least

two computing devices. The younger generation uses even more with the growing

trend of smartwatches and other wearable devices. For these devices to coexist

among each other they should have a common understanding, which is nearly

impossible to maintain with the devices coming from different vendors with different

capabilities. It is a well-known fact that it’s the software that makes the

communication happens between the hardware and the users. But, a piece of software

which was developed for particular hardware or a software platform will not work on

other platforms. The incompatibility of applications purchased from the apple app

store on Android devices and vice versa provides evidence for this limitation. The

differences in existing and upcoming platforms will prevail. Hence coming up with

software which can adjust and coexist among these platforms will be the preferred

and the novel approach. Software Architecture can be identified as the key

component of this evolution, as it models possible solutions for this common

problem.

Most of the existing cloud-based applications from vendors like Apple, Google and

Microsoft can already run on both computers and smartphones with similar

functionality. Hence it’s evident that almost all of the application vendors are moving

towards automatically synchronized devices. But this approach contains a

considerable limitation since almost all of these existing cloud-based synchronized

applications are vendor specific. Furthermore, the seamless transition of the

application state among devices is yet to be discovered in a vendor-independent

context. The Liquid Software Manifesto [1], states a set of requirements that should

be met by a seamless multi-device ecosystem. Considering these set of requirements,

it can be said that most of the cloud-based applications which are capable of staying

synchronized with multiple devices are semi-liquid. In a true liquid environment, the

user must be able to stay synchronized with all his/her devices with minimum

configuration and maximum control.

3

While liquid software promises flexible application usage among multiple devices,

the security of liquid applications plays a vital role. It is essential to have a robust

authentication mechanism to identify trusted devices where liquid applications can

operate in. It is essential that the users of these applications stay in full control of the

device authentication process. While the authentication process should be as

transparent as possible, it should also be robust. If a single authenticated device is

compromised all application data of that user becomes compromised. Hence it is

evident that security plays a major role in liquid software applications. Even though

it is of utmost importance, the security of liquid software could be easily downplayed

given its complexity while trying to achieve maximum flexibility.

The main objective of this research is to come up with a set of services which could

provide out of the box features to assist liquid software development. The target

audience of this research is mainly web application developers who wish to

implement web applications that possess liquid properties while only focusing on

their business logic. There are many architectural design decisions [3] that provide

many alternative approaches during the initial design phase of software applications.

While some of these architectural decisions are more meaningful when made

considering the business requirement, there could be generic design decisions that

could be transformed into services that could provide out of the box features to any

software application. Authentication and device discovery are a couple of such

decisions that we believe could be transformed into a service model that could be

consumed by application developers who intend to include authentication and device

discovery features to their applications with less effort. One of the main objectives of

this research is to cover all points in the liquid software manifesto [1] that relate to

device discovery and authentication. This provides the guarantee that if these service

models produced as outcomes of this research are consumed in an application, they

alone could make that application semi-liquid. If other aspects such as state

replication are properly handled in an application while also consuming the proposed

service models, such applications can be identified as pure liquid software

applications according to the liquid software manifesto [1]. This research is mainly

influenced by several previous works done under this domain [1-6], which could help

identify further improvements and implementations which are possible.

4

1.1 Liquid Software

Liquid Software is the future of software applications. According to the current trend,

it is possible that each and every one will have multiple computing devices

controlling their daily life. Hence it is very important for all these devices to stay

synced with each other. But the underlying hardware of these devices cannot

collaborate. It’s the software that let them collaborate. Such software which can pour

from one device to another and perform the required operations is called Liquid

Software. It’s a major subsection of ubiquitous computing which gives the users the

power of computing whenever, wherever. Today, several tech giants have already

come up with marvelous creations with respect to multiple device ownership.

Apple’s Hand-off [10], Android Baton [11] from NextBit and Windows Continuum

[12] are among the top competitors in the domain of Liquid Software. But their

attempts are not purely liquid in nature as they are all native attempts. It’s like a

particular liquid can only be poured into a particular type of vessel. The most

significant gap is the inability to maintain the state of the application among multiple

devices and multiple ecosystems.

There are a few elements which make the liquid software different from other

traditional solid software [2].

● Code Mobility - The ability of the code to execute in different environments.

Strong mobility implies that the code can move along with the state while

weak mobility means the code has to execute in a re-initialized manner.

● State Synchronization - The ability to maintain the state of the application

among multiple devices. This will be discussed throughout the text as it is

identified as one of the major limitations in the current cloud-based

applications.

● Adaptation - Capability of an application to adapt to different contexts in

different environments. Traditional software has to go through complex

relocation, redeployment and reconfiguration of applications.

5

● Data and State - This refers to maintaining the application data across all

devices in contrast to maintaining the application state. It’s important to

highlight the difference between the two when it comes to an application.

Each of these elements includes making proper design decisions that need to be taken

in order to meet these requirements. Thus a set of generic design decisions that can

be followed in order to fulfil these properties would be ideal when developing web

applications that should be liquid in nature.

Designing Liquid software includes a lot of effort on user experience. Since

switching among devices should be as casual as possible, it’s a challenging task to

provide a seamless user experience for the users. Different computing devices have

different capabilities. While laptops have a keyboard for input, a mobile phone has

touch-based gestures. And the screen size is also a variable that needs to be taken

care of. Apart from all these, the usage pattern of the multiple devices is also a major

attribute to be considered when it comes to designing Liquid Software Applications.

Interactions with liquid software can be identified under three main categories [4].

1. Sequential usage

A user runs the same application in multiple devices at different times.

2. Simultaneous usage

A user runs the same application on multiple devices at the same time.

3. Collaborative usage

Several users run the same application on multiple devices either sequentially

or simultaneously.

All these usage scenarios can be seen in a number of systems that have emerged in

the recent past with the power of cloud computing. Several popular names such as

Google Drive, Apple’s iCloud, Amazon Cloud Drive, DropBox and Microsoft

SkyDrive has emerged as systems which support dynamic synchronization of data

among different computing devices.

6

1.2 Problem

Since Liquid Software is going to be the future of software development, it’s

essential to find the means of addressing the main architectural concerns related to it.

Even though considerable work has been done to bring together the potential design

decisions [3] which are important when developing liquid software, they need to be

put together in order to come up with generic solutions to these recurring concerns.

Security is a major design aspect of liquid applications that can be easily overlooked.

Applications that enable liquid nature should both be secure and easy to use. In the

liquid software design space [3] the security aspect is not given much attention but

it’s a potential requirement to consider application security and authentication as

important design decisions. Device discovery is also one of the key fundamental

features of any liquid software application as it is the starting point for any kind of

liquid experience. It is the ideal scenario to combine both authentication and device

discovery together since it provides hassle-free roaming between devices while

ensuring security.

If application developers themselves engage in the design and development of

solutions to these concerns, it will directly affect their overall development effort

resulting in late delivery. Therefore it is wise to look for “out-of-the-box” solutions

to these problems. Popular service models such as Software as a Service, Platform as

a Service and Infrastructure as a Service provide similar solutions to a different set of

problems. But a service model that could provide solutions for authentication and

device discovery concerns with regard to liquid software has not yet been emerged.

Adopting such a service model would reduce the efforts of the development teams

comprehensively while encouraging them towards developing liquid applications.

.

7

1.3 Motivation

As mentioned in the previous sections Liquid Software is a potential requirement

when it comes to ubiquitous computing. In order to provide the power of computing

to users whenever, wherever, we need to concentrate on the software that the devices

consume, and their ability to transform. There are several limitations when switching

among devices such as resource limitations, power limitations, the difference in input

mechanisms and variable screen sizes. But application developers should not ideally

worry about such limitations. In the current context, software development has its

own set of requirements and constraints to be met. Therefore a potential mechanism

should be available which can enforce the liquid properties to a software application.

Furthermore, authentication is a major requirement when it comes to liquid

applications. With the modern developments in technology, Authentication as a

Service is a great resource for startups and small development teams to get their work

up and running without worrying much about authentication. Authentication on its

own cannot make a huge impact on the liquidity of applications. According to the

liquid software manifesto [1] authentication, when combined with device discovery,

covers at least half of the liquid properties that a common liquid software application

should possess. Therefore when combined together authentication and device

discovery could make a huge impact on the liquidity of applications. Considering the

popularity of service models such as Software as a Service (SaaS), Backend as a

Service (BaaS) and Platform as a Service (PaaS) it would be meaningful to have a

service model that provides authentication and device discovery features. When

features such as authentication and device discovery are readily available, application

developers could consume them to kick start their development process. In such a

scenario the application developers would start their progress not at 0% but from

somewhere around 10 - 15% given that they have a mechanism to cover two of the

most fundamental elements of liquid software.

8

1.4 Objectives

The main objective of this research is to come up with a service model that provides

authentication and device discovery functionality to web applications. The

authentication mechanism should also provide the means to secure the backend

services of any application. Since it is the current norm to have independent

microservices which provide modular functionality, it is required to have them

secured as well. It is the expected behaviour that only users that are properly

authenticated from within the application become eligible to consume the backend

services. It is an objective of this research to adapt an authentication chain which is

based on standard protocols such as OpenID Connect, OAuth 2.0 and SAML. The

proposed solution would include modern features such as Single Sign-On to

authenticated users among multiple devices.

1.4.1 Goals

● Develop a service model that provides authentication and device discovery as

a service.

● Build a mechanism to impose security at the service level.

● Provide user management through the service.

● Develop a proof of concept application consuming Authentication and Device

Discovery as a Service.

9

CHAPTER 2

LITERATURE REVIEW

10

The term Liquid Software first came into light through a technical report by Hartman,

manner, Peterson and Proebsting in 1996[8]. Its primary intention was to enable the

flexible use of network transported code on top of the Java Platform [7]. Their paper

discusses use cases such as, the capacity to improve remote execution since it

provides one site with the capacity to download those modules that are required to

access the resources at another site. Remote execution also allows installation of

software, diagnostics and maintenance irrespective of the physical distance among

devices.

How do we identify Liquid Software could be a very interesting question. Since

software is not a physical entity, it’s harder to identify or categorize software unless

there are predefined properties which assist in classification. The Liquid Software

Manifesto [1] presents a clear set of requirements that should be met by an

application for that to be classified as liquid. A summarized version of the six points

presented in the liquid software manifesto is as follows.

● The users should be able to roam between all the computing devices that they

have.

● Switching between devices should be casual and hassle-free as possible.

● User applications and data should be synchronized among all the devices.

● Application state should be transferred among devices whenever applicable.

● Switching between devices should not be vendor specific.

● The user should be in control of the liquidity of the application and its state.

These simple set of points not only help us to classify liquid software but also

provide a guideline to develop applications which could be liquid in nature. Even

though the term “Liquid Software” sounds like just another fancy word that could be

used to name applications which support synchronization among devices, this

manifesto clearly shows that most of such applications that are available today are

not fully liquid. Hence the liquid software manifesto also helps to take away any

misconceptions.

11

Fluid computing [17] symbolizes the replication and synchronization of application

state among various devices. The paper mentions that the application state flows

from one device to another just like a ‘fluid’. This is indeed another way of referring

to Liquid Software. The three main areas that the authors discuss can be briefed as

follows.

1. Multi-device applications where few devices could be coupled to behave as a

single device

2. Reduction of the effects of unreliable connectivity on ubiquitous devices.

3. Multi-user applications which allow several users to collaborate together on a

shared document.

The technical view of fluid computing includes middleware that handles replication

and synchronization of the application state among devices. Hence each device

carries a copy of application state that allows them to operate autonomously.

Liquid Software, when taken from a user interface point of view goes back to

Computer Supported Collaborative Work (CSCW), which focus on enabling

collaboration between multiple users [18] in contrast to multi-device usage by a

single user. A multi-device, thin-client groupware system which is collaborative and

component based is presented in [19]. The main highlight of this work in contrast to

liquid software is the fact that it’s simply groupware which has limited support for

synchronization of the application state.

Today, Apple has been able to come closest to the liquid nature of applications

within its own ecosystem. The Handoff [10] capability among Apple devices allows

the users to resume work, which they were doing in one of their devices, in another.

For an example, a user can view an image in his/her iPhone and to take a better view

on it he/she can switch to his MacBook and still continue to see the same picture.

This feature is enabled by tracking the devices by the same apple Id and Bluetooth is

used as the communication mechanism between the devices. Furthermore, Apple also

supports the universal clipboard where a user can copy from one device and paste the

12

content in another device in the same ecosystem. If we judge at this level, this is a

pure liquid environment, but since it is constrained within the vendor specific

environment this violates the Liquid Software Manifesto.

Android’s alternative to Apple’s Handoff comes in the form of Android Baton from

Nextbit[11]. Baton’s cloud backend ensures the synchronization of files among

registered devices. It can also maintain the state of the application among devices.

The fact that Android applications must use this proprietary API to develop

applications to exploit these functionalities leaves a major limitation on this approach

as well.

The Windows alternative comes in a different shape. Windows Continuum [12] is a

small box-shaped device, which can be connected to mobile devices running

Windows 10. The mobile devices can connect to Continuum and different device 3

extensions such as screens, keyboards and mouses can be connected to it. This allows

switching from a mobile perspective to a desktop perspective as required by the user.

There’s no need for a backend cloud service to synchronize the data since we are

accessing the mobile device through Continuum. This depicts the problem of having

to configure the environment, which deviates from the Liquid Software Manifesto.

2.1 Important Architectural Considerations

Liquid Software is not just a new technology, it’s a lot more. The term Liquid

Software is about constructing a mindset for developing applications which could be

executed in multiple heterogeneous devices. It includes making proper architectural

decisions which lead to achieving the common goals of a liquid application. An ideal

liquid application that makes correct architectural decisions will satisfy the SAFE

qualities [5]; Scalable, Adaptive to different environments, Flexible to heterogeneity

and Elastic.

There are few interesting research articles on Liquid Software architecture and

architectural approaches that can be followed to achieve the fluid nature of software

13

[2-6]. Following the above identified differentiations, a few essential architectural

considerations have been presented in their journal article by Gallibino, Mikkonen,

Systa and Taivalsaari [4]. Out of various possible architectural concerns these few

will be most essential in developing liquid applications.

● User Interface adaptation

This will be most applicable when coming to various wearable devices. Even

though most of the novel applications support responsive design, it doesn’t

address the limitations that are there in a different family of devices. Hence

it’s important to focus on UI adaptation as it is the presentation layer of any

application.

● Data and State Synchronization

It’s essential to distinguish between persistent application data and dynamic

application state. Persistent data is the static data that is usually saved across

user sessions. This is usually available in general applications. But what’s

hard to achieve is the dynamic state synchronization which means

maintaining the runtime information of the application. An example would be

to capture the font size and indentation that is used in Google docs of a laptop

user to be used in his smartphone to edit the same document in Google Docs.

Such limitations do exist in current applications and need to be dealt with.

The researchers mention that in order to experience a seamless operation of

applications across multiple devices it is required to Identify, Persist, Migrate,

Replicate and Synchronize application state across devices.

● Client-Server Partitioning

It’s important for liquid applications to identify and make use of device

resources efficiently. The resources of multiple devices differ in a

considerable manner. Hence it’s important to figure out how the partitioning

of the applications can be done. This can also be called as Layering of the

application. There can be very thick clients as well as very thin clients.

Today, applications that are designed for a family of devices consider

14

themselves to use options such as Backend as a Service (BaaS) in order to

limit the load on the client side.

● Security

It’s important that users are in full control over the transfer of state and data

among devices. This should also not become a hassle for the user. Even

though downplaying security aspects are commonly seen in liquid like

applications, it’s important to figure out the means of applying existing

security solutions as much as possible in an intuitive manner. There’s still a

lot of space for research based on the security aspect of liquid software. Other

concerns apart, the authentication techniques that can be followed in

developing liquid software applications has a huge influence on the overall

security and usability. It is common to see many cloud native applications

being developed which mimic liquidity for some extent. There are few

authentication techniques that could be used for cloud environments.

Authentication and Authorization was provided as services in [29] using the

service oriented architectural approach. Using these offered services cloud

based applications could offer authentication and authorization functionality

in their applications. Authentication as a Service is a novel service model

which provides many out of the box features in terms of authentication and

authorization for application developers. Hence it can be considered as a good

candidate to consider when looking for authentication options.

2.3 Liquid Software Design Space

There are various ways of implementing liquid experience in applications. In their

journal article by Gallibino, Mikkonen, Systa and Taivalsaari [4], they present a

Design space for Liquid Software which shown in Figure 1. A clearer image will be

attached to the Appendix for further reference. It shows a top to bottom navigation

considering various design alternatives that can be selected in developing liquid

software applications.

15

Figure 1- Liquid Software Design Space

16

The design space diagram is explained further in [3] considering each and every

major selection stages. A few of the design decisions which are discussed in this

literature are stated below.

● Topology

○ Centralized

○ Decentralized

○ Hybrid

The easiest to implement a multi-device ecosystem is the centralized

approach with a centralized server where clients will rely on screen casting

similar to SunRay platform [9]. But such an approach will not be ideal for

resource-poor devices, which cannot guarantee a reliable network connection.

Hence the Hybrid approach will be a better option, and as shown in Table 1,

many technologies have adapted a hybrid approach in this regard.

● Maintaining State of the Application

○ Master-Slave

○ Multi-master

These two design options focus on maintaining the application state and the

data of the system synchronized. Figure 2 illustrates the master-slave and

multi-master design options. In a master-slave approach, state replication is

centralized. A master database owns the master copy of the state or data and it

updates its slave databases instantly each time it updates. In this way, all slave

databases and the master database has the same copy of the data or the state at

any given time. This approach redeems the master database from a heavy load

since the load is distributed among slave databases. This also avoids the

Single Point of Failure since data is replicated in both the master and slave

databases and a slave database can become a master database in case of a

failure in the master database.

17

Figure 2- Master-Slave vs. Multi-Master

In the multi-master approach, the state or the data replication is decentralized.

There are multiple masters instead of slave databases. Each having the ability

to accept or discard state or data changes. But the complexity of this design is

high since we have to maintain a consistent state throughout all master

databases.

● Granularity

As shown in figure 1 software applications can be liquid at different

granularity levels. The researchers in [4] present a set of layers of software

which they propose can be recognized as levels of granularity. Figure 3

presents a couple of granularity alternatives and the layers of the software

stack which can be used for migration and synchronization.

1. Operating system level

2. Virtual Machine/Container level

3. Application level

4. Component level

18

Figure 3- Granularity Alternatives

 Device Discovery

Device Discovery is a mandatory component when it comes to the liquidity of

applications. As Discussed in [4] in the modern devices, there exist device side

technologies readily available for device discovery purposes. Technologies such

as Bluetooth and Wi-Fi are readily available in most modern devices and can be

easily used to identify target devices. But when it comes to liquid software

applications this adds a huge dependency to the devices and the hardware that the

applications operate on. Hence opting for options such as QR codes and shared

urls would mean that the applications are independent of such device hardware.

In the research article on Architecting Liquid Software [4], three main Discovery

concepts are discussed.

1. Existence Discovery

The minimum requirement for fulfilling liquidity in applications is

identifying all available devices. As discussed previously technologies

like Wi-Fi and Bluetooth can be used for this purpose by setting up a

Local area network. This doesn’t require the access to the internet and

19

devices are identified by their MAC Addresses. And when access to the

internet is available options such as QR Code and Shared URLs could be

used by allowing communication through the internet. This approach will

use IP addresses in order to identify the devices.

2. Location Discovery

Even though maintaining relative location of devices is not a mandatory

requirement in providing liquidity to applications, it could seriously

improve the liquid experience in a ubiquitous environment. Features

offered through Apple Handoff [10] leverage such functionality for

sharing content in between Apple devices by using hand gestures. Modern

devices come with GPS capabilities which can be directly used to come

up with solutions with this regard. But since offering geo location services

affect the power consumption of devices, it should be properly balanced.

Liquid Software applications that are based on web technologies can

leverage high energy consuming geo location services [4].

3. Ownership Discovery

Mapping between users and their devices needs to be handled carefully

and transparently when it comes to liquid Software. As mentioned in the

liquid software manifesto [1], application users needs to be in full control

of the device transition process. Furthermore, it is important to identify

and keep track of devices owned by a particular user when it comes to

scenarios such as simultaneous device usage [4]. In ownership discovery

it is expected that users are properly authenticated into each device in

order to ensure application security.

Table 1 gives a summary of the liquid software design space and the positioning of

technologies and proof of concept applications in it.

20

Table 1- Liquid Software Design space and positioning of the technologies

21

2.4 Architectural Examples and Proof of Concepts

There are few Architectural examples and proof of concepts discussed in [1]. Even

though the name “Liquid Software” itself sounds novel, there have been several

attempts to achieve liquidity in applications since the later part of the 20th century [7,

8, and 9].

● Sun Ray platform [9] by Oracle brings out a semi-liquid approach where

users are able to transfer their entire network computing sessions from one

terminal to another. This is achieved by “screen-casting” where compressed

screen images from the servers are transmitted to the Sun Ray terminals live.

Since no data are transferred away from servers, it is identified as a very

secure approach, but the main downside of this approach is that it requires a

reliable network connection. This dependency leads this attempt to the

category of semi-liquid computing.

● Cloudberry [13], which was developed by Nokia in 2009- 2011, is a proof of

concept HTML5 mobile device platform where the device’s user functionality

is cached dynamically from the Web. It has the capability to download and

cache all the applications including the entire top-level user interface. Master-

Slave database architecture is used with push notifications to dynamically

synchronize the application state.

● A pee-peer multi-device ecosystem [14] was created by using the world-and-

wormholes metaphors of the Lively Kernel [15]. The Lively Kernel

implementation was extended to be able to distribute in multiple computers.

The world is a visual container that hosts several lively kernel applications

and objects concurrently in live. Wormholes metaphors act as a bridge to

transfer such applications and objects between these diversified and different

worlds [20, 21]. Kernel implementation was previously kept within the

bounds of worlds that were hosted in the same computer, yet elongated at a

later stage so that wormholes can be related with Lively Kernel worlds

22

situated in distinct computers. At this implementation level, a shared server

was utilized instead of utilizing P2P access

(http://www.w3.org/Security/wiki/Same_Origin_Policy). In the current era, it

is possible to implement a peer-to-peer multi-device environment with the

help of a WebRTC (https://webrtc.org/) which is an open and free real-time

communication through simple APIs.

● A liquid Software framework was developed using HTML5 mobile agents

[16] where web applications can store their internal state in a server for the

future reference. Hence their executable code can be shifted to a different

computer along with the saved state.

● Liquid.js for Polymer [6] is a framework that enables development of liquid

web applications using web components. Liquid.js operates at the component

level granularity. It relies on Yjs [28] to handle the state synchronization. The

three main use cases of this framework are sequential screening, simultaneous

screening and collaboration. Liquid components defined in the framework are

pieces of mobile code which is a combination of JavaScript and UI

components which can render on the web browser when required using

HTML imports. These liquid components are built on top of the Web

components using the Polymer syntax.

2.5 Authentication as a Service

Authentication as a Service (AaaS) is generally based on centralizing the

authentication logic and presenting it in terms of a service to be consumed by other

applications. Generally a robust AaaS should support authentication and

authorization protocols such as OpenID Connect [30], OAuth 2.0 etc. and would

typically provide the identity services through a well-defined API. There are two

options for enabling AaaS in a software ecosystem. One is to come up with an

Authentication server from the scratch which is compliant to the standard

http://www.w3.org/Security/wiki/Same_Origin_Policy
https://webrtc.org/

23

authentication protocols and implement the ecosystem around it. While this approach

allows complete flexibility, it might not be the ideal option when there are ample off-

the-shelf authentication server implementations available unless we are looking at a

completely customized requirement. Keycloak [23] is one of these off-the-shelf

implementations that are available. It is an open source identity and access

management solution. It provides support for standard protocols such as OpenID

Connect, OAuth 2.0, and SAML. It is capable of providing not only authentication

but also role based authorization as a service. It also has modern features such as

Single Sign-On and Identity brokering that are expected by a novel authentication

platform. Using Keycloak, applications can easily be protected by a simple

configuration.

24

CHAPTER 3

METHODOLOGY

25

The main focus of this research is to analyze architectural design decisions which are

applicable for the application-level granularity of liquid software. It is one of the

main attempts of this research to work on the security aspect of liquid applications

which is still an immature research area. In contrast to the liquid software design

space presented in [4], this research tries to improve on top of that by including high-

level architectural decisions which target application-level granularity. For an

example, various service models such as Backend as a Service (BAAS), Software as

a Service (SAAS) and Platform as a Service can provide out of the box features for

software development. Authentication as a service (AaaS) is also another service

model which provides authentication out of the box for application development.

Therefore we propose an Authentication and Device Discovery as a Service model

which combines the core functionalities of authentication and device discovery. One

of the main reasons behind this combination is to provide as much liquidity as

possible for application developers to be used out of the box. As mentioned in the

introduction section, the combination of authentication and device discovery would

mean the following points of the liquid software manifesto[1] is covered.

● Effortless roaming is expected between the user-owned devices.

● The roaming process should be casual and hassle-free as possible.

● Roaming between devices should not be affected by vendor-specific

limitations.

These are three of the six statements given in the liquid software manifesto which

helps identify software applications that are liquid in nature. The proposed

combination of authentication and device discovery as a service not only ensures the

coverage of the above 3 statements but also partially covers the part where the users

are in full control of the liquidity and the state of the application. Hence the

applications that consume the authentication and device discovery as a service

automatically embrace partial liquidity.

Some authentication services could only be offering authentication while ignoring

user management altogether. But having the variety to choose between them would

26

be the ideal scenario. Some teams would want to maintain their own user

management store while only consuming the authentication services through an

authentication server while some teams would want to kick start the entire user

management and authentication process by consuming such functionality from

service providers. Therefore having a mix of both possibilities is always essential to a

service model as it broadens the target audience.

Microservice architecture is commonly used in modern application development

where functionality can be modularized. Some obvious advantages of microservices

are independent development, deployment and maintenance. Using microservices

architecture independent reusable components could be developed with less coupling

and more cohesion. But authenticating requests to these services in a liquid

environment should be done carefully. Furthermore, end users shouldn’t be hassled

by requesting them to authenticate themselves into each and every service they

consume. It is the expected behavior that users should be able to consume all services

provided by an application with a single sign-on, irrespective of the backend

architecture. This should be true even if the user decides to switch between devices.

By following the liquid software design space [3] one can come up with a set of

possible architectural routes, depending on the application requirements. This way

we can get a high-level view of the liquidity of the application in the early design

stages. This not only adds value to the whole software engineering process but also

makes the way for identifying major components or technical aspects that can make

huge impacts on the system in the early stages. One of the least discussed topics

when it comes to architectural design decisions is the security aspect of liquid

software applications. As mentioned before, it’s most common to identify security

risks when making a system flexible to adhere to liquid concepts. The proposed

solution not only provides user registration and authentication out of the box but also

provides service level authentication. Using this authentication component,

applications that follow microservices architecture can also protect all their separate

services. This guarantees that individually functional microservices are well secured.

And also additional effort is not required to authenticate requests that are coming in

towards these individually deployed services.

27

3.1 Basic Design Decisions

One of the most important aspects of a solution is to make proper design decisions as

early as possible. Proper design decisions reduce the risk of disaster and reduce the

development time by a considerable amount. The exact opposite applies to bad

design decisions or vague decisions. After a thorough study of the design space of

liquid software [4], few areas were identified under the application level granularity,

which could be combined to provide a liquid like experience to an end user. This

research basically targets the application level granularity of the liquid software

design space. Other granularities such as operating system level, container level are

out of the research scope and will not be discussed in detail. The main objective of

this research is to assist the application developers in the authentication and device

discovery process of liquid software applications. The proposed Authentication and

Device Discovery as a Service is consumable by any web application.

It’s really important that we identify and break down a solution to small components

such that it becomes easier to implement these components in a broader scope

independently. There are few other aspects of liquid software architecture which

could be decided and handled by the application developers themselves. The layering

of the application is one of those design decisions that the application developers

would want to make for themselves. It could depend on the target devices of the

application. If the target devices are resource poor the better option would be to opt

for a thin client where the majority of the business logic would be implemented on

the server side while only the presentation would be done on the client side. But with

the recent developments in mobile technology many mobile devices now come with

a lot of computing power. Hence it is most common to see many thick client

applications in the modern market. There are always certain decisions that developers

would want to make based on particular requirements, but our main goal is to gather

a set of core components that could provide liquid properties for an application.

28

3.2 Software Development Process

As in almost all cases, following a suitable software development process is essential

for a successful project. Since this research work is based on the development of a

service model to support liquid application development, this project would also

benefit a lot from a proper Software Process. Considering the breadth of the scope

and the modularity of features, the iterative model of development looked to be the

ideal candidate for the Software Development Life Cycle of this project. Following

the iterative model, the following services will be implemented.

1. Authentication Service

2. Device Discovery Service

3. API Gateway

4. Service Registry

5. Liquid QR Code Scanner

6. Proof of Concept

Since these are individually independent components and has very less coupling,

these could also be implemented in parallel if required. How the software

development life cycle of this entire project spanned out is shown in Figure 4. As

illustrated in Figure 4, after the completion of the Authentication service, then the

Device Discovery service is started as the second iteration. As the 3rd iteration, an

API Gateway and a Service Registry is implemented. As the 4th and the last

iteration, the Liquid QR code Scanner and the Proof of concept application which

consumes the Authentication and Device Discovery as a service is implemented. The

functionalities of the authentication service are required to authenticate requests

received by both Device Discovery and the API Gateway. Due to this fact and since

the authentication service is one of the major outcomes of this research, its design

and implementation were carried out as the first iteration. By following the

incremental model of development, each iteration will produce a well-designed,

implemented and tested solution. This will make sure that defects and flaws are

identified as early as possible in each component as they are being developed.

29

Furthermore, integration tests can be carried out incrementally in each iteration

making sure that all integrations are working as expected. The incremental model

supports early identification of integration issues and hence guarantees a working

solution at the end of each iteration.

Figure 4- Software Development Life Cycle

3.3 User Authentication

One of the least spoken, but one of the most important aspects of liquid software is

security. Much research work is required on this domain since it could be easily

downplayed when trying to achieve liquidity. Security and Privacy are largely

spoken topics in the modern world. When it comes to liquid software it’s essential

that proper user authentication and authorization is performed as breaching one

device could compromise all the devices of a user. But authentication should ideally

30

be hassle-free as possible. According to the liquid software manifesto [1], switching

between user devices should be a casual process.

Even though authentication of users is a primary concern in any application which

has such a requirement, so are the authentication of web requests received by the

application servers. Authenticating a user to an application is a transparent process

for the end user while authentication of web requests generated by their actions is

not. But once a user login to a system, it is the expected behaviour that all his actions

are properly authenticated. This fact should not change based on the application

architecture, or else the user experience would definitely get affected. The

authentication component of the service model that is presented in this work, would

handle the following aspects of authentication.

1. User Registration

2. User account management

3. User Login with Single Sign-On

4. User Authorization

5. User Federation

6. Service Level Security

7. Identity brokering and Social Login

It is most common and effective to use already tested functionality over reinventing

the wheel. If the requirement is not at all generic, the option to write your own

functionality is justified. But when it comes to Identity and Access Management,

there are ample solutions available. The feature-packed authentication service is built

on top of Keycloak which is an open source Identity and Access Management

solution. The solution is more efficient when built on top of a stable, well-tested

solution rather than reinventing the wheel. It will be further discussed in the

implementation section on how Keycloak plays a major role in this solution. The

capability to work with different Identity and Access Management solutions is a

possible future improvement for this solution.

31

3.4 Device Discovery

One of the main important aspects of liquidity is the ability to discover devices.

Ubiquitous computing is all about providing the power of computing whenever

wherever. But in order to provide such an experience, applications should be

operable from different devices. The most initial step to providing a liquid experience

to users is device discovery. How liquid software becomes aware of possible devices

that it can run on is one of the most important aspects that need to be considered. A

proper discovery mechanism needs to be based on factors such as the proximity of

the device, reachability of the device and availability (online/offline) of the device

[4]. When it comes to application level granularity, it is really complex to maintain

the availability of a device unless that particular application is running at least in the

background of that device. Hence considering several technologies that are readily

available on the device is one of the alternative options. Both Bluetooth and Wi-Fi

discovery mechanisms are well tested and ideal options if we consider moving to

device-side technologies. Another alternative option is to use shared URLs or QR

codes which provide maximum control to the application code itself without having

any dependency with the device hardware. Ownership discovery is essential to the

security of the liquid experience. In the proposed design, when combined with the

authentication service, the user will be in full control of the device discovery process

as it is the user who decides which device he/she needs to move in to. This is done

with minimal configuration using the authentication service. Once a user gets

authorized to the application, he/she can use the bearer token offered by the

authentication service to roam between his/her devices. This process could be

handled by scanning a QR code or using a shared URL. This token will be under an

expiration interval which could also be changed as required. Figure 5 shows a

sequence flow of the device discovery process of an application which consumes the

proposed device discovery service. How to consume these features offered by the

service model will be elaborated in the implementation section. As shown in Figure

5, a user who is trying to access the client application which is protected by an

authentication server first needs to authenticate himself with the Authentication

32

server by providing his credentials. Once authenticated the user will be redirected to

the application, with a bearer token. Now that this user is authenticated, until his

token expires, he is allowed to use the application and its services. When a user needs

to register a new device and continue his usage of the application from that device,

he would request a QR code from the device discovery service. Once his bearer token

is validated with the authentication server he will be granted with a QR code. The

provided QR code has the following data embodied inside of it.

1. Redirect Url

2. Authentication session cookie

3. An endpoint to register a new device

4. Metadata

Since this is a customized QR code it needs to be scanned by the Liquid QR Code

Scanner. Once scanned it will perform the device registration process through the

device discovery service and will redirect to the provided url with the bearer token

and the provided metadata. The metadata can also be used to transport the liquid state

of the application. It totally depends on the consumer of the service whether to use it

to transfer state or some other metadata.

33

Figure 5- Device Discovery Scenario

34

3.5 Authentication and Device Discovery as a Service

The main outcome of this research is the service model which provides

authentication and device discovery as a service. Even though these two are

combinedly presented, both authentication and device discovery are two independent

components. The device discovery service adds more value to an application when

combined with authentication. In the proposed solution the authentication service is

mainly based on Keycloak which is an open source Identity and Access Management

solution. The concept behind the proposed authentication model is shown in Figure

6. As shown in Figure 6, every application which consumes the service is identified

as a “Realm”. A particular user of a certain application is identified as a “Tenant” in

a particular realm. Each realm (application) has its own user store where the

credentials of each user (tenant) of that application are stored. Therefore

development teams can choose to use this service with multiple applications without

any issue. Furthermore, the underlying resources will afterwards be secured with the

user tokens that are based on each realm and tenant. That’s what is illustrated as

resources being protected inside a realm and a tenant in Figure 6.

35

Figure 6- Basic Security Concept

Since the solution is wrapped around Keycloak, all of its features are readily

available to the end users. Application developers can consume the features offered

by the authentication service in a number of ways depending on their other

architectural decisions. Few possible scenarios can be identified as follows.

● If we consider an application architecture that is layered as client-server,

application developers can choose to protect the client application by directly

connecting to the Keycloak server and using it’s login/register page. This is a

good starting point if you just need a login page for your application. This

option is ideal for thick clients where most of the application logic is in the

front. The basic login page provided is highly customizable, therefore

development teams could basically adapt its functionality while also

maintaining a unique look and feel. Steps required to securing a front end

application directly with Keycloak will be later discussed in the

implementation section.

36

● Development teams could also access the authentication service directly

through its well defined Rest API. This is also a good option for thick clients.

When used in combination, the authentication service could provide authentication

for the front end application and then afterwards guarantee the security of its service

requests. All microservices that are consumed by a client application which is

protected by the authentication service should also be protected by the same in order

to maintain a proper authentication chain. But having to include configurations and

boilerplate code in each and every service could be duplication of work. And also it

would add on to the maintenance effort. Therefore an API gateway is introduced to

intervene each and every request made to the backend services. Figure 7 shows the

high-level architecture of the proposed authentication and device discovery service

model. As shown in the figure, it is the API gateway that is actually being protected

by the Authentication server. When an Http request is received by the API gateway,

it first verifies its bearer token with the authentication server. Once the authentication

server acknowledges it as an authenticated token, the API gateway looks up the

service registry and serves the requested resource accordingly. Considering the

consumption scenarios of the services that are offered through the service model, the

API gateway is also equipped with a load balancer. This guarantees the service

requests are equally distributed among multiple instances. In order to cater the

requests, the API gateway refers to a Service Registry. Therefore each service that is

being offered needs to be registered with the service registry in order to be identified

by the API gateway. As shown in Figure 7, currently we only have the device

discovery service offered with the combination of the authentication server. But in

the future, more services that are generic to liquid applications could be integrated

into this solution. Therefore this is a scalable solution having space to accommodate

more generic services.

37

Figure 7- High-level design of the Authentication Service

38

 As previously illustrated in a sequence diagram in Figure 5 the service consumption

sequence can be broken down into the following points. The following points cover

the basic scenario of adding a new device to an existing user.

1. The user accesses the client application and tries to add a new device.

2. The client application sends in a GET request for a QR code which includes

the bearer token and the redirect url to be loaded from the target device.

3. The API gateway intercepts the request since all requests that are received

needs to be authenticated.

4. The API gateway validates the bearer token with the authentication server.

Once it is verified as authenticated, the API gateway looks up the service

registry for the requested resource.

5. Once identified, the API gateway sends in the request and gets the response

from the service. This generated QR code is now displayed in the client

application.

6. The target device should first load the liquid QR code scanner in order to scan

the QR code generated by the source application.

7. The Liquid QR code scanner then sends in a request with the bearer token to

register the new device.

8. The API gateway again does the same routine and completes the request.

Now once the request is successfully completed, the target device will now be

redirected to the provided url.

This is the entire authenticated device discovery process provided by the proposed

solution as shown in Figure 7. In the implementation section, we will look at how

these services were developed and how they can be integrated into a web application.

39

CHAPTER 4

IMPLEMENTATION

40

The Authentication and Device Discovery Service model was implemented mainly

based on the Spring Cloud [22] technology stack. Furthermore, as previously

mentioned Keycloak [23] is used as the User Authentication and Authorization

server. Both the Liquid QR Code scanner and the Proof of Concept client application

was developed with React [24] components. The high-level diagram of the

technology stack that was used during the implementation of the authentication and

device discovery service model is shown in Figure 8. Figure 8 is a technology

replacement for Figure 7. The API gateway is based on Netflix Zuul and is a Spring

boot application. Netflix Eureka service is used as a service registry. Device

Discovery service is also developed as a spring boot microservice.

Figure 8 - Technology Stack

41

4.1 Users and Devices

The user registration process may or may not be handled directly using inbuilt

Keycloak functionality depending on the service consumers’ preference. There could

be applications that require an entire user authentication process out of the box

whereas there could also be applications that would like to handle their own user

management process while consuming services of an external authentication server

like Keycloak to generate authentication tokens. Since our technology stack is mainly

based on Spring technologies, we decided to adapt the OAuth 2.0[25] as the security

protocol which is supported by both Keycloak and the Spring Framework. The

decision of taking full advantage of user management features offered by Keycloak

or having an application user management process can be technically described using

OAuth 2.0 grant types [26]. According to OAuth 2.0 grant types the two mechanisms

can be identified as follows.

● Third Party Applications - Authorization code grant type and implicit grant

type

○ When it comes to third-party applications where user’s confidentiality

needs to be maintained, the Authorization code is the most commonly

used grant type. Users are not required to share their credentials with

the application which they want to consume resources from. This is a

redirection-based flow where the application must be able to interact

with the users' web browser.

○ The client application (frontend) makes a request to the User

Authentication and Authorization server on behalf of the user.

○ The Authentication server either redirects to an authentication page of

itself or a different third party where the user authenticates himself.

○ The Authentication server returns an authorization code with a

redirect url if authenticated from a third party.

○ The client application uses the authorization code and an application

identifier to request an access token from the Authentication server.

42

○ The Authentication server verifies the authentication code and returns

an access token.

○ The same procedure is applicable for implicit grant type except it

doesn’t exchange an authorization code to issue an access token.

● First Party Applications - Password Grant Type

○ This is the preferred choice when the users trust the client application.

When it’s directly the application that is intended to be used by them

that they want to authenticate to, they could do so by providing user

credentials directly to the application. Applications at this point may

be considering maintaining their own user stores.

○ Users provide their credentials to the client application (frontend),

commonly done with a user login form.

○ The client application generates a POST request with the credentials

to the Authentication server.

○ The Authorization server validates the user and returns a valid JSON

Web Token (JWT).

By using either of these grant types, applications may access the protected backend

services by using the issued access tokens.

For an application that consumes the device discovery service, the following

functionalities were identified as fundamental features that need to be implemented.

● Register a new user with a device

● Register a new device for an existing user

● Modify an existing device

● Unregister an existing device

● Get a QR code for device registration

43

In order to cater to the above-mentioned functionalities, the following endpoints were

implemented. Shown in Table 2 are the endpoints for each functionality, its request

type, request parameters and response.

Table 2 - Service Endpoints

Functionality Rest Endpoint Request Type Request

Parameters

Response

Register a new

user with a

device

/discovery/use

r

POST username:

String

device: Device

userId: String

deviceId:

String

Register a new

device for an

existing user

/discover/devi

ce

POST userId: String

device: Device

device: Device

Modify an

existing device

/discover/devi

ce

PUT userId: String

device: Device

device: Device

Unregister an

existing device

/discovery/dev

ice/unregister/

{deviceId}

POST userId: String

deviceId:

String

device: Device

Get Device

Register QR

code

/discovery/dev

ice/register

GET qrCode: String

Out of these endpoints, the most important one is the GET request for a QR code. It

is to be used by the front end of the application to register a new device for an

existing user. In fact, all the other endpoints depend on this particular QR code.

Googles’ Zxing library was used to generate QR codes in the proposed solution.

Zxing is an open source, multi-format 1D/2D barcode image processing library

implemented in Java. The following maven dependencies need to be added in order

to include the zxing functionality in an application.

44

<dependency>

 <groupId>com.google.zxing</groupId>

 <artifactId>core</artifactId>

 <version>3.3.0</version>

</dependency>

<dependency>

 <groupId>com.google.zxing</groupId>

 <artifactId>javase</artifactId>

 <version>3.3.0</version>

</dependency>

The following method generates a byte stream of a QR code generated using the

functionalities offered by the zxing library.

private byte[] getQRCodeImage(JSONObject source, int width, int height) throws

WriterException, IOException {

 QRCodeWriter qrCodeWriter = new QRCodeWriter();

 BitMatrix bitMatrix = qrCodeWriter.encode(source.toString(),

BarcodeFormat.QR_CODE, width, height);

 ByteArrayOutputStream pngOutputStream = new ByteArrayOutputStream();

 MatrixToImageWriter.writeToStream(bitMatrix, "PNG", pngOutputStream);

 byte[] pngData = pngOutputStream.toByteArray();

 return pngData;

}

Using the above method a QR code can be generating by passing the required data in

the form of a JSONObject. The JSONObject would include the following.

1. Redirect URL

2. Authentication session cookie

3. The endpoint to register a new device

4. Metadata

The front end consumers may use the QR code as preferred in order to offer their

users the ability to register new devices.

45

4.2 Securing the Application Front end

Given that there’s already a “Realm” created in Keycloak in the name of the

application, the first step that is required in order to secure the front end of the

application is to register it as a client in the authentication server. In our design, we

have used Keycloak as our authentication server. Hence a client should first be

registered in the keycloak server. This can be done either by accessing the admin

console of the keycloak server or by calling the particular endpoint defined in the

authentication and device discovery service. Figure 9 shows the settings page of an

added client in the admin console where the security of a front-end of the application

could be configured.

Figure 9- Client Settings

When a client is successfully created in keycloak, the keycloak.json file shown in

Figure 10 needs to be included in the public folder of the source code. The contents

of the keycloak.json file are almost self-explanatory. The realm stands for the

application name, the auth-server-url stands for the url of the authorization server and

46

the resource for the name of the front end of the application which was added as a

client in keycloak. The secret in the credentials section is based on the access type

selected when creating the client.

{

 "realm": "LiquidPOC",

 "auth-server-url": "https://localhost:8080/auth",

 "ssl-required": "external",

 "resource": "liquid-poc",

 "credentials": {

 "secret": "f8a22e21-c538-449b-bb5c-82865c1fe23c"

 },

 "confidential-port": 0

}

Figure 10 - Keycloak.json Configuration

With this simple configuration, now the front end of the application is successfully

secured with keycloak authentication. Now a user who tries to access the application

will be first redirected to keycloak following the authorization code grant type. A

user will have to provide user credentials to keycloak and authenticate himself first in

order to be redirected to the application front end as an authenticated user.

4.3 API Gateway

As illustrated in the high-level design diagram in Figure 7, each and every request

made to the authentication and device discovery service must pass through an API

gateway. This design not only enables us to add request filters at the earliest stage

possible but also limits the boilerplate security config code which would have to be

included in each and every microservice. In this design, the API gateway is also

secured with keycloak. In order to use keycloak functionality in a spring boot

application, the following maven dependency needs to be added.

47

<dependency>

 <groupId>org.keycloak</groupId>

 <artifactId>keycloak-spring-boot-starter</artifactId>

 <version>${keycloak.version}</version>

</dependency>

The API gateway implemented for this solution is based on Netflix Zuul. Zuul is an

edge service that has the capability to provide dynamic routing, security, monitoring,

resiliency and more. In the API gateway implementation, we have used Zuul for the

sole purpose of securing all the backend services and to act as a reverse proxy. The

complete list of dependencies and the project structure of the API gateway is shown

below in the pom.xml.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.1.4.RELEASE</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <groupId>com.liquid</groupId>

 <artifactId>gatekeeper</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>gatekeeper</name>

 <description>Demo project for Spring Boot</description>

 <properties>

 <java.version>1.8</java.version>

 <spring-cloud.version>Greenwich.SR1</spring-cloud.version>

 <keycloak.version>4.8.0.Final</keycloak.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-zuul</artifactId>

 </dependency>

 <dependency>

48

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 <dependency>

 <groupId>org.keycloak</groupId>

 <artifactId>keycloak-spring-boot-starter</artifactId>

 <version>${keycloak.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-devtools</artifactId>

 <scope>runtime</scope>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dependencies</artifactId>

 <version>${spring-cloud.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Since the API gateway is protected with Keycloak in order to protect the backend

services, all url patterns except for the health endpoints are secured with Keycloak.

The API gateway is developed as a spring boot application. The following java

49

configuration should be added in order to enable Keycloak security for the API

gateway.

First Keycloak needs to be registered as an authentication provider. Afterwards, the

KeycloakSpringBootConfigResolver is registered as a Bean in order for the main

Keycloak configuration to be read from the application properties of the Spring Boot

application. The overridden configure method defines the security aspects enforced

for the incoming HTTP requests. As shown in the configuration it operates in the

stateless mode and hence no user sessions are used. GET requests received to the

“/actuator” endpoint is allowed without authentication so are the POST requests

received to the Authentication server. The “/actuator/**” endpoint is offered by the

50

Spring actuator project of spring where it allows to monitor and gather metrics about

the application. Except for these endpoints, all other url patterns need to be

authenticated as defined in the security configuration. In order for the required

Keycloak beans to get created in the Spring boot application context, the following

properties need to be added to the application.properties file.

#Keycloak properties

keycloak.auth-server-url=${KEYCLOAK_SERVER_URL}

keycloak.realm=${KEYCLOAK_REALM}

keycloak.bearer-only=true

keycloak.resource=gatekeeper

keycloak.ssl-required=external

keycloak.confidential-port=0

That is all that needs to be done in order to secure the API gateway. Upon successful

configuration, only Http requests that include an authenticated bearer token in its

header are permitted. The access token received once a user logs in to the system

through the protected front end is required to be included in all the http requests sent

to consume the protected services. The following properties define the zuul

configurations of the service routes. The following configuration disables services

from being called from their service name since it could expose the service names

making the services vulnerable. Zuul routes are defined for each service with a

customized name.

Disable accessing services using service name (i.e. gallery-service).

They should be only accessed through the path defined below.

zuul.ignored-services=*

Map paths to services

zuul.routes.device-discovery.path=/discovery/**

zuul.routes.device-discovery.service-id=device-discovery

zuul.routes.auth-service.path=/auth/**

zuul.routes.auth-service.service-id=auth-service

zuul.routes.auth-service.strip-prefix=false

Exclude authorization from sensitive headers

zuul.routes.auth-service.sensitive-headers=Cookie,Set-Cookie

51

4.3.1 Service Registry

The Authentication and Device Discovery service model includes a service registry

or in other terms a naming server in order to reduce the complexity of service

identification in the API gateway. In a cloud-native environment, it is often common

to see dynamic hostnames and ports. Hence identifying a service by a hardcoded

hostname and port defined in a property file is not the most ideal scenario. Even

though in the current solution only an authentication and device discovery service is

present, it is the intention to add more generic services in the future. Furthermore,

depending on the consumption of the authentication and device discovery services,

the service instances might increase in order to satisfy the service demands. Hence a

service registry seems to be the ideal solution for the API gateway to refer to in order

to find the services. Since the whole solution is mainly based on Spring cloud

technologies, the Netflix Eureka service which acts as a service registry was used.

The Eureka service is a lookup server. All the backend microservices may register

with the Eureka server on startup. After the initial registration process, the services

can be accessed using the service name provided in the configuration rather than a

hostname and port. For a microservice to register in the Eureka server it should

declare it as a Eureka Client. This could be done easily by adding the

@EnableEurekaClient annotation. In each of the microservices that wish to

register under the Eureka service registry, it should declare the following application

properties.

spring.application.name=gatekeeper

eureka.client.service-url.default-zone=http://localhost:8761/eureka/

The spring.application.name defines the microservice name that it wants to be

referred as while the eureka.client.service-url.default-zone defines the

Eureka server it wishes to register with.

52

4.4 Liquid QR Code Scanner

Since the content of the QR code generated by the device discovery service is a

encoded a JSON String, a custom QR code scanner is required to decode it and

execute the expected functionality. The expected functionality upon scanning of the

produced QR code is the following.

1. Invoke the endpoint defined in the service model to register a new device

with the device information as the request body.

2. Load the specified url with the bearer token.

A simple react application was developed as a qr code scanner including the above

functionalities. A device willing to be registered as a new device should first navigate

to the Liquid QR code scanner and scan the QR code displayed in the existing device

in order to successfully register as a new device. The developed application is mainly

based on two react libraries.

1. react-qr-reader - Used for scanning of QR codes

2. react-native-device-info - Used to retrieve device information

53

CHAPTER 5

EVALUATION

54

In order to evaluate the developed service model, a proof of concept application was

developed using React. Using the proof of concept application we try to demonstrate

how application developers can use the Authentication and Device Discovery as a

service in their applications. This application consumes the authentication service to

protect the application as well as to manage users. Furthermore, this application

consumes the device discovery service to enable multiple device usage. For the proof

of concept application we have chosen a map application where users can,

1. Log in from one device.

2. Search for a start and a destination to get a route.

3. Share the application with another device with the application state (Start,

Destination and the route).

Even though a user login is not a major requirement for a map application, it is

integrated in order to exhibit the full feature set offered by the Authentication and

Device Discovery service model. The developed proof of concept application

demonstrates how the proposed service model can be used in order to adapt liquid

properties in an application. The proof of concept application also exhibits the ability

of the device discovery service to transport application state from one device to

another using the generated QR code. Figure 11 shows the map application

developed with React.

55

Figure 11 - Proof of Concept Map Application

As shown in the figure, the proof of concept map application simply enables the user

to search a location and get directions and shortest path from a source to a

destination. In order to access this page the users are required to first authenticate

themselves with Keycloak. The default Keycloak login page is shown in Figure 12.

As shown in the figure it supports modern authentication features such as Identity

brokering. As shown in Figure 13, application developers may configure Identity

providers they wish to allow through Keycloak admin console. Once configured

those identity providers will be shown in the Login page as shown in Figure 12.

Users can then authenticate themselves into the application with the allowed social

providers under the “Realm”. As shown in Figure 12, features such as remember me,

forgot password and register new users are also available. These features can be

configured for each realm (application) through the Keycloak admin console.

56

Figure 12- Keycloak Login Page

Figure 13- Configuring Identity Providers

57

The default login page of Keycloak is completely customizable with custom themes.

Hence application developers have the freedom to have their own look and feel in the

login page to suit their application design. A successfully logged in user will be

redirected to the map application. As shown in Figure 11, users may perform the

provided functionality of a usual map application. In order to demonstrate the

concept of device discovery using the proposed service model, the application has a

new button to share the current application to a new device. This is the component in

the application which consumes the device discovery service of the proposed service

model. The click event of the “Share to Device” button will generate a GET request

to the API requesting a QR code to register a new device. The response of the GET

request contains the generated QR code in the form of a byte stream. That byte

stream is used to display the QR code in the application as shown in Figure 14. Then

the new device which the user want to register as his own and continue his work on

should then launch the Liquid QR Code scanner and scan this displayed QR code

shown in Figure 14. Figure 15 shows the screen where the Liquid QR Code Scanner

can be used to scan the QR codes generated by the device discovery service.

Figure 14- Generated QR code from the Device Discovery Service

58

Once scanned the Liquid QR Code Scanner performs the following tasks,

● Make a HTTP POST request to the device discovery service in order to

register the new device with the acquired device information.

● If the above request returns with a successful response, then redirect the

browser to the URL defined in the QR code along with the bearer token in the

authentication header.

● Restore any application state variables if available in the metadata of the

response.

Once this process is complete, the web browser will load the application in the newly

added device while also maintaining the application state where applicable. Figure 16

shows the web browser of the mobile device which scanned the QR code is now

redirected to the map application while maintaining the start, destination and route

from the previous device. This scenario depicts the sequential device usage.

59

Figure 15 - Liquid QR Code Scanner

60

Figure 16 - Application Loaded with state in the target device

This proof of concept application demonstrates the full functionality offered by the

Authentication and Device Discovery Service model. This map application is

completely based on web technologies and hence is platform independent. The

61

UI/UX aspects could easily be handled in web applications nowadays with

responsive UI components. These design decisions are solely made by application

developers and they have a full set of alternatives as discussed in the Liquid Software

Design Space [3]. This proof of concept application demonstrates seamless

authenticated transition between multiple devices abiding the liquid software

manifesto. Furthermore, it demonstrates the ability of the Authentication and Device

Discovery service model to ensure security of liquid applications by satisfying the

authentication needs. In summary the proof of concept map application that is

presented here shows how a generic web application could be transformed in to

liquid software application by adapting the proposed Authentication and Device

Discovery as a Service.

5.1 Quality of the Service Model

In order to ensure the quality of the services offered by the proposed authentication

and device discovery service model SonarQube [27] was used for continuous

inspection of code quality. SonarQube is an open source platform that performs static

analysis of the source code to detect bugs, vulnerabilities and code smells. When

combined with the unit tests SonarQube provides assurance that the source code

produced with each commit is of expected quality. SonarQube not only keeps an eye

on the health of the application but also tracks down newly introduced issues. This

becomes really beneficial for an iterative development strategy hence it can identify

bugs in the code as early as possible. Since the service model is still at the

preliminary research stage, SonarQube as a service was used with the integration of

GitHub repositories. In a production environment, it is ideal to configure SonarQube

with a continuous integration engine for scheduled analysis. Each of the project

repositories under the service model is scanned with SonarQube to ensure code

quality. The Default SonarQube Quality gate was enforced for all the projects. Figure

28 shows the SonarQube dashboard for the gatekeeper project which is the API

gateway in the proposed service model. As shown in Figure 17 No bugs,

vulnerabilities or code smells were found for the API gateway and the quality gate

has been passed.

62

Figure 17- SonarQube Dashboard - GateKeeper

5.2 Concept Evaluation

Having developed a proof of concept application using the proposed service model

illustrates the capabilities of the service model. In order to evaluate the functionality

that is offered by the service model in real-world applications, the proof of concept

application that was developed consuming the service model was evaluated with real

users. A group of 25 users representing industry professionals and university students

were used for this evaluation process. The following questionnaire was presented to

them in order to get their feedback on the user experience. Table 3 contains records

of the questions presented in the questionnaire, available answers, the intention of the

questions and if the feedback was collected before or after using the application.

63

Table 3 - Service Endpoints

Question

Available Answers Intention Presented

Before/After

application

use

Is it likely that you

would want to

search a particular

route in a map

application using

your computer, and

then transfer it to

your mobile and

continue the rest

from your mobile?

 Most Likely

 Likely

 Not

Applicable

To understand if

there’s user interest

for liquid properties

in an application

Before

Were you able to

successfully register

with the map

application?

 Yes

 No

Verify the user

registration process

provided by the

service model

After

Were you able to

use the provided

social login

providers such as

google and

Facebook to login

to the application?

 Yes

 No

Verify the identity

brokering

functionality with

the configured

social providers.

After

Was the "share to

device" option

provided through

 Yes

 No

Background

question on the

functionality

After

64

the application

useful?

verifying its usage.

Out of 5 how would

you rate the device

transition process in

terms of continuity?

1 - Interrupted

5 - Seamless

Continuation

Verify the

functionality

introduced by

adopting the service

model ensures a

seamless transition

between devices.

After

Out of 5 how easy

did you find the

device transition

process?

1 - Very Hard

5-Completely Hassle-

Free

Verify that hassle-

free transition

between devices is

available for

applications that

adopt the proposed

service model.

On a scale of 5,

how accurate was

the QR Code

Scanning process?

1 - Inaccurate

5 - Very Accurate

Verify the QR Code

generated performs

the expected

functionality

offered by the

service model.

After

Were you asked to

log in to the

application from the

new device?

 Yes

 No

Verify that Single

Sign-On is

provided through

the service model

irrespective of the

device transition.

After

65

Did you experience

failures when trying

to scan the QR code

generated using the

Liquid QR Code

Scanner?

 Very Often

 Sometimes

 No Failures

To cover the

scenario where the

QR Code might

contain too much

information and

would not perform

the expected

functionality during

the scanning

process.

After

Were the results

obtained from the

application using

one device available

in the other after

sharing to a new

device?

 Yes

 No

In order to verify

the application state

is successfully

transferred to the

newly added

device.

After

On a scale of 5,

how much do you

prefer to have the

"Share to device"

feature in all the

web applications

you use on a regular

basis?

1 - Not required

5 - Would love to

have it.

To capture how

inspired the users

are after

experiencing the

liquid nature

offered through the

application.

After

Shown below are the visualizations of the summary of the feedback responses that

were collected from the user group.

66

Figure 18 - Feedback - Motivation

Figure 18 shows that out of 25 responses 60% are likely to expect a liquid behaviour

from a map application while 40% of the users see it as a most likely feature that they

would expect from a map application. Considering this feedback it is evident that all

the users have some kind of expectation to have a liquid behaviour in the existing

map applications.

Figure 19 - Feedback - User Registration

Figure 19 shows the user feedback collected on the user registration functionality

provided in the proof of concept application. The entire authentication and the user

67

registration process in the proof of concept were handled using the proposed service

model. Since all the users who participated in the evaluation process have been able

to successfully register themselves in the application it is evident that the service

model can successfully provide user registration functionality to an application.

Figure 20 - Feedback - Social Login Providers

Figure 20 shows the feedback responses received with regard to the social login

providers that are registered as identity brokers to the application. 96% of the users

were able to successfully authenticate themselves into the application using the

configured social login providers. The one user who was unable to log in using his

social login reported having a problem signing into his social profiles using the

proper credentials. In summary 24 out of 25 people were able to successfully

authenticate themselves using the provided social login providers.

68

Figure 21 - Feedback - Share to Device Functionality

As shown in Figure 21, 100% of the users agreed that they found the “share to

device” option in the application useful. As previously understood with the first

feedback question, this also depicts that users are happy to have a feature to share

their application sessions with multiple devices. Therefore it can be said that users

are happy to experience the liquidity that is provided through the application.

Figure 22 - Feedback - Continuity of the application

69

Figure 22 shows the feedback responses collected in terms of the continuity

experience the users felt during the usage of the application with multiple devices.

96% of the users have responded with above-average continuity experience with

ratings of 4(56%), and 5(40%) while 4% of the users felt the continuity is average as

they have selected a rating of 3. Majority of the users felt that the application has a

really good continuation from one device to another. Users having to launch a

specific QR code scanner in order to move from one device to another might be an

influential factor in this particular feedback response. But most of the users have felt

that the application continuity was really good.

Figure 23 - Feedback - Hassle-Free Transition

Figure 23 shows the feedback responses with regard to the ease of transition between

devices. According to the liquid software manifesto, the device transition process

needs to be hassle-free as possible. Therefore, the functionality that is provided by

the device discovery service of the proposed service needs to be evaluated in that

regard. As shown in the summary of the responses, only 2 out of 25 people felt it was

at a satisfactory level. All the rest of the users felt the device transition process was

above satisfactory. 44% of the users felt the transition process was really easy and

hassle-free as possible while another 48% of the users almost agreed to it. Hence it is

70

evident that the device discovery service, when consumed by an application, can

provide a hassle-free transition between devices showcasing liquid behaviour.

Figure 24 - Feedback - QR Code Scanner Accuracy

Figure 25 - Feedback - QR Code Scanner Failures

Figures 24 and 25, shows the feedback gathered in terms of the accuracy and the

failures of the QR Code scanner as experienced by the users. Some latency was

expected during the scanning process of the QR code as the initial phase of the

implementation included a considerable amount of data encoded in the QR Code. It

71

has been identified by the users as well since the QR Code Scanning has sometimes

failed for 56% of the users. An alternative approach to including additional data in

the QR code has already been identified and will be added to the device discovery

service as an improvement.

Figure 26 - Feedback - Single Sign-On

Single Sign-On feature is a requirement for a hassle-free device transition. If a user

has to authenticate themselves in each and every device that they want to use the

application on, then the user experience is affected. In the proposed authentication

and device discovery service model single sign-on feature is included depending on a

expiration interval which could be configured by the application developers who

choose to adopt the service model. As shown in Figure 26, 80% of the users did not

require to login again from the new device. The other 20% who had to log in again

were understood to have expired authentication tokens meaning they have spent

some time going over the expiry interval of the access token that is issued by the

authentication server.

72

Figure 27 - Feedback - Application state transfer

Figure 27 shows the feedback responses with regard to the application state transfer.

In the proof of concept application only the start, destination and the route of the

application were treated as the application state that is required to be transferred

among devices. Hence as shown in Figure 27, almost all the users have been

successful in transferring their application state using the functionality offered by the

proposed service model. The reason for one failure that is reported must be due to a

mishap during the scanning process of the generated QR code, which was identified

earlier as a concern.

Figure 28 - Feedback - Motivation

73

Figure 28 shows how much the users expect such functionality offered in the proof of

concept application using the proposed service model in all their routine applications.

This is a motivational response from the users since almost all of the users have

shown great interest in the “share to device functionality”. This is also evidence that

users are craving for liquid software applications that suit their modern multi-device

ecosystems.

5.3 Limitations

The proposed Authentication and Device Discovery Service model depends on a QR

code to support the device registry process. Since the device discovery process needs

to be combined with the authentication service, the generated QR code is not just an

encoded URL as in the common scenario. Due to the customized nature of the

generated QR code, a specific QR code scanner that complies with the same

standards is required for a successful device migration. To suffice this requirement

the Liquid QR Code Scanner was developed. This would enforce the application user

to first navigate to the Liquid QR Code Scanner from the device that they wish to

migrate to and scan the generated QR code. The limitation here is the additional step

that users need to take during the device transition phase. If it was possible to just

scan it from any existing camera application, the scenario would have been ideal.

This is a user experience concern that requires further improvement.

Furthermore, the application state synchronization is another concern in liquid

software applications. Even though the proposed solution enables the application

developers to transfer application state from device to device, it is handled by the

metadata stored in the QR code. It is not recommended to have large content in QR

codes as it may introduce cross-link mishaps. Therefore the application state that

could be transferred from device to device using the current solution would be

minimal. Therefore that approach may not be ideal for applications which store bulk

of the information in the application state. An alternative approach has already been

identified and will be worked on as an improvement.

74

CHAPTER 6

CONCLUSION

75

Liquid Software is an essential component in ubiquitous computing. With multiple

device ownership becoming the current norm, it is a rising requirement of users to be

able to seamlessly migrate from one device to another. But consolidating application

security is of utmost importance when it comes to liquid software as compromising

one device may lead to the entire application being compromised. Furthermore,

application security process should be as hassle-free as possible to the end users.

Otherwise it becomes difficult to maintain a seamless transition between devices.

Including authentication to secure an application is a commonly seen approach. But

if users are required to authenticate themselves to the same application each time

they migrate from device to device it disturbs the concept of seamless transition.

Therefore it is against the liquid software manifesto.

Having to consider design, development, testing and maintenance of a flexible

authentication mechanism for each and every application that is developed is a

tedious task. If such functionality is readily available for application developers, it

would save them a considerable amount of effort. In a true liquid environment,

registration of new devices and authentication should be handled as a combined task.

In the proposed service model which is presented in this research, the application

developers are provided with the functionality to register new devices along with a

proper authentication mechanism. When consumed by an application, the

Authentication and Device discovery service handles the authentication of the

application and also the device discovery process. When a front end of an application

is protected as defined in the model, a user who is authenticated in to the front end of

the application doesn’t have to repeat himself when he migrate to a different device

until the access token received by the authentication service is expired. Migration to

other devices is handled by using a QR code generated by the device discovery

service. The proposed transition to multiple devices is not only seamless but also

transparent since the user devices that a particular user wish to migrate is entirely

based on his will. Furthermore, signing off from one device may mean signing off

from all devices to handle security. But just in case if a particular user want to

unregister a certain device, he could do so by using the functionality provided by the

device discovery service. The proposed solution also tries to support application state

76

transfer to some extent during the device discovery stage. The consumers of the

device discovery service may pass on application state in the form of metadata and in

return consume them from the registered device. This is not a complete solution to

the synchronization of application state but just an additional use case that could be

covered by using the proposed service model. In summary Authentication and

Device Discovery Service model provides out of the box features to support liquid

nature in web applications. A web application which adapts the proposed model is

guaranteed to be at least semi liquid according to the liquid software manifesto

without requiring additional development effort.

6.1 Future Work

Providing consumption ready services for web applications is a largely developing

trend in the software industry. The proposed service model provides Authentication

and Device Discovery as a Service for web applications. The intention of this service

model is to provide liquid nature to web applications. The existing service model

could be further improved by adding more generic services that could support liquid

behaviour. One of the identified elements is application state transfer. Even though it

is possible to use the current solution to transfer application state in small scale, it

will not serve well as the application state continues to scale. Hence a scalable

solution is required to support application state transfer. As a future improvement we

plan to integrate application state synchronization service in to the proposed service

model. Taking out the Keycloak dependency from the service model in order to make

it usable with other authentication servers will be another valuable improvement.

Upon completion, the service model will be able to provide full liquidity for web

applications covering almost all the requirements stated in the liquid software

manifesto.

77

REFERENCES

[1] Taivalsaari, A., Mikkonen, T. and Systä, K. (2014). Liquid Software Manifesto:

The Era of Multiple Device Ownership and Its Implications for Software

Architecture.

[2] Mikkonen T., Systä K., Pautasso C. (2015) Towards Liquid Web Applications.

In: Cimiano P., Frasincar F., Houben GJ., Schwabe D. (eds) Engineering the Web in

the Big Data Era. ICWE 2015. Lecture Notes in Computer Science, vol 9114.

Springer, Cham

[3] A. Gallidabino et al., "On the Architecture of Liquid Software: Technology

Alternatives and Design Space," 2016 13th Working IEEE/IFIP Conference on

Software Architecture (WICSA), Venice, 2016, pp. 122-127.

[4] Gallidabino, A., Pautasso, C., Mikkonen, T., Systa, K., Voutilainen, J. P., &

Taivalsaari, A. (2017). Architecting liquid software. Journal of Web Engineering,

16(5-6), 433-470.

[5] D. Bonetta and C. Pautasso, "An Architectural Style for Liquid Web Services,"

2011 Ninth Working IEEE/IFIP Conference on Software Architecture, Boulder, CO,

2011, pp. 232-241.

[6] Gallidabino, Andrea & Pautasso, Cesare. (2016). The Liquid.js Framework for

Migrating and Cloning Stateful Web Components across Multiple Devices. 183-186.

78

[7] Hartman, J.H., Bigot, P.A., Bridges, P.G., Montz, A.B., Piltz, R., Spatscheck, O.,

Proebsting, T.A., Peterson, L.L., Bavier, A.C.: Joust: A platform for liquid software.

IEEE Computer 32(4), 50–56 (1999)”.

[8] J. J. Hartman, U. Manber, L. L. Peterson, and T. A. Proebsting, Liquid software:

a new paradigm for networked systems. Univ. of Arizona Tech Report TR 96-11,

1996.

[9] Oracle.com. (2017). Sun Ray Products Overview. [Online] Available at:

http://www.oracle.com/technetwork/serverstorage/sunrayproducts/overview/index.ht

ml [Accessed 10 Aug. 2017].

[10] Apple Support. (2017). Use Continuity to connect your Mac, iPhone, iPad, iPod

touch, and Apple Watch. [Online] Available at: https://support.apple.com/en-

us/HT204681 [Accessed 12 Aug. 2017].

[11] Bell, K. (2017). Baton promises to be the ultimate Android app switcher.

[Online]Mashable.Available at: http://mashable.com/2014/10/27/nextbitbaton-app/

[Accessed 18 Aug. 2017].

[12] Windows Central. (2017). Continuum. [Online] Available at:

https://www.windowscentral.com/continuum [Accessed 18 Aug. 2017].

[13] Taivalsaari, A. and Syst, K. (2012). Cloudberry: An HTML5 Cloud Phone

Platform for Mobile Devices. IEEE Software, 29(4), pp.40-45.

[14] J. Kuuskeri, J. Lautamäki, and T. Mikkonen, Peer-to-peer collaboration in the

Lively Kernel. Proc. 25th ACM Symposium on Applied Computing, 2010, pp. 812-

817.

79

[15] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, Web browser as an

application platform: The Lively Kernel experience. Sun Microsystems Laboratories

Tech Report TR-2008-175, 2008.

[16] K. Systä, L. Järvenpää, and T. Mikkonen, HTML5 agents – mobile agents for

the web. Proc. International Conference on Web Information Systems and

Technologies 2013 (WebIST’13, Aachen, Germany, May 8-10), 2013, pp. 37-44

[17] Bourges-Waldegg, D., Duponchel, Y., Graf, M., and Moser, M. (2005) The fluid

computing middleware: Bringing application fluidity to the mobile internet.

IEEE/IPSJ International Symposium on Applications and the Internet (SAINT’05),

pp. 54–63, IEEE.

[18] Palmer, T. D. and Fields, N. A. (1994) Computer supported cooperative work.

Computer, 27, 15–17.

[19] Grundy, J., Wang, X., and Hosking, J. (2002) Building multi-device,

component-based, thin-client groupware: Issues and experiences. Australian

Computer Science Communications, vol. 24, pp. 71–80, Australian Computer

Society, Inc.

[20] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen, The Lively

Kernel – a self-supporting system on a web page. Proc. Workshop on Self-Sustaining

Systems (S3'2008, Potsdam, Germany, May 15-16, 2008), LNCS5146, Springer-

Verlag, 2008, pp. 31-50.

[21] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, Web browser as an

application platform: The Lively Kernel experience. Sun Microsystems Laboratories

Tech Report TR-2008-175, 2008.

[22] "Spring Projects", Spring.io, 2019. [Online]. Available:

https://spring.io/projects/spring-cloud. [Accessed: 06- Mar- 2019].

80

[23] K. Team, "Keycloak - Documentation", Keycloak.org, 2019. [Online].

Available: https://www.keycloak.org/documentation.html. [Accessed: 08- Mar-

2019].

[24] "React – A JavaScript library for building user interfaces", Reactjs.org, 2019.

[Online]. Available: https://reactjs.org/. [Accessed: 20- Mar- 2019].

[25] "OAuth 2.0 — OAuth", Oauth.net, 2019. [Online]. Available:

https://oauth.net/2/. [Accessed: 01- Mar- 2019].

[26] "OAuth 2.0 Grant Types", Oauth.net, 2019. [Online]. Available:

https://oauth.net/2/grant-types/. [Accessed: 01- Mar- 2019].

[27] "Continuous Inspection | SonarQube", Sonarqube.org, 2019. [Online].

Available: https://www.sonarqube.org/. [Accessed: 13- May- 2019].

[28] "Yjs", Y-js.org, 2019. [Online]. Available: http://y-js.org/. [Accessed: 09- May-

2019].

[29] D. HAKOBYAN, "Authentication and Authorization Systems in Cloud

Environments", Stockholm, Sweden, 2012.

[30] Openid.net. (2019). OpenID Connect | OpenID. [Online] Available at:

https://openid.net/connect/ [Accessed 13 May 2019].

