
AUTHORIZATION FOR WORKLOADS IN A

DYNAMICALLY SCALING, HETEROGENEOUS

SYSTEM

Pushpalanka Rajaluxmie Jayawardhana

158217G

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2019

AUTHORIZATION FOR WORKLOADS IN A

DYNAMICALLY SCALING, HETEROGENEOUS

SYSTEM

Pushpalanka Rajaluxmie Jayawardhana

158217G

Thesis submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2019

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

In addition, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works.

………………………………………… ………………………….

Pushpalanka Rajaluxmie Jayawardhana Date

The above candidate has carried out research for the Masters thesis under my

supervision.

………………………………………… ………………………….

Prof. Gihan Dias Date

ABSTRACT

Enterprises in the modern world have gone through a phase of digital transformation
which has contributed immensely in the growth of enterprise systems. This has
spread through concepts such as e-government, open banking, e-healthcare,
e-commerce concepts to digitalized organizations. Conventionally, systems ran
within the corporate infrastructure. In the past few years, organizations have been
moving to the cloud. Authentication and authorization work well in on-premises or
within a single cloud. But authentication and authorization in modern systems with
hybrid cloud and multi-cloud approaches where none of the parties individually
govern the perimeter of the system is still an open problem. The components serving
in one part of the system can be totally strange to the other party and is not aware of
the security privileges they have. On the other hand, enterprise systems cannot
compromise on information security, though they may want to have the advantages
of multi-cloud systems. While there have been several attempts done by the research
communities from Google, Docker, Dropbox etc. to provide a common identification
protocol across systems, authorization mechanisms still lacks attention. This research
provides a solution for authorization between multiple systems (on-premise and
cloud or multiple clouds) based on identification completed by the infrastructure. In
the provided solution, a central server assigns attested identity to each legitimate
workload, to identify them and apply authorization policies at resource access. The
resource servers reside behind an access control layer, which allows method
execution according to an administrator-defined policy that considers fine-grained
details such as the accessing resource, action to be performed and other context
details, in addition to the identity of the consumer and the resource.

Keywords: Authorization, Access control, Multi-Cloud, Hybrid Cloud

ACKNOWLEDGMENTS

I would like to express profound gratitude to my supervisor, Prof. Gihan Dias, for his

continued supervision, invaluable support, useful suggestions throughout the

research work and forewarnings on possible pitfalls. His experience, expertise, and

continuous guidance encouraged and enabled me to complete this research work

successfully.

I also express my gratitude to Mr. Prabath Siriwardena, my external project

supervisor for providing me with the initial project idea, giving invaluable assistance

throughout and introducing me to the direct technical community around latest

technologies relevant to the project. It was a great identification of an emerging

industrial requirement, which I could passionately work on to provide a solution.

I am grateful for all the support given by Dr. Indika Perera, to complete this research

project, with smooth handling of all the processes. I am extending my thanks to all

the staff from the Department of Computer Science and Engineering for their

kindness expressed in all occasions.

I would like to thank WSO2 Lanka (PVT) Ltd, for the encouragement given on

proceeding with higher education and sponsorship given to follow the MSc. I am

thankful to my colleagues and friends for their continued assistance and

encouragement. I would like to especially thank Mr. Chamila Wijayarathna for

helping me to get research materials.

I am as ever, especially indebted to my parents for their support throughout my life.

Their love and blessings kept me encouraged at the hardest times to complete this

project, despite the obstacles.

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGMENTS iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

1. INTRODUCTION 1

 1.1 Multi-cloud Environments 2
 1.2 Problem Statement 3
 1.3 Objectives 6
 1.4 Research Contribution 6
 1.5 Outline 7

2. LITERATURE REVIEW 9
2.1 Access Control 9
2.2 Authentication 10
2.3 Authorization 11

2.3.1 Access Control Matrix 11
 2.3.1.1Access Control List 12
2.3.2 Discretionary Access Control (DAC) 13
2.3.3 Mandatory Access Control (MAC) 13
2.3.4 Role Based Access Control (RBAC) 13
2.3.5 Attribute-Based Access Control (ABAC) 14
 2.3.5.1 XACML 14
 2.3.5.2 OPA 17

2.4 Lattice Based Access Control - Classical Information Security Models 18
2.4.1 Bell-La-Padula Model 20
2.4.2 BIBA Model 21
2.4.3 Chinese Wall Model 23
2.4.4 Clark-Wilson Model 24
2.4.5 Graham-Denning Model 26

https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.akbchey1j590
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.l0jfr53gui8l
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.54v794yb82m5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.p8snle45akqa
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.894yuga0miew
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.6avc1flgr00s
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.4r6q402j6e94
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.dfemx23t4dmk
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.1fwe1arfk3g5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.1fwe1arfk3g5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.1wk89gz2wn27
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.gzvtipsa5m6j
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.78i7v8hi3u8v
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.ouoozrj1pifo
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.g7i68sf79m23
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3m7polmba42o
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.ihccystlh2f1
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.b17vcs6g2g8h
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.x6rudcbyz2q
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.m3vyyf6gy2gd
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.hbjg9drmy3wp
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.hbjg9drmy3wp
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.rj9nnz6oun5l
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3m5xjqka2imq
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.krno6a7u96tb
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.krno6a7u96tb

2.4.6 Harrizon-Ruzzo-Ullman Model 27
2.4.7 Take-Grant Model 28

2.5 Cloud Computing 29
2.5.1 History 29
2.5.2 Cloud Services 29
2.5.3 Hyper-Converged Cloud 30

2.6 Workloads 31
2.6.1 What is a workload? 31

2.7 Workload Authentication Technologies 31
2.7.1 Challenge Response Authentication Mechanisms 32
 2.7.1.1 Username and password based authentication 32
2.7.2 Needham–Schroeder protocol 32
2.7.3 Kerberos protocol 34
2.7.4 The platform provided privileged API based authentication 37

2.7.4.1 Amazon EC2 IID 37
2.7.4.2 Google Cloud Provider IIT 38
2.7.4.3 Microsoft Azure MSI 39

2.7.5 SPIFFE standard 40
2.7.5.1 SPIFFE in action 41
2.7.5.2 SPIFFE implementations 44

2.8 Workload Authorization Technologies 45
2.8.1 OAuth 2.0 Authorization Framework 46

2.8.1.1 OAuth 1.0 vs OAuth 2.0 46
2.8.1.2 OAuth 2.0 47
2.8.1.3 Fine-grained authorization with OAuth2 scopes 49
2.8.1.4 OAuth 2.0 popularity 50

2.8.2 Authorization Servers 51

3. SOLUTION DESIGN 52
3.1 Methodology 54

3.1.1 Authentication technology 54
3.1.2 Authorization Technologies 56

3.1.2.1 DAC vs MAC 56
3.1.2.2 RBAC vs ABAC 57
3.1.2.3 XACML vs OPA 57
3.1.2.4 Authentication and Authorization 59

3.1.3 Authorization Server 62
3.2 Architecture 62

https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.vb114h9i55yj
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.krno6a7u96tb
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.216qr2xacs8p
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.sdj8roea77qv
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.qi46aoqd5zb3
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.hpghl08e7iwx
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.yfz587p7o4gd
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.gupd32dctpkt
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.mhg8m7ha5t
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3zomd1kq0tso
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3udpc1iy4wao
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.pgyzrplb8ht5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.xgoa4it7pf4e
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.tfi3zhdcso7y
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.1z019p8ank89
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.9tbzt6r39wv
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3awbvt9u4dsj
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.coy8706e2h3n
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.vf9uwyh4lqvk
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.ffukvrpr5te
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.aq8ctchuf5em
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.98jvnloxn5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.qf77opzfshjd
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.ynnbvfjz6j4h
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.j4591qq4geb5
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3beuvin6b4n3
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3beuvin6b4n3
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.51lmullhme19
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.2us91gypk6h2
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.2o1w9dxlq7kh
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.1bv3kleo4r7d
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.bfib1osnolml
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.gjpwrtnc8m8n
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.jij2rjei2gwz
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.unvkpmlc7eg9
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.a7wyplsay7le
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.q93mqo34jdno
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.j7fpg7klkphr

3.2.1 Interactions 64
3.2.2 Assumptions 64

4. SOLUTION IMPLEMENTATION 66
4.1 Pre Resource Access - OAuth2 Token Issuing Flow 68
4.2 Resource Access - OAuth2 Token Validation Flow 74

5. SOLUTION EVALUATION 77
5.1 Deployment Model 77
5.2 Deployment Configuration 79

5.2.1 Infrastructure 79
5.2.2 Policies 79
5.2.3 Test cases 83

5.2.3.1 Correctness 83
5.2.3.2 Performance 84

6. CONCLUSION AND FUTURE WORK 86
6.1 Conclusion 86
6.2 Limitations 87
6.3 Future Work 88

REFERENCES 90

APPENDIX 95
Sample XACML Policy 95
Sample OPA policy 97
Sample SPIFFE SVID X.509 certificate 98

https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.5kkesqdtsu9i
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.63vejnvnn4b3
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.koa0vlfxxwps
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.sa7y1g86g1l3
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.xiywfrh80su2
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.neif5jsx2plg
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.5k3xb82wz9w6
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.nsuq0jsscc1
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.va4t4tkhdeby
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.czlscvgjsgia
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.pa8byl8gguq2
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.l7tyu5f0l8gy
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.ubvdjycwl5bk
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.kusvaeh4jwgs
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.3at3ee9fceue
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.wv4z4a23y8rk
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.y0rgv5v8xi2t
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.i3hh2ra6tu73
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.i3hh2ra6tu73
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.wtkpy5ndhaky
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.beixb67dj8as
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.7nfi008s27hm
https://docs.google.com/document/d/11RC8NgWeJRaN8VDZbrVSlC3D08FfetANNX43tsKSeTI/edit?ts=5c78a26c#heading=h.24szdvu3w6cq

LIST OF FIGURES

Figure 1.1 - Cloud Usage Plans 3

Figure 1.2 - A Multi-cloud Environment Used by an Enterprise System 3

Figure 2.1 - Access Control and Other Security Services 9

Figure 2.2 - Access Matrix 11

Figure 2.3 - Access Control List for Files 12

Figure 2.4 - XACML Based Access Control Components 15

Figure 2.5 - How OPA works 17

Figure 2.6 - Access Control Matrix of Graham-Denning Model 27

Figure 2.7 - History of Cloud Computing 29

Figure 2.8 - Hyper-Converged Cloud 30

Figure 2.9 - Kerberos Protocol 35

Figure 2.10 - Platform Mediated Authentication 37

Figure 2.11 - Azure Instance Authentication 40

Figure 2.12 - SPIFFE in action 47

Figure 2.13 - Client Credentials Grant 48

Figure 3.1 - Approach 1 for SPIFFE and OPA Integration 59

Figure 3.2 - Common Model 60

Figure 3.3 - Approach 2 with Authorization Server 61

Figure 3.4 - Architectural Design 63

Figure 4.1 - Implementation Scope 66

Figure 4.2 - Workload Gets an OAuth2 Token 68

Figure 4.3 - SPIFFE Based OAuth Client Authenticator 70

Figure 4.4 - OPA Based OAuth2 Scope Handler Implementation 71

Figure 4.5 - Workload Access Another Workload 74

Figure 4.6 - OPA Based OAuth2 Token Validator 75

Figure 5.1 - Deployment for Evaluation 77

LIST OF TABLES

Table 2.1 - Attestation Policy for SPIFFE IDs 42

Table 2.2 - Access Control Technologies Comparison 45

Table 3.1 - Workload Authentication Technology Comparison 55

Table 3.2 - ABAC Technology Comparison 58

Table 5.1 - Test Cases 83

LIST OF ABBREVIATIONS

ABAC - Attribute Based Access Control

CI/CD - Continuous Integration/Continuous Development

CRAM - Challenge Response Authentication Mechanisms

CNCF - Cloud Native Computing Foundation

DAC - Discretionary Access Control

DCR - Dynamic Client Registration

GDPR - General Data Protection Regulation

IAM - Identity and Access Management

IID - Instance Identity Document

IIT - Instance Identity Token

MAC - Mandatory Access Control

MSA - Micro-Services Architecture

MSI - Managed Service Identity

OPA - Open Policy Agent

PAP - Policy Administration Point

PDP - Policy Decision Point

PEP - Policy Enforcement Point

PIP - Policy Information Point

RBAC - Role Based Access Control

SaaS - Software as a Service

SPIFFE - Secure Production Identity Framework For Everyone

SPIRE - SPIFFE Runtime Environment

STS - Security Token Service

SVID - SPIFFE Identity and Verifiable Identity Document

XACML - eXtensible Access Control Markup Language

1. INTRODUCTION

The term ‘Cloud’ is nowadays used for various technologies in different contexts but

generally refers to computing provided as a service from a remote location. While

there is debate on who first introduced the term ‘Cloud Computing’, Ramnath

Chellappa, a professor in University of Texas, has defined it as a new “computing

paradigm where the boundaries of computing will be determined by economic

rationale rather than technical limits alone” in 1997, which several sources treat as

the first application of the word in the current context[1]. In the context of this

document, the ‘cloud’ is referred to as the most general use case of a

dynamically scaling, heterogeneous system.

An enterprise has a specific business focus, while digital transformation can support

it to better achieve its goals. The more they can delegate the operation and

maintenance of digital infrastructure, the more they can focus on the business. With

vendors such as Amazon emerging to provide a variety of Cloud services, these

enterprises have tried to make use of them with the benefits of less maintenance, low

cost due to elastic scaling, low initial cost and less time to go to market. This

movement paved the way for CSPs (Cloud Service Providers) and related

technologies.

While the ‘Cloud’ provides the above benefits, it also raises concerns on how secure

it is and the enterprises have been worried about the control they get while running

on third-party infrastructure, reliability, accountability and the privacy of the data

and functionality of the system. Research communities have been working on

multiple directions to find solutions to these issues, resulting in amazing technologies

such as containers, container orchestration, virtualization etc. that broaden the

horizons of capabilities of computing, enabling enterprises to widespread the

systems. This project is an effort to contribute to this initiative in the access

management aspect towards a better-controlled system.

1

https://paperpile.com/c/eZiDa9/Zkgm

1.1. Multi-cloud Environments

With different vendors and communities getting established in multiple segments of

computing and with rapid technological innovations technologies emerging in the

computing arena, heterogeneity is inevitable. Large enterprise systems depend on

different technology providers to get the best possible service on their requirements

in the most cost-effective manner.

With different vendors providing cloud services, enterprise systems now consist of

multi-cloud environments, often from several vendors. These may be combined with

in-house infrastructure and services. Below is the current major categorization of

clouds that can be seen widely.

1. Private cloud - an automated, highly virtualized installation of IT

infrastructure managed by an organization’s own IT team.

2. Public cloud - makes use of an infrastructure-as-a-service (IaaS) offering

managed by a third-party provider such as AWS, Google Cloud Provider or

Microsoft Azure.

3. Hybrid cloud - refers to the combined use of at least one private cloud and at

least one public cloud service, with some degree of integration between the

two cloud environments.

4. Multi-cloud - indicates the use of more than one public cloud service. Also

refers to as community clouds sometimes.

As per a survey[2] done by Nutanix in mid-2018, an emerging competing vendor for

AWS, the IT decision makers have shown more interest towards hybrid cloud and

predicted the usage will grow in the future, as in below Figure 1.1[2]. It further

mentions that 97% of these respondents said that being able to move applications

easily between clouds is a requirement. While this interoperability between cloud

types is the top benefit that respondents have been looking in the hybrid cloud

computing, availability and avoiding vendor lock-in has also been a motive.

2

https://paperpile.com/c/eZiDa9/199z

Figure 1.1 - Cloud Usage Plans[2]

As seen above, it is evident that enterprise systems are heading towards hybrid cloud

option without depending on one cloud service provider, which raise the

requirements on interoperability, including the Identity and Access Management

(IAM) aspects of interactions among multiple clouds.

1.2. Problem Statement

Figure 1.2 - A Multi-cloud Environment Used by an Enterprise System[3]

3

https://paperpile.com/c/eZiDa9/3SNt

As per the Gartner report ‘Hype Cycle for Cloud Computing, 2018’[4], Multi-cloud

is currently in the peak of the hype cycle, which is exposing its practicality

challenges. It also mentions ‘Cloud Security Assessments’ are climbing the slope,

which indicates the security challenges of this paradigm.

With:

- new scales of components that deal with each other in the enterprise systems

- the paradigm shift from monolithic applications to microservice-based

applications, and

- CI/CD(Continuous Integration/Continuous Development) nature of the

systems to cater to changing requirements of the consumers,

establishing trust, maintaining it and then authorizing the actions these components

perform on each other has become quite challenging. Proper authorization policies

are required and should be made effective, to control the misuses and ensure the

intended functionality in a highly distributed system,. To apply these policies, the

involved parties need to be proven with identities and these identities should be

mapped with the defined policies. Addressing this in a highly distributed system that

has zero trusts established requires a proper framework in place. This has also been

identified in the Gartner Technical Professional Advice “Building Identity Into

Microservices” 2017 as, “MSA (Micro-Services Architecture)-specific IAM (Identity

and Access Management) is still in its infancy. The primary focus of the MSA

community thus far has been authentication and, more narrowly, the use of OAuth

2.0, leaving other important questions, such as the authorization architecture,

unaddressed”[5].

Below challenges can be listed in the current high scale systems,

- Security groups concept used by cloud providers by grouping nodes and

applying policies on the group, has become too coarse-grained for

microservices based environments.

- IP based ACLs don't work as they cannot guarantee authorization when

dynamic IPs are in place. Also even in a kubernetes pod, multiple services

4

https://paperpile.com/c/eZiDa9/ibg3
https://paperpile.com/c/eZiDa9/paht

can be running which raise the requirement of a finer grained level of identity

and authorization.

- Once this granular identification has happened in a highly dynamic

heterogeneous system, binding authorization to these short lived entities is a

challenge.

While all of the above challenges are present when running a system on the cloud,

more challenges of another scale appear when a system is deployed across multiple

clouds. In other words, the system is built of several components running in different

cloud systems that work together on a common purpose. The major challenge comes

on how to uniquely identify components/processes without any ambiguity, in a

trusted manner cross these clouds. As the CSPs work individually in their individual

trust domains and with the dynamic nature of the cloud, current technologies struggle

in this use case. While the research community has developed technologies to

address authentication in this case, this research addresses the authorization aspect

which comes next, considering the above challenges.

We, therefore, frame our research question as:

How do we define and implement an authorization architecture for a

multi-cloud enterprise system?

5

1.3. Objectives

This research achieves the following objectives:

● Study existing models, solutions and standards that support authorization

within an enterprise system, their advantages, and limitations. Study the cloud

environments and their inherent characteristics.

● Study the other relevant aspects of authorization such as authentication and

administration of access control policy as required by the authorization

architecture for a cloud system.

● Build up the components of the architecture, that can coexist with the current

enterprise systems, providing authorization capabilities across clouds, with

minimal effort to integrate.

Innovations or implementations on trust bootstrapping in the system is not done as

part of the project. Rather than reinventing the wheel, existing implementations that

provide trust bootstrapping and authentication for a system with considered

characteristics of scale and dynamic nature were evaluated and best-suited

technology is used. On top of this authentication solution, the authorization of the

overall system is addressed.

1.4. Research Contribution

With the industry interest towards multi-cloud systems, the research communities

have come up with standards and approaches to address authentication among

multi-cloud systems. The next steps in this journey, with respect to Information

System Security, is ‘authorization’ between these systems. This research is to take

steps toward achieving this objective as following,

- Provide a solution for authorization among multi-cloud systems

- Development of the required components in the proposing design and

architecture, filling the lacking parts and making use of available components

whenever possible.

6

- Provide a proof of concept demonstration of the designed architecture.

- Convenience analysis on how easily this architecture can be utilized by an

existing entity that is moving to a multi-cloud system.

1.5. Outline

The rest of the chapters of this thesis are organized as follows.

Chapter 2 is a thorough look into the related work on access control having a deeper

look into the concepts of authentication and authorization. It discusses access control

approaches such as DAC, MAC, and RBAC, followed with modern access control

approaches of ABAC, XACML, and OPA. This chapter also looks back at the

classical security models for access control, such as Bell-La-Padula model and BIBA

model addressing confidentiality and integrity and also introduces several other

models establishing the foundation of modeling access control. Then this chapter

includes a concise look on ‘Cloud’ as a primary example of a dynamically scaling,

heterogeneous system that is trending in the current information technology

landscape. With this, the chapter narrows down the focus more on the authentication

and authorization technologies specific to workloads that are running in a cloud-like

environment and investigates more in this direction. In authentication wise it

discusses, credential-based authentication, Needham-Schroeder protocol, Kerberos,

SPIFFE standard and OAuth in detail.

Research methodology is presented in Chapter 3. The rationale of technology

selection and reasoning behind the architectural decisions are discussed here. This

specifically focuses on the authentication technology selection used in the solution

and authorization approach.

Chapter 4 presents implementation details specific to the architecture defined in the

previous chapter.

7

Performance evaluation of the implementation is presented in Chapter 5. It evaluates

the proposed architecture against it strong points, weak points, it’s best-fit use cases,

worst fits, and adaptability for an existing enterprise system.

Chapter 6 discuss the achievements of the system, limitations of the proposed

solution and identified future improvements and research work that can be acted

upon.

8

2. LITERATURE REVIEW

2.1. Access Control

Figure 2.1 - Access Control and Other Security Services[6]

When resources are of value and should not be exposed to or be accessed by

everyone, access to these resources needs to be controlled. Authentication,

Authorization, and Accounting (AAA) architecture has been used methodically in

providing these access control capabilities, mostly in the IP-based networks for

tracking user activities on network resources. Additionally, it is considered a generic

architecture applicable to other systems too [7].

AAA architecture,

● Authentication

● Authorization

● Accounting

Access control as a whole is related with all the above 3 aspects as seen in Figure

2.1, which a redraw of a diagram from the paper ‘Access control: principle and

practice’ by R. S. Sandhu and P. Samarati. It is about enforcing appropriate

9

https://paperpile.com/c/eZiDa9/UXHT
https://paperpile.com/c/eZiDa9/As23

authorization for the system based on the user's identity, serving the objective of

protecting the system resources against inappropriate or undesired access.

In the follow-up content, the first 2 aspects of access control are discussed in detail

while accounting is treated as a concept that should be applied across.

2.2. Authentication

Authenticity verification is the foundation where other security concepts such as

Authorization and Accounting are based on. Identifying an entity such as a person, a

group, a device or an application to be what they declare to be is the challenge

addressed by authentication. In other words, authentication is to bind a subject to an

identity that uniquely identifies the respective subject from others. The basis of

identification is majorly based on below 3 factors as below.

● Something Known

This uses a factor that can be known only to the entity that is to be identified.

Eg: passwords, PIN numbers, secret keys

● Something Possessed

This is mostly based on a physical accessory that is present with the entity to be

authenticated.

Eg: electronic token generators, ship/smart card

● Something Inherent

In the scope of a person, this is mostly the biometric features and involuntary actions.

Eg: a handwritten signature, fingerprint, voice, retina

Based on the asset value of the resource, modern enterprise systems use a

combination of these factors rather than depending on one factor, for enhanced

security, providing harder challenges against impersonation. This is known as

Multi-factor authentication(MFA) in the domain.

10

2.3. Authorization

Once the subject identity is authenticated, the system needs to figure out the actions

it can perform on the resources, before the entity is allowed to act. Authorization

decides what actions subject may or may not do within the system. The resources are

protected by an access control layer, which will check for the authorization level of

the entity and allowed resources as a part of this.

2.3.1. Access Control Matrix

Figure 2.2 - Access Matrix [6]

Above figure 2.2, shows a sample access matrix that defines allowed access levels

for three subjects, on 4 files and 2 accounts, which is another redraw of an image

from the paper by R. S. Sandhu and P. Samarati. Here the R denotes Read and W

denotes Write access. Whenever requests from the subjects come to access one of

these files or accounts, this access matrix should be referred to determine the allowed

access level and decide whether to deny the request or allow it.

As seen from the above matrix this can become complex when the number of

resources, number of subjects and access levels on each resource grows. In order to

address high number of subjects in the matrix, on some occasions, these subjects are

assigned to groups and these groups are used in the access control matrix in the place

of subjects.

11

https://paperpile.com/c/eZiDa9/UXHT

2.3.1.1. Access Control List

Figure 2.3 - Access Control List for Files[6]

12

https://paperpile.com/c/eZiDa9/UXHT

Access Control Lists is a way of implementing the access matrix, representing access

levels allowed on an object for subjects as seen in above figure 2.3. As shown in the

list, in this implementation object is used as the key and subjects and their access

levels are tracked against them. This has another flavor named ‘Capabilities List’

where the subject is used as the key and objects they can access is tracked along with

the access levels. One of the lists is used based on the most frequent lookup happen

in the system, either from object or subject.

2.3.2. Discretionary Access Control (DAC)

In this mode of access control, a request to access a resource is granted if it is

authorized and rejected otherwise. DAC policies control access to the resource by an

entity(subject). Hence once the entity gets access to the resource, they can pass on

the resource to another entity and that information flow is not governed by DAC,

which is a disadvantage. This is also called ‘the safety problem’ of propagation of

access rights. Additionally, access privileges for objects are decided by the owner of

the object in DAC, rather than a global policy or administrator enforcing them, which

can be complex without central control.

2.3.3. Mandatory Access Control (MAC)

MAC policies are defined using security labels attached to the resources(objects) that

are to be accessed by the subjects. MAC-based systems are governed by policy

administrators who implement security policies enforced on all the users of the

system. Rest of the users are not allowed to modify or override these policies

deliberately or accidentally. MAC is used when the risk of attack is very high while

confidentiality is a primary access control concern in military and intellectual

contexts.

13

2.3.4. Role Based Access Control (RBAC)

When modern enterprise systems are concerned, there can be millions of subjects

accessing the system. Even though the above two DAC and MAC policies are

recognized by the Orange Book of the US Department of Defense as well for their

strength in specific domains, these policies fall short to cater requirements of many

of the modern commercial and government systems, with the scales they deal with.

As a solution to this, RBAC has been introduced, where subjects are assigned a role

based on the security clearance levels each of them can have. Then the access policy

is defined based on these groups.

Eg: A role named ‘lecturer’ will be defined and assigned to all the lecturers in

a university. Then a mark sheet resource’s access level will be governed as any

subject with the role ‘lecturer’ can write and read it while none other can write to it.

An administrator should additionally govern the role assignment to users to define

the group, apart from the policy governance, in this approach.

2.3.5. Attribute-Based Access Control (ABAC)

Taking forward the RBAC approach one more step, ABAC approach is defined. This

approach generalizes the RBAC control, such that it can be applied to other attributes

as well. These attributes can be subject-related factors like role, age, location etc,

objects related attributes such as classifications, size, age or environment-related

attributes such as time. This is also referred to as ‘fine-grained access control’ due to

the detail-oriented flexibility provided in the approach. OASIS Extensible Access

Control Markup Language(XACML)[8] is an open standard that defines this

approach in a formal manner. This standard is discussed below.

14

https://paperpile.com/c/eZiDa9/1JdX

2.3.5.1. XACML

This open standard ‘Extensible Access Control Markup Language’ has evolved

through a considerable time from its 1.0 version in 2013 to 3.0 version[8] in 2017. It

defines the format to write policies to cater for ABAC requirements. It has a set of

standards to define the interoperability between the components required in the

ecosystem.

Policy Administration Point (PAP) - This component is used to define access

control policies.

Policy Decision Point (PDP) - This is the policy decision taking engine, which runs

the incoming authorization request against the defined policies and commands

whether to allow or deny.

Policy Enforcement Point (PEP) - This acts as the gate that secures the resources.

When an access request comes in, this component requests the decision on that from

the PDP and act upon the decision, allowing the request to access the resource or

denying.

Policy Information Point (PIP) - This is a supportive component to the PDP. At the

policy execution time, if there are additional attributes required by the PDP on the

environment, subject or object, PIP is responsible to retrieve it in a trusted manner.

15

Figure 2.4 - XACML Based Access Control Components

A sample XACML policy can be found in Appendix A, which states a policy as

below in plaintext.

- Anyone who is trying to access the resource ‘foo//*’ should be authorized

under this policy.

- If ‘admin’ subject is trying to read, write or delete, allow it.

- If anyone is trying to ‘read’ the resource ‘foo/abc’, between the time

‘09:00:00+05:00 GMT and 16:00:00+05:00 GMT’ allow it only if the

‘subject’s email address is ending with ‘abc.com’.

XACML has recently introduced a specification making it more REST

(REpresentational State Transfer) friendly with accepting JSON requests and JSON

response in addition to XML format[9]. However, there is no specification as of now

16

https://paperpile.com/c/eZiDa9/Z309

to define XACML policy in JSON format, though individuals have put an effort in

that direction. The main reason for this seems XACML policies stay at rest in the

engine and only requests and response needs to be transferred through the wire in an

optimal way. XACML adaptation in the industry has been challenged due to it’s

involved complexities in writing the policies.

2.3.5.2. OPA

Open Policy Agent[10] is a Policy-based access control solution for cloud-native

environments which is accepted by CNCF (Cloud Native Computing Foundation).

Figure 2.5 - How OPA works

This agent depends on a data set that is injected to it’s engine, similar to below.

subordinates = {"alice": [], "charlie": [], "bob": ["alice"], "betty":
["charlie"]}

17

https://paperpile.com/c/eZiDa9/wm8a

HTTP API request
import input as http_api
http_api = {
"path": ["finance", "salary", "alice"],
"user": "alice",
"method": "GET"
"user_agent": "cURL/1.0"
"remote_addr": "127.0.0.1"
}

default allow = false

Allow users to get their own salaries.

allow {
 http_api.method = "GET"
 http_api.path = ["finance", "salary", username]
 username = http_api.user
}

Allow managers to get their subordinates' salaries.
allow {
 http_api.method = "GET"
 http_api.path = ["finance", "salary", username]
 subordinates[http_api.user][_] = username
}

Allow managers to edit their subordinates' salaries only if the request came
from user agent cURL and address 127.0.0.1.

allow {
 http_api.method = "POST"
 http_api.path = ["finance", "salary", username]
 subordinates[http_api.user][_] = username
 http_api.remote_addr = "127.0.0.1"
 http_api.user_agent = "curl/7.47.0"
}

In the above simple policy it defines a concept named subordinates and define that

relationship between the entities. Then it defines the rules that give the authorization

decision as ‘allow’.

OPA also provides guidance on how to use this technology to satisfy requirements

that have been addressed by other authorization mechanisms such as RBAC, RBAC

with separation of duty, ABAC, AWS IAM and XACML[11]. OPA shows that it is

flexible and powerful enough to support the use cases addressed by each of these

18

https://paperpile.com/c/eZiDa9/lCzF

technologies, by providing approaches to achieve the same functionality. They also

provide a REST-based API model to execute and administrate the policies.

2.4. Lattice Based Access Control - Classical

Information Security Models

In the early 1980s, the Department of Defence(DoD) of the USA was concerned

about the confidentiality of classified military information on computers which were

shared by multiple users. This paved the path to the well-known rainbow series

which is a set of security standards defining the security handling of computer

systems, mainly via the operating system. The “Orange Book” (Trusted Computer

System Evaluation Criteria) is the very first of this rainbow series which documented

the mechanisms to enforce the confidentiality of data. Common Criteria for

Information Technology Security Evaluation superseded this later. This effort has

included several security models and has inspired several other models. Below is a

brief look into these security models in detail, based on the book ‘Computer

Security’ by Dieter Gollmann[12, pp. 115–164].

These security models state a formal policy that defines the criteria to be met to

access a resource, by defining a set of controlling rules. The objective of these

models is to enforce below notions of security on the system.

Classical Notions of Security

Confidentiality - only the authorized parties access the resource

Unlinkability - unable to state a relation between two observed items of the system

Anonymity - subject is not uniquely characterized within the anonymity set

Integrity - no unintended modifications happened on the resource

Extended Notions of Security

19

https://paperpile.com/c/eZiDa9/ZhAw/?locator=115-164

Availability - uninterrupted service

Accountability - the presence of responsibility

Non-repudiation - assurance on undeniable validity

Reliability - assurance on the correctness

From the above notions, in the modern systems put a major focus on the CIA

(Confidentiality Integrity Availability) triad. It can be assumed that with the

distributed nature of the systems and drastic damages caused by attacks such as

Distributed Denial of Service (DDoS) on enterprise systems, ‘availability’ aspect has

also gained much attention becoming very critical in the modern systems.

2.4.1. Bell-La-Padula Model

This model uses DAC along with MAC to enforce information policies to preserve

confidentiality. It has a two-step approach for access control.

1. Get authorized against a DAC matrix, whose contents can be modified by the

subjects.

2. In order to carry out an operation, it should be allowed under the MAC

policy, which is not under the control of the subjects.

It defines two properties to be honored in information flow as below.

λ(s) - security clearance of the subject

λ(o) - security classification of the object

‘Tranquility’ is assumed on these that, once assigned these security labels will

remain unchanged(unless modified by a security officer in a secured manner) on the

subjects and objects.

Simple Security Property

Subject s can read object o only if,

λ(s) >= λ(o)

20

Star Property

Subject s can write object o only if,

λ(s) <= λ(o)

In brief, these two properties state that subjects can read down and write up on

objects. One concern on the ‘Star property’ is that classified objects such as data can

be contaminated, damaged or destroyed by an unclassified subject as write up is

allowed. Hence sometimes this property is modified as below, so that, write is

allowed only on own level, but not up[13].

λ(s) = λ(o)

However, there are information flows that can happen under this model, through

‘covert channels’, opposed to the intended flows. Indirect communication methods

such as extracting information from an error message are referred to as a covert

channel.

Eg: A database system allows to place data into a database. Direct access is

the database is properly controlled via MAC under BLP model. However, in the

database system, the time required to place an entry into a database is highly

dependent on the current total size of the database. Therefore even though the data

sender not allowed to access the total size of the database, the sender can learn this

fact based on response time it takes to place the entry.

This is concern made out scope from the BLP model and other engineering practices

at design and implementation level needs to address those[13]. Management of these

access control policies is also not addressed in the BLP model.

2.4.2. BIBA Model

This model mainly focuses on integrity policies. This model defines below,

Subject : S

Object: O

Integrity Levels captured on a lattice : L

Functions to assign integrity levels : f

21

https://paperpile.com/c/eZiDa9/4hSG
https://paperpile.com/c/eZiDa9/4hSG

fs :S → L

fo :O → L

Information is allowed to flow downwards only in this model so that subjects with

lower integrity levels cannot contaminate the higher integrity level objects. It defines

policies to preserve this in different integrity level behaviors of static and dynamic as

below.

Static Integrity Levels

Below two properties should hold to prevent high integrity subjects and objects from

getting contaminated by low integrity information to preserve its integrity at a static

level.

Simple Integrity Property

If s can modify o, then fs(s) >= fo (o) → no write-up

Integrity Star Property

If s can read o, then s can have write access to some other object p only if,

fo(p) <= fo(o)

These two properties are the dual for integrity similar to the two properties to

preserve confidentiality under the BLP model.

Dynamic Integrity Levels

This defines,

Integrity level inf(fs(s),fo(o)) → the greatest lower bound of fs(s) and fo(o)

Subject Low Watermark Policy

s can read o at any integrity level. The new integrity level of s is inf(fs(s),fo(o)).

Object Low Watermark Policy

s can modify o at any integrity level. The new integrity level of o is inf(fs(s),fo(o)).

22

These two policies lower the integrity levels of subjects and objects based on the

objects and subjects they interact with. As the integrity levels are only lowered under

these policies, there is a risk of all the subjects and objects eventually reach the

lowest integrity level and be stuck there.

Policies for Invocation

An extension is possible on this model to address the use case of a subject invoking

another subject to access an object, similar to how a subject would access an object

via a software tool. This is governed by below property.

Invoke Property

Subject S1 can invoke subject S2 only if fs(s2) <= fs(s1)

In the case of S2 is a software tool that controls this invocation, even a low integrity

subject might be allowed to access a high integrity object. In such occasions, the tool

performs several checks on the consistency of the object, to make sure it preserves its

integrity.

Ring Property

A subject S1 can read objects at all the integrity levels. It can only modify

objects o with fo(o) <= fs(s) and it can invoke a subject s2 only if fs(s1) <= fs(s2)

As seen from above, the invoke property and ring property cannot stand in the same

environment. Hence one of these properties should be selected and applied as

appropriate in the use case.

2.4.3. Chinese Wall Model

Brewer and Nash (1989) proposed a policy called the ‘Chinese Wall Policy’ that

addresses the conflicts of interest, been inspired by the Clark and Wilson’s paper[14]

to pay attention to commercial security needs, at a time when military security

thinking has been dominating the computer security arena[15]. This model makes

more sense in business domains such as investment banking and consulting. If the

same analyst is been consulted by two competing companies, it gives rise to a

23

https://paperpile.com/c/eZiDa9/Jihb
https://paperpile.com/c/eZiDa9/ebnd

conflict of interest situation, as the same person has access to sensitive details of two

competitors. Hence, a set of policies are introduced to address this. This is not an

integrity policy, but an access control confidentiality policy, that looks into a more

specific commercial use case than the BLP model.

The security policy builds on three levels of abstraction.

O - Objects such as files. Objects contain information about only one company.

C - Company groups.

P(C) - Conflict classes cluster. The groups of objects for competing companies.

Eg.

conflict classes:

{Toyota, Honda, BMW, Mercedes Benz, Ford}

{Apple, SAMSUNG, Huawei, Motorola}

Simple Security Property

 A subject ‘s’ can be granted access to an object ‘o’ only if the object:

- is in the same company datasets as the objects already accessed by s, that is,

“within the Wall,” or belongs to an entirely different conflict of interest class.

Chinese Wall *-property

Write access is only permitted if:

- access is permitted by the simple security rule

- no object can be read,

- which is in a different company dataset than the one for which write

access is requested

- contains unsanitized information.

2.4.4. Clark-Wilson Model

Clark and Wilson suggest a model focusing on commercial systems, in the paper[14]

to control confidential information. While this is important in both the commercial

and military systems, ensuring the integrity of data to prevent fraud and errors is the

24

https://paperpile.com/c/eZiDa9/Jihb

main goal in commercial systems. Even if permitted to modify, a user should not be

able to corrupt or delete accounting records and logs of the company.

User authentication is a critical part of enforcing integrity in a system. From there

onwards, there exist two main mechanisms of fraud and error control from the

pre-computing era, namely the well-formed transactions, and separation of duty

among employees. Clark and Wilson's model formally defines this as applicable in a

computer system.

1. Separation of Duties - A task is divided to multiple small tasks carried out

by two or more different people. This minimizes the chances of a single

person acting alone in a fraudulent manner.

2. Well-formed Transactions - Users are allowed to perform only a set of

well-defined set of legitimate actions on the data. This may be enforced by a

tool so that users can’t arbitrarily modify the data violating integrity.

Below are rules defined by the Clark-Wilson model[14].

CDI - Constrained Data Items, integrity policy is applied.

UDI - Unconstrained Data Items, not covered under the integrity policy.

IVP - Integrity Verification Procedure, verifies the data items are in a valid state.

TP - Transformation Procedure, transform the data items from one valid state to

another.

Certification Rules - Integrity Monitoring

C1 (IVP Certification) - The system will have an IVP for validating the integrity of

any CDI.

C2 (Validity) - The application of a TP to any CDI must maintain the integrity of

that CDI. CDIs must be certified to ensure that they result in a valid CDI

25

https://paperpile.com/c/eZiDa9/Jihb

C3 - A CDI can only be changed by a TP. TPs must be certified to ensure they

implement the principles of separation of duties & least privilege

C4 (Journal Certification) - TPs must be certified to ensure that their actions are

logged

C5 - TPs which act on UDIs must be certified to ensure that they result in a valid

CDI

Enforcement Rules - Integrity Preserving

E1 (Enforcement of Validity) - Only certified TPs can operate on CDIs.

E2 (Enforcement of Separation of Duty) - Users must only access CDIs through

TPs for which they are authorized.

E3 (User Identity) - The system must authenticate the identity of each user

attempting to execute a TP.

E4 (Initiation) - Only the administrator can specify TP authorizations.

2.4.5. Graham-Denning Model

Introduced in 1972 in a paper ‘Protection-Principles and practice’ which defines a

formal theory to address below 8 concerns.

● How to securely create an object.

● How to securely create a subject.

● How to securely delete an object.

● How to securely delete a subject.

● How to securely provide the read access right.

● How to securely provide the grant access right.

● How to securely provide the delete access right.

● How to securely provide the transfer access right.

It makes use of an access control matrix A, which defines the access rights R on each

object and subject. The specialty here is, even the subjects have a designated subject

as the controller. It defines the pre-condition for each of these operations, it’s impact

on the access control matrix A and state transition procedures.

26

Figure 2.6 - Access Control Matrix of Graham-Denning Model

2.4.6. Harrizon-Ruzzo-Ullman Model

Known as HRU model, introduced in paper ‘Protection in operating systems’ in

1976, this defines a set of policies for changing access rights and creation and

deletion of both objects and subjects inspired by Graham-Denning(GD) model.

Extending the GD model, it defines a finite set of procedures that govern

modification of access rights of a subject on an object.

● How to grant right to subject and object pair

● How to delete right from subject and object pair

● How to create subject

● How to create object

● How to delete subject

● How to delete object

Similar to the GD model, this also defines the preconditions and intended state

transitions at each of these actions.

27

2.4.7. Take-Grant Model

The Take-Grant model is a confidentiality based model that was introduced by

Lipton and Snyderin 1977 in a paper “A Linear Time Algorithm for Deciding

Subject Security”. It uses a directed graph to indicate the rights passed from one

subject to another or from a subject to an object. This model defines four primitive

operations as below.

● Create rule allows a subject to create new objects

● Revoke rule allows a subject to remove rights it has over on another object

q is no longer in the ‘rights’ set.

● Take rule allows a subject to take rights of another object (P)

● Grant rule allows a subject to grant ownership rights to another object

With these rules, there are a finite set of states the system can be at a moment, which

makes it convenient in evaluating the overall system security.

28

2.5. Cloud Computing

2.5.1. History

From the initiation of Advanced Research Project Administration Network

(ARPANET) which was established in 1969 by the United States government, the

computing industry has come a long way, until today’s enterprise systems that are

running in multi-cloud environments. Below is a brief look back on the journey,

before taking a step forward.

Figure 2.7 - History of Cloud Computing[16]

Similar to “Time-sharing” concepts introduced in the 1950s to share the CPU time, to

get the most out of the expensive mainframe computers, cloud computing can be

thought of as being infrastructure-sharing or platform-sharing approach for modern

enterprises. While virtual machines concept allowed multiple systems to run on the

same physical platform the movements such as ‘Salesforce.com’ paved the way to

cloud computing with SaaS(Software as a Service) applications followed by

PaaS(Platform as a Service), IaaS(Infrastructure as a Service) concepts to share same

resources between multiple enterprise systems.

2.5.2. Cloud Services

The enterprise system nowadays has several vendors providing cloud services while

having the flexibility to build systems using SaaS, PaaS and IaaS services. Amazon

Elastic Compute Cloud (EC2), Google Cloud Provider (GCP), Microsoft Azure can

29

https://paperpile.com/c/eZiDa9/FE92

be named as the giants in the industry mainly serving enterprise clouds, but there are

a lot of vendors providing different services related with cloud computing such as

cloud security, cloud monitoring, cloud orchestration etc. and other cloud storage

kind of services such as ‘Dropbox’, opening new dimensions of the cloud

technologies.

The analysts firm Gartner projects public cloud services to be a $206.2 Billion

market in 2019 with the continuous predicted growth in the domain, having more

focus on SaaS[17].

2.5.3. Hyper-Converged Cloud

With more and more enterprises moving to the cloud or showing interest in the cloud

innovations in the domain is obviously required. One of the major concerns the

enterprises have in adopting cloud is data security. Having to store sensitive details

of their customers, business assets and employees, in a shared infrastructure

governed by a third party is a major concern in moving to the cloud. While the

hybrid cloud has been addressing this to an extent letting part of the system to run on

a private cloud or on-premise, the hyper-converged cloud seems to take the

movement forward.

Figure 2.8 - Hyper-Converged Cloud

30

https://paperpile.com/c/eZiDa9/Dq48

Hyper-Converged Infrastructure(HCI) facilitates the hyper-converged cloud which is

a solution that combines several infrastructure level resources such as servers,

storage, and networking as seen in above figure 2.8[18]]. In the context of HCI, a

hypervisor provides a virtualized SAN(Storage Area Network) referred to as

software-defined storage and virtualized networking referred to as software-defined

networking. It facilitates virtualization on top of the storage and computing power for

easy management of workloads running in the system. Software tools and

commoditizing the underlying infrastructure has made HCI a trend with the rising

interest on hybrid cloud, as a unified experience will be supported and making the

private clouds or on-premise systems to public cloud abstraction level is made easy.

HPE(Hewlett Packard Enterprise) SimpliVity, Nutanix, Microsoft, VMware, and

many more vendors compete in this space[19].

2.6. Workloads

2.6.1. What is a workload?

A highly cohesive and de-coupled capability or a unit of work that collectively builds

up an enterprise application, which can be running on cloud or on-premise. This can

be a regular un-orchestrated process running on a VM or a container scheduled by a

container orchestrator[20].

Eg: a microservice, a Kubernetes pod, or a process will be treated as this basic unit as

per the deployment. This can be a service provided by a serverless stack similar to

Amazon lambda functions as well.

2.7. Workload Authentication Technologies

In order to authorize the entities, proper identification via an authentication process is

required. Though these authentication principles stay similar for both humans and

workloads, how these entities will prove their identity and the involved verification

process needs to be tailored as per the entities. For Workload authentication below

technologies are currently available in the information security domain.

31

https://paperpile.com/c/eZiDa9/XvMh
https://paperpile.com/c/eZiDa9/UBcy
https://paperpile.com/c/eZiDa9/EbIc

2.7.1. Challenge Response Authentication Mechanisms

Shared secret based identification is a basic model that falls under this category,

though there are more challenge-response mechanisms nowadays. From the stories of

Alibaba and 40 thieves, where a password challenge was submitted to open the cave

door, the industry has come a long way make the challenges harder, so that an

imposter will not pass. Multi-factor authentication mechanisms which involve

biometric challenges and hardware possession based challenges such as SMS

OTP(One Time Password), hardware authentication device PIN can be considered as

challenges on the possession.

When considering the authentication of workloads, biometric-based authentication

might not make sense similar to humans. Yet, considering other unique attributes

such as workload initiator, image ID, md5sum or some other hash value comparison

of the content of a workload, and providing attribute-based authentication can be

considered an option.

2.7.1.1. Username and password based authentication

This is a mechanism that can be used by both humans and systems equally. Here the

accessing party is challenged to submit a pre-shared set of credentials, that is

expected only to be known to that party and the accused party. Non-repudiation

property is not secured in this model.

Eg. When a service is accessing a database system, it will submit a username,

password combination shared to it and stored in the database system.

Secure distribution of these secrets and periodic rotation of these secret are major

concerns in this model.

2.7.2. Needham–Schroeder protocol

This is protocol suggested in 1978, in the paper ‘Using Encryption for Authentication

in Large Networks of Computers’[21]. This suggests an approach based on a

symmetric key and another approach based on public key cryptography to

authenticate two parties and build a secure channel between them for

32

https://paperpile.com/c/eZiDa9/kRny

communication, which does not necessarily needs to be between humans. It makes

use of a third party(Authentication Server) trusted by both the involved parties to

identify and establish the trust which then paved the way to Kerberos protocol.

Below is the symmetric key protocol in brief.

A - Alice (Alice want to identify Bob and securely communicate)

B - Bob

AS - Authorization Server

IA1 - Nonce generated by A for the transaction

KAS - is a symmetric key known only to A and S

KBS - is a symmetric key known only to B and S

CK - is a symmetric, generated key, which will be the session key of the session

between A and B

1. A → AS: A, B, IA1

A communicated with AS sending own identity, B’s identity which it likes to build a

communication channel and the nonce generated for the transaction.

2. AS → A: {IA1 , B, CK, (CK, A)KBS} KAS

Once AS received the request from A, it looks up its secret storage, identify the keys

of both parties A, B and computes a new session key CK to be used for the

conversation. CK is delivered to A, in a secured manner as above. The whole bundle

of data is encrypted with A’s secret key so that only A can decrypt it. Once

decrypted, A can validate the presence of sent nonce, the intended recipient and

session key. The importance of recipient's name is to make sure an intruder can’t

impersonate to be B. This part (CK, A)KBS is encrypted with B’s secret key, which

means it can only be decrypted by B. Hence A send it as it is to B.

3. A → B: (CK, A)KBS

Even if another party intercept this message they can’t derive the CK, the session

key. Hence A and B and securely communicate afterward encrypting messages with

33

CK, safely assuming the identity of the other party they are communicating with is A

or B.

One assumption they have made in this protocol as follows, “We present protocols

for decentralized authentication in such a network that are integrated with the allied

subject of naming.”. This assumption is not true for the use case under consideration

in this research, as a naming convention can differ between heterogeneous systems.

2.7.3. Kerberos protocol

The protocol has been invented based on the previously discussed

‘Needham–Schroeder protocol’, to secure network services of the historic project

‘Athena’ distributed system by MIT and IBM. As an alternative to the password, it

depends on a Key Distribution Center trusted by the two parties under consideration,

to securely introduce each other. Kerberos V4 is the first published version and

currently, the protocol is on V5[22], integrating improvements to security and

identification related weaknesses in V4. The RFC(Request for Comments) draft by

IETF(International Engineering Task Force) introduce Kerberos as below,

“Kerberos provides a means of verifying the identities of principals, (e.g., a

workstation user or a network server) on an open (unprotected) network.

This is accomplished without relying on assertions by the host operating

system, without basing trust on host addresses, without requiring physical

security of all the hosts on the network, and under the assumption that packets

traveling along the network can be read, modified, and inserted at will. ”

34

https://paperpile.com/c/eZiDa9/NpoH

Figure 2.9 - Kerberos Protocol

The above figure shows the Kerberos protocol[23] in brief, which highlights the

below steps.

AS - Authentication Server

TGS - Ticket Granting Server

TGT - Ticket Granting Ticket

SGT - Service Granting Ticket

V - Services Server

L - Lifetime of the ticket

T - timestamp at the moment

KDC consist of AS and TGS

1. C → AS : C, TGS, nc

Client sends the relevant user’s or the own ID C as per the use case(the ID of the

authenticating entity), the ID of TGS and a nonce value.

2. AS → C : eKcs (Kc,tgs , nc , L1, TGS), ticketC,TGS

35

https://paperpile.com/c/eZiDa9/SxLC

AS lookup for the presence of the ID sent by the client and issue Kc,tgs the session key

to be used between C and TGS encrypted by the secret of the client known to AS,

and ticketC,TGS,

ticketC,TGS= eKtgs (Kc,tgs, C, L2) which carries the session key between C and

TGS encrypted by the key shared by the AS and TGS.

3. C → TGS : ticketC,TGS , eKc,tgs (C, Tc), V, nc’

The client sends the received ticketC,TGS as it is, to the TGS along with own ID and

timestamp encrypted with received session key.

4. TGS → C : ticketV , eKc,tgs (nc’,L2, V, Kc,v)

TGS replies with the session key to be used with communications with V, encrypted

with session key between TGS and C, along with ticketV as below.

ticketV = eKVS (Kc,v , C, L) where KVS is the key between AS and V.

This is referred to as the SGT.

5. C → V : ticketV , eKc,v (C, Tc’)

The client initiates communication with V, sending the received ticketV and own ID

and timestamp encrypted with the session key to be used with V, issued by TGS.

6. V → C : eKc,v (Tc’)

V should then decrypt SGT with its secret key, derive the Kc,v from it and decrypt the

second message from C to derive Tc’. Service server will then respond to client

encrypting the same with Kc,v, indicating successful authentication of service.

As seen in the flow, the password of the authenticating entity is never sent in the

network, which is a major advantage of the protocol.

36

2.7.4. The platform provided privileged API based

authentication

This can also be considered as a challenge-response authentication mechanism, a

special favor of it.

Figure 2.10 - Platform Mediated Authentication

The challenge is to provide a valid proof-of-identity document provided by the

platform where both the source and destination workloads are running. As the source

workload is running on the platform, it can validate a set of parameters unique to the

workload to issue an identity document for that workload. The destination workload

can ask the same platform to validate it. This is done through a special privileged

API provided within the platform for the purpose. The limitation within this is that

both the workloads should reside within the same platform as seen from the figure

2.10 from a presentation done by SPIFFE community or should understand how to

validate the document provided by another platform.

Below we discuss 3 such privileged APIs provided by the industry giants Amazon,

Google and Microsoft.

2.7.4.1. Amazon EC2 IID

Amazon Elastic Compute Cloud provides a privileged API to retrieve an Instance

Identity Document(IID) within an instance. IID is a JSON document is signed so that

its content integrity is preserved while authenticity, origin details provided on the

37

claiming information. This can be validated using the Amazon CA certificate for

each region. Below is a sample IID content[24].

{

 "devpayProductCodes" : null,

 "marketplaceProductCodes" : ["1abc2defghijklm3nopqrs4tu"],

 "availabilityZone" : "us-west-2b",

 "privateIp" : "10.158.112.84",

 "version" : "2017-09-30",

 "instanceId" : "i-1234567890abcdef0",

 "billingProducts" : null,

 "instanceType" : "t2.micro",

 "accountId" : "123456789012",

 "imageId" : "ami-5fb8c835",

 "pendingTime" : "2016-11-19T16:32:11Z",

 "architecture" : "x86_64",

 "kernelId" : null,

 "ramdiskId" : null,

 "region" : "us-west-2"

}

As in the above sample document, it consists of several attributes related to the

instance based on its infrastructure, environment and service account belongs to. It is

generated when the instance is launched and exposed through a metadata API

accessible within the instance. Amazon recommends to retrieve this document

frequently and validate due to the dynamic nature of the instances.

2.7.4.2. Google Cloud Provider IIT

Google Cloud Provider has a privileged API which issues identities for instances

named Instance Identity Token[25]. Similar to Amazon, Google is also issuing a

signed JSON with the instance details, but taking a step forward, they have made this

an IDToken according to the OpenIDConnect 1.0 specification[26] which is as

below, consisting of 3 parts ‘header.payload.signature’, separated by dots.

{
 “alg”: “RS256”,
 "kid": "511a3e85d2452aee960ed557e2666a8c5cedd8ae",
}.

38

https://paperpile.com/c/eZiDa9/2gzO
https://paperpile.com/c/eZiDa9/T4eM
https://paperpile.com/c/eZiDa9/7YmS

{
 "iss": "[TOKEN_ISSUER]",
 "iat": [ISSUED_TIME],
 "exp": [EXPIRED_TIME],
 "aud": "[AUDIENCE]",
 "sub": "[SUBJECT]",
 "azp": "[AUTHORIZED_PARTY]",
 "google": {
 "compute_engine": {
 "project_id": "[PROJECT_ID]",
 "project_number": [PROJECT_NUMBER],
 "zone": "[ZONE]",
 "instance_id": [INSTANCE_ID],
 "instance_name": "[INSTANCE_NAME]"
 "instance_creation_timestamp": [CREATION_TIMESTAMP]
 }
 }
}

Google guarantees that an IIT can only be generated by the resident instance and no

other instance can access it. Google cloud compute engine creates a unique token

each time a request is made by an instance. Each of these tokens expire within an

hour and is signed by Google’s public OAuth certificates for anyone to validate and

trust.

2.7.4.3. Microsoft Azure MSI

Microsoft has renamed this previously known ‘Managed Service Identity’ to

‘Managed identities for Azure resources’ recently. They categorize identity

management into two categories as,

- system-assigned managed identity - Azure creates an identity for the instance

in the Azure AD. The identity of the instance is bound with the life cycle of

the instance and gets deleted at instance deletion.

- user-assigned managed identity - This identity has an existence apart from the

instance life cycle and can be assigned to multiple Azure service instances.

In the context of this research, system-assigned managed identity is considered.

39

Azure provides a broader view on the identity management of the instances as seen

in the below diagram, providing options to govern different aspects of the flow.

Figure 2.11 - Azure Instance Authentication

Similar to Google, Azure also make use of Open standards in the process, issuing the

identity document in the format of a self-contained JSON Web Token(JWT), based

on OAuth 2.0 standard[27]. Along with assigning identities, Azure also allows

assigning roles to these instances for it’s RBAC functionality, in addition to

authentication.

2.7.5. SPIFFE standard

With the enterprises going digital and movements like Open Banking forcing

domains to go digital, more and more enterprise system will get introduced into the

40

https://paperpile.com/c/eZiDa9/lOZF

world and it is inevitable that these systems will have to interoperate. With these

numerous systems having to interact to deliver a service, Zero-trust architecture with

roots of ‘never trust, always verify’ have gained more attention, to stress on the

security of the systems. SPIFFE (Secure Production Identity Framework For

Everyone)[28] is a standard initiated with the intentions of bootstrapping and

maintaining trust related validations on a zero-trust system for workload

authentication. This is a standard accepted by the CNCF and it steered by engineers

from industry giants such as Google, Dropbox, Docker, and Scytale.

SPIFFE defines an architecture which removes the platform locking limitation of

using the platform provided privileged authentication mechanisms and open doors to

authentication between the platforms as well. In order to support this architecture,

SPIFFE defines 4 standards as below.

● The SPIFFE Identity and Verifiable Identity Document(SVID) - Specifies an

identity issuance standard, defining the required components in the process.

● The X.509 SPIFFE Verifiable Identity Document - This defines the details of

a previous standard’s mentioned SVID format based on X509 certificate

format.

● The JWT SPIFFE Verifiable Identity Document - This defines the details of

the SVID in the JWT format.

● The SPIFFE Workload Endpoint - Defines the details of an endpoint that

provides a set of gRPC methods which can be used by workloads to retrieve

SVIDs and their related trust bundles.

● The SPIFFE Workload API - The exact set of services provided by the above

endpoint is defined in this specification.

2.7.5.1. SPIFFE in action

SPIFFE standard defines a flow as shown below in figure 2.12 for trust

bootstrapping. This is based on the reference implementation of SPIFFE, named

41

https://paperpile.com/c/eZiDa9/BFqi

SPIRE (SPIFFE Runtime Environment). Below is a description of the involved

components.

1. Identity Registry - SPIRE server has an own identity registry which keeps

two coarse-grained attributes that decides how the SPIFFE IDs will be issued

to a workload. It keeps details as in the below table.

SPIFFE ID Node Selector Process Selector

spiffe://abc.com/bill aws:ec2:1234 k8s:namespace:1234

spiffe://xyz.com/account token:7236427472 unix:uid:1002

Table 2.1 - Attestation Policy for SPIFFE IDs

A separate registration API is provided to manage these entries in the identity

registry.

2. Node Selector - This defines a machine (physical or virtual) where a

workload can be running on. The exact type of selector to be used is decided

based on the infrastructure provider (AWS, GCP, bare metal) that the

workload is running. Eg. AWS EC2 Instance ID, a serial number of a

physical machine. Node attestor act based on the infrastructure provider to

honor their selectors.

3. Workload Selector - This defines how to identify a process as representing a

workload after the node is identified. This can be described in terms of

attributes of the process itself (eg. Linux UID) or in terms of indirect

attributes such as a kubernetes namespace. The node agent is responsible to

verify that a particular process on a machine qualifies for its workload

selector. Workload attestor act based on the process attributes to honor the

process selectors.

42

4. SPIRE Node Agent - A process that sits on the node, verifies the provenance

of workloads running on the node and provides those workloads with

certificates via the Workload API, based on the selectors.

The trust bootstrapping process is illustrated below involving the above components.

Figure 2.12 - SPIFFE in action

1. Registration API is called by either an administrator or a third party

application to populate the identity registry with the required SPIFFE IDs and

relevant selectors.

2. Node agent gets authenticated with the SPIRE server using a pre-established

cryptographic key pair or based in the infrastructure provider. For example in

the case of AWS EC2, node agent will submit the node’s Instance

Identification Document(IID) issued by AWS.

3. Node attestor in the SPIRE server validates the provided identification

document based on the used mechanism. If the AWS IID is used, the relevant

43

attestor will validate it with AWS settings. Upon successful validation, the

SPIRE server sends back a set of SPIFFE IDs that can be issued to the node

along with their process selector policies.

4. When workload start to run in the node, it first makes a call to the node agent

asking ‘who am I?’.

5. Based on the process selectors node agent received in the previous step, and

using the workload attestors, the agent decides on the SPIFFE ID to be given

to workload. It generates a key pair based on that and sends the

CSR(Certificate Signing Request) to the SPIRE server.

6. SPIRE server responds to the node agent with the signed SVID for the

workload along with the trust bundles, indicating which other loads can be

trusted by this workload.

7. Upon receiving the response from SPIRE server, node agent, handover the

received SVID, trust bundles the generated private key to the workload. This

private key never leaves the node its workload belongs to.

2.7.5.2. SPIFFE implementations

● SPIRE - The reference runtime implementation provided by ‘Scytale Inc.’

which has initiated SPIFFE effort studying similar systems that are in

production at Google, Netflix, and Twitter.

● Istio[29][30] - They have implemented part of SPIFFE standard to bootstrap

identity, but have spread out focus on identity mgt, monitoring, throttling in a

service mesh architecture specifically.

● Linkerd - Another service mesh platform provider similar to Istio, that is also

looking into implement SPIFFE standard into their platform[31].

● Kubernetes Container Identity Working Group - They are also focusing on

the SPIFFE standard, under discussion level. This WG has also shown

interest in a vendor-agnostic way for workload authentication so that they can

also interoperate[32].

44

https://paperpile.com/c/eZiDa9/fTSX
https://paperpile.com/c/eZiDa9/e8il
https://paperpile.com/c/eZiDa9/S3du
https://paperpile.com/c/eZiDa9/UJNq

From above SPIRE is much lighter weight having the sole focus on trust

bootstrapping and workload authentication as the primary goals.

2.8. Workload Authorization Technologies

For Authorization, several options exist such as RBAC, ABAC, policy-based access

control and OAuth 2.0 token based access delegation.

 RBAC ABAC

Simplicity Yes Can be Complex

Fine-grained No Yes

Standardized No Yes (XACML/OPA)

Table 2.2 - Access Control Technologies Comparison

From these options the OAuth 2.0 framework is standardized and it the de-facto

standard used by many of giants in the industry and enterprises for access delegation.

It can also be combined with other access control options to provide fine-grained

access control.

At the scale and dynamic nature, we are dealing with in the system, manual

registration of clients as OAuth 2.0 applications is not very viable. There are two

options present in this case.

● Use the OAuth2 DCR endpoint to register the workloads as clients before the

tokens are requested.

● Create a client at the occasion of the token request, based on the SVID X509

certificate content used in establishing the mTLS connection.

45

Hence the authentication happened in the above approach will be consumed in this

step itself again and an OAuth 2.0 access token needs to be issued. We will try to use

the concept described in the draft standard on “OAuth 2.0 Mutual TLS Client

Authentication and Certificate Bound Access Tokens” and apply the same in a highly

dynamic and scaling environment.

This approach will let any of the services that have an MTLS connection with the

authorization server to consume OAuth 2.0 based authorization.

2.8.1. OAuth 2.0 Authorization Framework

OAuth 2.0[27] is currently a widely used access delegation and authorization

protocol and is the successor of OAuth 1.0[33] protocol. Flickr’s authorization API

and Google’s AuthSub has inspired OAuth 1.0 standard which was released in 2007.

Developers have been facing challenges with it due to its crypto-implementation and

crypto-interoperability, which has led to the OAuth 2.0 framework backed by

industry giants such as Yahoo, Facebook, Salesforce, Microsoft, Twitter, Deutsche

Telekom, Mozilla and Google at 2012.

Below is a brief comparison of OAuth 1.0 vs OAuth 2.0.

As seen above OAuth 2.0 is not a backward compatible version of OAuth 1.0 and

can be considered a complete rewrite of the specification.

2.8.1.1. OAuth 1.0 vs OAuth 2.0

1. OAuth 1.0 does not depend on the transport layer delegating transport level

security to HTTPS/TLS. But handles it through digital signatures for integrity

and authenticity validations. On OAuth 2.0, it simply delegates that to be

handled by HTTPS/TLS protocol and focus on access delegation. This has

made it more developer friendly though there are criticisms on lowered

security. OAuth 2.0 protocol is also trying to increase it’s security measure

further with efforts on specifications such as ‘OAuth 2.0 token binding’[34]

46

https://paperpile.com/c/eZiDa9/lOZF
https://paperpile.com/c/eZiDa9/dKlw
https://paperpile.com/c/eZiDa9/Y5Hv

and ‘OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound

Access Tokens’[35].

2. As OAuth 1.0 is based on cryptography OAuth 2.0 is not dependent on

cryptography they have different flows defined and validation mechanisms.

While OAuth 1.0 has defined 2-legged between the user and resource server and

3-legged authorization between, user, client and resource server, OAuth 2.0 defines 4

formal grant types and several extended grants.

2.8.1.2. OAuth 2.0

OAuth 2.0 Authorization Framework identifies 4 roles involved in the flows it

defines, as below.

“Resource owner - An entity capable of granting access to a protected resource.

When the resource owner is a person, it is referred to as an end-user.

Resource server - The server hosting the protected resources, capable of accepting

and responding to protected resource requests using access tokens.

Client - An application making protected resource requests on behalf of the resource

owner and with its authorization. The term "client" does not imply any particular

implementation characteristics (e.g., whether the application executes on a server, a

desktop, or other devices).

Authorization server - The server issuing access tokens to the client after

successfully authenticating the resource owner and obtaining authorization. ”[27]

It also defines 4 grant types as below.

1. Authorization code grant

2. Implicit grant

3. Resource Owner Password Credentials Grant

4. Client Credentials Grant

As per OAuth 2.0 specification own abstract,

47

https://paperpile.com/c/eZiDa9/72oI
https://paperpile.com/c/eZiDa9/lOZF

“The OAuth 2.0 authorization framework enables a third-party application to obtain

limited access to an HTTP service, either on behalf of a resource owner by

orchestrating an approval interaction between the resource owner and the HTTP

service, or by allowing the third-party application to obtain access on its own

behalf.” ,

Figure 2.13 - Client Credentials Grant

The first 3 grant types orchestrate an interaction with resource owner while ‘Client

Credentials’ grant obtain an access token for its own use, which can be applied for

workload authorization. This grant type treats the client similar to a user and

validates the credentials issued to the client by an authorization server.

As seen from the above figure 2.13, the authorization server issues an opaque string

named ‘access token’ to the client application to be used to access resources from the

resource server. Upon receiving a resource request along with an access token,

resource server consults authorization server, on the validity of the access token and

whether it has the scope to access the requested resource and act based on the

48

feedback. This token referred to as ‘Bearer token’ as anyone bearing the token will

be able to access the resource. Hence there have been debates on totally delegating

security of the token to transport layer, because, if the attacker gets hold of the token,

they fully leverage the access allowed on the token without any issue. As a remedy

for this concern, some implementations make use of ‘self-contained access tokens’

which are signed and contain additional details on the bearer within the token string

itself. Sometimes the token is made bound to the transport layer connection made by

the client as in ‘OAuth 2.0 token binding’ draft.

2.8.1.3. Fine-grained authorization with OAuth2 scopes

As this research is focused on authorization between systems, which is close to client

credentials grant type use case in OAuth 2.0, scope usage is investigated with

relevant to that grant type in this section. The specification defines as scope as below

and lets the authorization server decide on the scope selection implementation.

“The authorization and token endpoints allow the client to specify the scope of the

access request using the "scope" request parameter. In turn, the authorization server

uses the "scope" response parameter to inform the client of the scope of the access

token issued. ”

In most of the industry implementations ‘scope’ attached to the access-token are

decided based on RBAC concepts, while other approaches are not prevented.

Authorization Request

POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials
 scope=clearance_level1 clearance_level0

Upon receiving the above request, authorization validates the provided client

credentials in the ‘Authorization’ header. If it is valid, it further checks if this client

49

can be granted the scopes it has requested, based on the available scope validating

policy(eg: RBAC). After determining the allowable scope it generates the access

token and stores it with the scopes the token was given, the validity period of the

token and any other relevant attributes.

Authorization Response

HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "scope":"clearance_level1"
 }

As in the above response, the authorization server has only the scope

‘clearance_level1’ for the token without allowing the ‘clearance_level0’ scope.

Hence any calls the resource server receives with this access token

‘2YotnFZFEjr1zCsicMWpAA’ trying access resources under ‘clearance_level0’ will

be rejected at the token validation.

2.8.1.4. OAuth 2.0 popularity

OAuth 2.0 framework has been very popular since its release in 2012, being the

successor of OAuth 1.0. All most all the giants in the industry such as Google,

Facebook, LinkedIn, Twitter etc, e-commerce sites such as eBay and Amazon.com

make use of OAuth 2.0 as their API security protocol. The OpenID protocol, which

is an authentication protocol based on OAuth 2.0 has also been adopted by these

giants. The specifications that are getting published in the EU region to support

recent initiatives such as OpenBanking are also based on OAuth 2.0 protocol

including the FAPI(Financial API) similar to the HEART (Health Relationship

50

Trust) model also making use OAuth in the health care domain. Considering these

facts, it is evident that the OAuth 2.0 has become the goto standard for API security

in today’s industry, while the future standards are also to be based on that.

2.8.2. Authorization Servers

1. KeyCloak - This is an open source IAM solution under Apache license, that

supports all the well known IAM standards such as OAuth 2.0, OpenID

Connect and SAML SSO. As per[36], they have plans to support MTLS

based client authentication for OAuth 2.0, but currently supports certificate

bound access tokens only.

2. Gluu - This is also an IAM solution under MIT license that supports IAM

standards similar to KeyCloak. They are also considering MTLS supported

OAuth 2.0 for future[37].

3. IBM API Connect - This is a closed source API Management solution that

has inbuilt features to support OAuth 2.0 protocol in API access. They have

recently added MTLS based OAuth client authentication support as in [38].

4. Ping Identity - They have a proprietary license based IAM solution for

enterprises and supports OAuth 2.0 client registration based on MTLS

certificate [39]. No materials found on MTLS based OAuth 2.0 token issuing.

5. WSO2 Identity Server - WSO2 provides an open sources solution that

supports well-known identity standards similar to KeyCloak and Gluu. They

have an initial version of MTLS based client authentication implemented[40].

As this is the initial version, it has only the basic functionality implemented

with self-signed certificates used in MTLS.

51

https://paperpile.com/c/eZiDa9/jNrs
https://paperpile.com/c/eZiDa9/mGjc
https://paperpile.com/c/eZiDa9/dMCT
https://paperpile.com/c/eZiDa9/vluc
https://paperpile.com/c/eZiDa9/fh2C

3. SOLUTION DESIGN

This solution aggregates a number of different technologies and provides

components that glue them to cater to the requirement of authorization for a

dynamically scaling heterogeneous system, taking the ‘cloud’ as the most common

example. While authorization is the main concern, authentication of the involved

entities is also a crucial part of the flow that requires significant attention. The

authentication approach of the solution was based on the literature review and the

model is based on modern open security standards that have evolved from classical

security models and architectural principles of cohesive components with separated

duties and pluggable architectures.

The solution is named ‘Dvaara’ with the meaning of access control provided by

doors and also has the meaning of opening doors of wider interoperability among

heterogeneous systems.

When designing the solution, 4 possible approaches were considered to place

authentication and authorization, as given below.

1. Workload level authentication and authorization

This is to authenticate and authorize requests coming to the workload, at the

workload level itself (not necessarily by the workload, but maybe by a sidecar

residing with the workload to manage authentication and authorization within the

workload scope). While this allows the most fine-grained level of control on security,

allowing the enforcement of verification close to the workload, in a dynamically

scaling system, this will be much error-prone, because a new workload introduction,

an update or a revoke will also need to be addressed at each workload level, adding

the complexity of keeping them in sync. When the number of workloads under

consideration is of a small size, this may be viable, but on the scale of a growing

number of workloads, this will not be very practical.

52

2. Workload level authentication and global authorization

This proves to be fundamentally wrong, because, in order to perform authorization

on an entity, its authenticity should have been verified first as authorization depends

on the true identities. One approach to address this problem is to perform

authentication at workload level and then go back to global scope and perform

authorization, though it may not be very intuitive to expand the scope after

authentication, that getting into a narrower scope. Still, this approach also has a

problem that workload level authentication may not suffice to uniquely identify a

workload in the global scope. For example at workload level, two workloads might

identify themselves as ‘workload-A’ uniquely within their scope, but when those two

entities reach the global level, it does not have a trusted way to identify these two

separately.

3. Global authentication and workload level authorization

Global authentication is the best level of scope to verify authenticity because then the

workloads get an identity that is valid globally and can be consumed at workload

level authorization functionality as well. In this model workload still have to handle

the authorization business logic, bearing the overhead of maintenance when the

system scales. This deprives a single view on the authorization within the system,

making it error-prone, as modification are made without being aware of the overall

state of the system.

4. Global authentication and global authorization

In this approach, both authentication and authorization happen globally. Taking this

responsibility to a global level keep the workload simple and lightweight while

providing a central view and control on these aspects of the system. When the

requirements raise, there may be cases where fine granular details of the workload

will need to be considered at the global level, making it a bit more complex. Still, the

level of complexity involved with that will be much less compared to managing that

in workload level in larger scales.

53

With the above analysis, the solution is designed taking the path of global

authentication and global authorization, while enabling the definition of fine-grained

detailed based authorization policies at a global level in a central location.

In the below methodology section, the technology selection rationale and design

decisions and assumptions are discussed in detail.

3.1. Methodology

When trying to address the problem of Authorization for a Heterogeneous system,

the solution needs to be functional across these systems or at least provide clear

extendability to make it functional across systems. With authorization is based on

authentication, this requirement is valid for authentication mechanism of the solution

as well. The below section addresses technology selection considerations of the

solution.

3.1.1. Authentication technology

In the literature, there are 4 main authentication technologies. Below is an analysis of

those that were considered in selecting the authentication technology of the solution

for the workloads.

Mainly, 4 facts are considered as below. The most important requirement for the

solution is that this authentication technology should work across platforms, as

global authentication and authorization is the path selected for the solution. Then 3

more facts are considered based on the maintainability and strength of authentication.

If the mechanism needs credentials to be stored with the workloads, then all the

maintenance tasks come into the picture, such as secure key distribution and key

rotation. Also if the workload can identify themselves with different identities at

occasions to different parties that also add up complexity.

54

Mechanism Do not require
to deploy
credentials
with the
workload

Single identity
per workload

API driven
credentials
rotation and
distribution

Cross-platfor
m trust
building

Firewall Yes Yes No Yes

Destination
authentication

No No No Yes

Platform
mediated
identity

Yes Yes Yes No

SPIFFE Yes Yes Yes Yes

Table 3.1 - Workload Authentication Technology Comparison

While modern firewalls provide a lot of flexibility in defining authentication policies

for the workloads, it doesn’t provide seamless trust bootstrapping based on APIs,

which is not much automation friendly. Also defining fine-grained authorization

logic at the firewall level will overload the firewall unnecessarily and can affect the

performance of all the traffic going through the firewall.

How a database client calls the database server to retrieve the data, can be considered

a good example of the destination authentication. Here the database server generates

a credential for the client and using a distribution mechanism get it delivered to the

client. Then when the client calls the database the provided credentials need to be

submitted and validated. This shared secrets mechanism work perfectly across

platforms. Yet, the overhead of secure maintenance and distribution of credentials

needs to be considered.

Platform mediated identity refers to identifications done by the OS, cloud platforms,

middleware etc. For example, AWS has its own identity issuing mechanism with

‘Instance Identity Document’, which is valid in the AWS scopes. GCP has ‘Instance

55

Identity Token’ similar to this, which can be used to identify a workload in GCP

world. Hence this solution lacks the most important requirement of the solution,

which is to support cross-platform authentication.

As seen from the literature review, SPIFFE addresses all the considered

functionality. It is built on top of platform mediated identity, hence has all the

characteristics of it, added with cross-platform support. While the SPIFFE standard

supports all the requirements, hence the SPIRE implementation as well, this is a

fairly new standard. From the announcement of release at 2017 November at

Kubecon, not much time has passed. Hence the community and background of the

technology were also looked up. The standard is accepted for CNCF sandbox, which

gives much credibility with the reputation of CNCF in the industry. The SPIFFE

implementation is available in the GitHub under Apache 2.0 license, bearing a

healthy number of contributors on their repositories. SPIFFE development

community is also very active and helpful which was experienced their ‘slack’

channel. In addition, SPIFFE standard is used by “Istio” a Google Cloud solution

based on Service Mesh Architecture, which adds more credibility. Analyzing the

above functional and non-functional facts about SPIFFE, it was selected for the

solution, despite being a very new protocol.

3.1.2. Authorization Technologies

3.1.2.1. DAC vs MAC

As discussed in the literature review, DAC and MAC approaches are available.

While MAC has been used by the military grade systems, most enterprise systems

use DAC approaches, where the authorization decision is taken at resource accessing

and information flow afterward is not strictly addressed as in MAC. There are

upcoming regulations such as GDPR in the European region that tries to enforce

authorization on the information flow as well, based on user consent. Within the

scope of this project, a DAC based authorization approach is suggested, while

56

keeping flexibility to integrate this type of policies that govern the information flow,

in requirements such as GDPR compliance.

Below is a comparison of two access control approaches that can be used with DAC.

3.1.2.2. RBAC vs ABAC

When considering the workload authorization, there can be several attributes that

need to be considered. These attributes may come from the environment they run on

such as the host, user who initiated the workload, cloud platform provider etc. which

are static. Additionally there can be dynamic attributes to be considered such as the

uptime of the workload (maybe if policy needs to make sure enough time is elapsed

to load all the configs from its start or a health check), current time (in case the

policy want to skip a specific maintenance window of the workload) and other

workloads it has communicated so far. This list of attributes can vary based on

enterprise decisions and requirements, though it is evident that there are a lot of

attributes to be considered in both static and dynamic manner. Hence the flexibility

of ABAC is much required for the solution that been limited to RBAC.

Below is a comparison of two ABAC technologies currently used in the enterprise

systems.

3.1.2.3. XACML vs OPA

Both of these protocols are very powerful and flexible in providing ABAC. Two

sample policies are defined in Appendix 1 and 2, for the same policy, in these two

protocols. As seen clearly from these examples, the XACML policy is based on

XML and much verbose. The OPA policy is less verbose, looks much like JSON

with few variations. Below is a brief comparison of the two standards.

57

 XACML OPA

Flexible ABAC support Yes Yes

Extendability Yes Yes

Complexity High Occasionally

Verbose Yes No

Required training Yes (Though it’s XML,
have specific functions
and behaviors to
understand)

Yes (Though it’s JSON
like, have special
meanings for symbols and
ways of writing rules

Implementation
Availability

Axiomatics, Sun XACML
engine, WSO2 Identity
Server

OPA

Background Open standard by OASIS Open implementation
under Apache 2.0 license,
targeting cloud-native
environments

Table 3.2 - ABAC Technology Comparison

Though XACML has been there for quite some time now, from its release in 2003, it

hasn’t gained much popularity in the industry due to its complexity. There have been

even discussions on whether ‘XACML is dead’[41]. It is still in use, being the

de-facto standard for fine-grained authorization, with the least options available in

the arena. Despite being a new technology released in 2017, OPA has come a long

way now, being used by other cloud-related technologies such as ‘Kubernetes’ and

‘Istio’ and being accepted by CNCF. Considering the light-weightiness of the

technology, the ability to satisfy the requirement and proven credibility despite been

new, OPA was selected to be used in the project.

58

https://paperpile.com/c/eZiDa9/IkwG

3.1.2.4. Authentication and Authorization

With the technology selections considered so far, SPIFFE is to be used for workload

authentication and OPA is to be used to define the authorization policy. The next

concern left to be addressed is the integration between these two protocols, defining

how the SPIFFE identity can be consumed in an OPA policy and provide access

control over a workload.

Approach 1

Figure 3.1 - Approach 1 for SPIFFE and OPA Integration

As in the above figure 3.1, let’s consider workload 1 is running in cloud-A and

workload 2 is running in cloud-B. If workload 1 needs to access a resource exposed

by workload 2, then workload 1 should be able to get an identity issued by SPIRE

Server and workload 2 should be able to validate that identity consulting the SPIRE

server. Upon successful validation, workload 2 should check with the OPA engine to

see the authorization level the workload 1 has over its resources and allow

accordingly. The same process should be followed if workload 2 needs to access

workload 1 as well.

59

Advantages :

- Workload has control over the authentication and authorization integration.

Disadvantages :

- Both the workloads should be able to communicate and understand SPIFFE

protocol

- Mandatory to modify the workloads to do the above two calls, at least by

injecting an interceptor in front of the workload.

- Need to develop plugins from scratch as suitable for multiple workload types

- There is maintenance overhead at each workload level to configure and

maintain the above plugin

Additionally, the existing system designs need to be considered to see how the

approach fit into the existing systems.

Below can be considered the most common design enterprise systems follow

currently, with several authorization servers in the market, providing authentication,

authorization, user mgt, identity mgt, SAML, OAuth kind of Identity and Access

Management(IAM) capabilities.

Figure 3.2 - Common Model

As discussed in the literature review, there are a lot of authorization servers that

support this type of architecture, based on widely used open standards such as OAuth

2.0. This approach separates authentication and authorization management from the

60

workloads, while the authorization server centrally takes care of those functionality

performing heavy processing. Since these open standards have been there for a while,

there are already developed plugins that can be used at the workload level. For

example, Node.js has an OAuth module named ‘passport-oauth2’, Angular.js has

‘angular-oauth2’ and Java-based implementations can use Apache Nimbus libraries.

Also, there are widely available API-mgt solutions that be used to workload

authorization, which add API security functionality with zero code.

Considering this already available design observed in the enterprise systems, below

approach is suggested to minimize the changes required to the existing system and

maximize adaptability of the approach.

Approach 2

Figure 3.3 - Approach 2 with Authorization Server

In this approach, communication with the OPA engine is delegated to the

authorization server and workloads can keep communicating with the Authorization

server via the OAuth 2.0 protocol. The nodes running the workloads need to have a

node SPIRE agent configured to communicate with the SPIRE server and obtain

identity. These agents are currently available for current popular workload types such

61

as workloads running on AWS cloud, GCP, a Linux machine or in a Kubernetes

cluster.

Based on the characteristics of the workload 2 we can either join it to the SPIFFE

world or keep it as a legacy system supporting OAuth 2.0 if it is not to scale

dynamically. On the other hand, considering the IAM solutions in the middleware

market today, embedding the SPIRE server into the IAM server should also possible

to make an all-in-one solution. That is considered out of the scope of this project,

moving forward keeping and running the SPIRE server separately.

3.1.2.5. Authorization Server

As discussed in the literature review there are several proprietaries and open source

IAM solutions that can act as authorization servers. To support the above-discussed

approach, it is mandatory that this authorization server provides comprehensive

support for the OAuth 2.0 framework. Within the project scope, the solution is

expected to be vendor neutral as much as possible, without depending on any

vendor-specific features than extensions allowed in the OAuth 2.0 framework.

Based on the current familiarity of the author, the open source license and

comprehensive OAuth 2.0 support, WSO2 Identity Server is used in the current

solution. Yet the suggested approach is not bound to use only the WSO2 Identity

Server.

3.2. Architecture

Below is the final suggesting architecture, based on the technology selection

explained in the previous chapters. AWS and GCP are taken as examples for

dynamically scaling, heterogeneous systems and there is a static system which does

not scale dynamically. The call from workloads to the WSO2 Identity Server to

obtain the OAuth2 access token is not shown in the figure to preserve clarity.

62

Figure 3.4 - Architectural Design

‘Separation of duties’ is followed in the architecture, giving each component a very

specific task.

● SPIRE Server - Identify each workload in the system in a trusted

manner

● WSO2 Identity Server - Exchange SPIFFE trust to OAuth 2.0 tokens

● OPA engine - Execute dynamic authorization policies

Each of these components is highly cohesive within the architecture and can be

decoupled. If an innovative better option to replace any of the above components

becomes available in the future, that component can be replaced with minimum

effect to others. This is viable in the solution as the integrations are based on open

standards, used by the majority of the industry. At the implementation stage also

these properties are preserved which will be discussed in detail in the implementation

section.

63

3.2.1.1. Interactions

The first step in the design is bootstrapping trust between dynamically scaling

workloads of different types running on different clouds. The solution depends on the

SPIFFE-based SPIRE server on this. At the end of this phase, all the systems in the

SPIFFE world, including the WSO2 Identity Server which act as the authorization

server, has got own unique identity across the clouds, similar to other workloads.

This means each of these workloads has an identity and has received information on

what other workloads to be trusted by the trust bundles sent from SPIRE server.

Once the workload has the SVID (X509 certificate signed by the SPIRE Certificate

Authority (CA), which is now trusted by the WSO2 Identity Server), it can exchange

it to an OAuth 2.0 token under MTLS based OAuth client authentication

specification. The scopes attached to this token represents the capabilities of the

token, decided by the OPA engine. The workloads can consume these tokens to

access a resource provided by another workload. Then that workload allows the

access request, only if it is allowed as per the decision which was given by WSO2

Identity Server. In providing the decision, WSO2 Identity Server consults the OPA

engine, providing the list of scopes attached to the token along with any other

additional attributes available at the moment such as the accessing resource path

using the token, token bearer details etc.

3.2.1.2. Assumptions

This architecture makes several assumptions on transport level security and workload

attestation and node attestation mechanisms used by SPIFFE.

1. All the communications are done through secured communication channels.

The OAuth2 tokens or any other information going through this transport in

secured such that they can not be captured by unintended parties or even if

they capture that doesn’t reveal any valuable information, that they can

manipulate on.

64

a. For this assumption to hold, the necessary precautions can be taken

such as using stronger algorithms based keys with adequate key sizes

etc.

b. If token theft is calculated to be a greater risk, OAuth 2.0 token

binding specification can be followed, which binds the token with

transport level details. Hence even if anyone was able to steal a token,

they won’t be able to make use of it, as the authorization server will

deny the request on token binding failure.

2. SPIFFE implementation relies on the underlying kernel or the platform to

identify each workload uniquely within a node and the platform to identify

each node uniquely. As the solution is based on SPIFFE, these assumptions

hold for the solution as well.

a. Using a combination of attestation policies and periodic or random

checks on the attestation policy functionality can be precautions to be

taken to make this assumption hold.

65

4. SOLUTION IMPLEMENTATION

The implementation of this solution ‘Dvaara’ is done, according to the design

decisions made in the previous chapter. With the choice of WSO2 Identity Server

acting as the authorization server in the design, its integration points are used to build

up interoperability with SPIFFE standard and OPA engine.

The implementation needs to address two flows that run through the WSO2 Identity

Server.

1. OAuth2 token issuing which validates the SVID to authenticate the client.

2. OAuth2 token validation which makes a decision to allow or deny the

resource access request.

Chain of responsibility pattern could be observed throughout the design of the WSO2

Identity Server. The required implementations to work with SPIFFE and OPA engine

are plugged into the WSO2 Identity Server as below, following the same the pattern.

The overall flow with above two steps is shown in the below Figure 4.1.

Figure 4.1 Implementation Scope

66

The area circled with broken lines defines the implementation scope of this project.

Additionally, the WSO2 Identity Server was also improved to extract that relevant

details from the transport layer and provide to the application layer as required, to be

sent to the OPA engine as inputs for policy evaluation.

In brief, there is a separate SPIFFE security provider that is registered in the JVM to

validate the certificates in the TLS layer that is used by an OAuth 2 specific

authenticating artifacts developed for ‘Dvaara’. Further to that, a scope handler is

present to decide on the scopes to be attached to the issuing token. Later when the

access token is to be validated in use, a validator is engaged to handle OPA based

validations whether to allow or deny the resource access.

67

4.1. Pre Resource Access - OAuth2 Token Issuing Flow

When a workload (workload 1) is to make use of another workload (workload 2), the

first prerequisite is to have a valid OAuth2 token that is privileged to consume

workload-2.

Figure 4.2 - Workload Gets an OAuth2 Token

To get a valid OAuth2 token this workload 1 calls the /oauth2/token endpoint making

use of the SVID X509 certificate it received from SPIRE server, calling the SPIRE

agent Workload API and going through the trust bootstrapping flow with workload

attestation. By this time WSO2-IS which is also a part of the SPIRE trust network, it

is received with the trust bundles, that instruct it on what to trust after the SPIFFE

initial flow.

WSO2-IS validates the certificate used by the workload 1, in TLS connection

creation. This is done making use of the ‘java-spiffe’ library[42] implemented by the

SPIFFE community. This library extends the JAVA security API and provides SVID

based KeyStore and TrustStore implementation. As WSO2-IS is based on tomcat

server, this security provider is plugged in as a Tomcat HTTP connector, so that

WSO2-IS will make use of SPIRE based trust and key management

68

https://paperpile.com/c/eZiDa9/vpkq

Based on the OAuth MTLS specification[35] this certificate is used to validate that

the requests come from a trusted client. If the validations on the certificates are

passed, the implementation registers an application on behalf of the workload and let

the request pass through the next chain of handlers in order to issue an OAuth2

token. To perform this validation and to act as a gatekeeper on the SPIFFE based

validations, below detailed implementation at figure 4.3 is done, making use of

WSO2-IS extensions.

The implementation is based on two interfaces from by WSO2-IS name

‘IdentityHander’ which is a generic handler in the chain of responsibility and

‘OAuthClientAuthentication’ which is a specific extension to validate requests

coming from OAuth applications. As per the OAuth2 Framework specification,

OAuth client authentication mechanism has a lot of flexibility. In this case, that

flexibility is made use of while taking guidance from draft specification on MTLS

based OAuth client authentication.

69

https://paperpile.com/c/eZiDa9/72oI

Figure 4.3 - SPIFFE Based OAuth Client Authenticator

The implementation first checks if it can validate the request, verifying whether the

required parameters are available. In this case, a check on the presence of a SPIFFE

certificate (SVID) is done. Then at the authentication of the client, upon successful

verification of SPIFFE certificate, it checks for the presence of an existing

application or creates one if not and hands over the control to OAuth token issuing

flow.

70

Figure 4.4 - OPA Based OAuth2 Scope Handler Implementation

This token issuing flow is intercepted by another handler as seen above, which

decides on the OAuth2 scopes to be attached to the token, based on the decision from

the OPA engine. In the very basic form, the SPIFFE ID is considered on deciding the

scopes to be attached in the implementation. The OPA engine provides flexibility to

dynamically define and modify this policy as per the business requirements.

The SPIFFE-ID represents an abstract level of verifications happened on the

workload within the SPIRE network. When providing an identity to a workload, the

SPIRE server and SPIRE agent perform several attestations as below.

While entry ID is a unique identifier used within SPIRE, other parameters represent

the identification policy.

71

Entry ID: bf6da55e-272d-4462-8d5d-bfa9567be752
SPIFFE ID: spiffe://example.org/back-end
Parent ID: spiffe://example.org/host1
TTL: 120
Selector: unix:uid:1000

Entry ID: 32b27cd3-cb4c-43ce-a8af-d5dd344abc32
SPIFFE ID: spiffe://example.org/front-end1
Parent ID: spiffe://example.org/host2
TTL: 120
Selector: unix:uid:1000

Entry ID: a926e1cb-9989-4272-94a8-64528955c1b4
SPIFFE ID: spiffe://example.org/front-end2
Parent ID: spiffe://example.org/host2
TTL: 120
Selector: unix:uid:1001

Based on the above attestation policy at SPIRE, when a workload is given the

SPIFFE ID ‘spiffe://example.org/back-end’, it is confirmed that the workload is

running in the host1 under Unix user id 1000 and will be getting SVIDs valid for

120s. When defining the OPA policy this information can also be considered as per

the enterprise requirements.

For above verifications on the host and kernel-based characteristics, it relies on the

platform based privileged API provided by the cloud providers that are discussed in

literature review (AWS IID, Google IIT etc.) and kernels or container orchestration

systems. The implementation trust those evaluations to be accurate.

SPIFFE ID Node Selector Process Selector

spiffe://abc.com/bill aws:ec2:1234 k8s:namespace:1234

spiffe://xyz.com/account gcp:7236427472 unix:uid:1002

72

Then for each SPIFFE ID, there are security labels attached. In the OAuth

vocabulary, these will be scopes. These scopes provide an abstraction layer to

consider in applying policies, mainly based on SPIFFE ID but can be extended to

consider more attributes as below.

SPIFFE ID condition scope

spiffe://abc.com/bill Health check passed and
SVID expire> 3mins

clearance-0

spiffe://xyz.com/account Health check passed and
SVID expire > 1min

clearance-1

A given token can have multiple scopes with the definitions made. These scopes

provide an abstraction to the defined verbose conditions.

In the simplest way below can be the representation of the policy in OPA engine.

{
 "scopes": [
 {
 "id": "spiffe:\/\/example.org\/wso2-is",
 "scopes": [
 "clearance-0"
]
 },
 {
 "id": "spiffe:\/\/example.org\/workload1",
 "scopes": [
 "clearance-2"
]
 },
 {
 "id": "spiffe:\/\/example.org\/workload2",
 "scopes": [
 "clearance-1",
 "clearance-3"
]
 }
]
}

73

This means if the SPIFFE ID of a particular workload matches any of these IDs, the

OAuth2 token issued to those workloads can have the given scopes. Here the

considered convention is clearance-0 is the highest privilege level, given to

workloads with SPIFFE ID, ‘spiffe://example.org/wso2-is’, that will be eligible to

consume any resources that need the highest privilege.

4.2. Resource Access - OAuth2 Token Validation Flow

Once the workload 1 gets a token as explained above, it will use this token to call the

workload 2. Then workload 2 consults WSO2 IS, sending it the token and requesting

whether to provide the requested access or not. WSO2-IS provides the response,

checking the validity of the token and additionally checking on privileges based the

scopes of the token and other attributes according to the defined OPA policy. This

flow happens as shown in the below sequence.

Figure 4.5 - Workload Access Another Workload

The responsibility of taking this decision based on the decision of the OPA engine is

given to another separate handler in the implementation. In addition to token and

74

scope validations, it can perform fine-grained validations such as whether to allow

the workload 1 to modify or read only a particular resource, exposed by workload 2.

Figure 4.6 - OPA Based OAuth2 Token Validator

This implementation retrieves the scopes attached to the token and checks it against

the requirements to access a particular resource in a workload. Though a common

use related to REST APIs was considered as a workload in this implementation, this

can be extended to any other type of workload, by writing a relevant OPA policy.

75

Assume a business policy as below on workload 2,

GET /finance/salary - clearance-3

POST /finance/salary - clearance-0

With policy enforcement done right at accessing the resources in the workload, it can

more details to the OPA engine to decide on the request, such as the type of action to

be performed, on which resource, user-agent used to make the request and any

application layer details related the payload etc. This provides a lot of flexibility and

control over authorizing the request.

Additionally, a client that can consume SPIFFE based trust and provide own SPIFFE

based identity is implemented to evaluate the end-to-end flow under the given

design. All the artifacts and implementation relevant with this solution resides at[43],

been fully open to the community to use, provide feedback and contribute.

76

https://paperpile.com/c/eZiDa9/8CWE

5. SOLUTION EVALUATION

5.1. Deployment Model

Dvaara approach was evaluated in a setup as shown below, which is a representation

of a hybrid cloud. The configurations are maintained using ‘docker’ technology and

published at the Dvaara GitHub repository[44].

Figure 5.1 - Deployment for Evaluation

Following is the model used to provide proof of concept on the ‘Dvaara’ solution.

77

The test workload is a representation of an enterprise salary management system as a

hybrid system.. This is modeled as Workload 2 in figure 5.1, which is designed as a

REST service with the below definition. Company policy says:

● a user can read own salary details,

● their superior can modify the salary details.

● the user can’t modify own salary details.

Reading and modifying salary details is done by the below REST calls respectively:

GET - /finance/salary/{username}

POST - /finance/salary/{username}

Assuming the company is transforming all its operations to a digital system, where

they are to provide a single dashboard for its employees that is hosted in the cloud.

As this requires integrating multiple software already running on heterogeneous

systems, Dvaara solution is applied here. Workload 1 in figure 5.1 represents this

dashboard which would be accessing the resources exposed by the Workload 2.

In the process, the legacy workload 2 is enriched with an access control layer in front

of it, which extracts an OAuth 2.0 access token submitted by the consuming

workload, sends it to the authorization server for validations and honors its decision

to permit or deny access. The workload 1 should get a valid OAuth 2.0 token from

WSO2 IS in order to submit in this call to workload 2. To satisfy the requirements to

get an OAuth 2.0 token, workload 1 goes through the SPIFFE protocol and get a

valid identity. In this model, the SPIRE server attests the node based on AWS IID

and Unix user id of the process.

78

5.2. Deployment Configuration

5.2.1. Infrastructure

As seen from figure 5.1, SPIRE server and workload 1 are hosted in an AWS

instance of model t2.micro. It accompanies a SPIRE node agent for that node.

WSO2-IS and OPA engine are hosted in an AWS instance of model t2.medium as

the WSO2-IS requires a minimum of 2GB memory as per the recommendation. The

local machine runs the workload 2.

T2.micro

- 1 vCPUs

- 1 GB RAM

- OS: Canonical, Ubuntu, 16.04 LTS, amd64 xenial image build on 2018-11-14

T2.medium

- 2 vCPUs

- 4 GB RAM

- OS: Canonical, Ubuntu, 16.04 LTS, amd64 xenial image build on 2018-11-14

(T2.micro and T2.medium runs within the same AWS security group)

Local machine

- Intel® Core™ i7-7600U CPU @ 2.80GHz × 4

- 15.3 GB RAM

- OS: Ubuntu, 16.04 LTS (Xenial Xerus)

5.2.2. Policies

Two policies were defined in the OPA engine to make decisions as follows.

1. Based on the SPIFFE ID given to a workload decide on the clearance level

they can be given. (This can be replaced in the future when SPIRE facilitates

automating this.)

{
 "scopes": [
 {
 "id": "spiffe://example.org/wso2-is",
 "scopes": [

79

 "clearance0"
]
 },
 {
 "id": "spiffe://example.org/workload1",
 "scopes": [
 "clearance2"
]
 },
 {
 "id": "spiffe://example.org/front-end2",
 "scopes": [
 "clearance1",
 "clearance3"
]
 }
]
}

2. Based on the available environment parameters decide on whether to permit

or deny a request, in addition to OAuth 2.0 token expiry validation done by

the authorization server.

package httpapi.authz

subordinates = {"alice": [], "charlie": [], "bob": ["alice"], "betty": ["charlie"]}

HTTP API request
import input as http_api
http_api = {
"spiffe-id": "spiffe://example.org/front-end2",
"path": ["finance", "salary", "alice"],
"user": "alice",
"method": "GET"
"user_agent": "cURL/1.0"
"remote_addr": "127.0.0.1"
"iat":2019-02-10 12:27:27.196
}

default allow = false

80

Allow users to get their own salaries.

deny {
 http_api.method = "DELETE"
}

allow {
 http_api.method = "GET"
 http_api.path = ["finance", "salary", username]
 username = http_api.user
}

Allow managers to get their subordinates' salaries.
allow {
 http_api.method = "GET"
 http_api.path = ["finance", "salary", username]
 http_api.scope = "clearance2"
 subordinates[http_api.user][_] = username
}

Allow managers to edit their subordinates' salaries only if the request came from
a workload with SPIFFE ID "spiffe://example.org/workload-1"
allow {
 http_api.method = "POST"
 subordinates[http_api.user][_] = username
 http_api.path = ["finance", "salary", username]
 http_api.spiffe-id = "spiffe://example.org/workload-1"
}

This policy defines 4 rules.

- Deny any requests to delete

- Allow any requests coming to read the resource ‘finance/salary/{username}’

when it’s authenticated with the same user.

- Allow any requests coming to read the resource ‘finance/salary/{username}’

when the authenticated user is superior and used token has the scope

‘clearance2’.

81

- Allow modifying the resource ‘finance/salary/{username}’ only if the

authenticated user is superior of the {username} and the request came from a

workload with SPIFFE ID "spiffe://example.org/workload-1".

82

5.2.3. Test cases

5.2.3.1. Correctness

The correctness of the configuration is evaluated with the below cases.

Test case Allow (yes/no)

Make a request to get an OAuth 2.0 token before joining the
SPIRE network, from workload 2. (Should fail as not trusted)

No

Make the same above call after SPIRE trust is established. Yes

Request a scope for the OAuth 2 token that is not allowed by the
policy (spiffe://example.org/workload1 requests clearance 0)

A token is
given without
the scope

Request a scope for the OAuth 2 token that is allowed by the
policy (spiffe://example.org/workload1 requests clearance 2)

A token is
given with the
scope

Alice read own salary calling GET on /finance/salary/alice Yes

Alice delete own salary calling DELETE on /finance/salary/alice No

Bob read Alice’s salary calling GET on /finance/salary/alice
with the previously received token (Allowed as Bob is Alice’s
superior and the token has scope clearance 2)

Yes

Bob modify Alice’s salary calling POST on /finance/salary/alice
calling from workload 1 (Allowed as Bob is Alice’s superior)

Yes

Alice read own salary calling GET on /finance/salary/alice with
an expired token

No

Start another workload in the t2.micro node with the same
attributes as workload 1 (scaling workload 1). Make the requests
from this workload. (Should allow as that is attested identical to
the previous workload and node agent should handle the trusted
introduction in the network under SPIFFE protocol)

Yes

Table 5.1 - Test Cases

83

5.2.3.2. Performance

The end to end flow involved in the system has two main flows after the SPIFFE

based trust bootstrapping and identification is established.

- OAuth 2.0 token retrieval (SPIFFE based client authentication and OPA

scope handling policy is evaluated in this flow.)

- Resource access call (OAuth 2.0 access token validation and OPA based

attribute evaluation to deny or allow the request to happen in this flow.)

In a practical situation, a workload will run the first flow, get an access token and

keep using it until it’s expiration happens. Based on this, response times were

measured individually for each of the above flows.

Three shell scripts were run simultaneously while each one making 1000 requests in

a synchronous manner to get the average response times.

Token Retrieval

Fastest response time = 0.5455s

Slowest response time = 1.104s

Average response time = 0.6636s

Token Validation

Fastest response time = 0.5445s

Slowest response time = 1.0915s

Average response time = 0.6293s

Based on the above values it was observed that while sometimes the requests have

taken 2x time from it’s fastest response time, most of the times the requests have

been served in around ~0.6s. Also, the token generation is slightly slower than the

token validation. In the implementation, the first flow to retrieve a token has two

database calls to retrieve client registration details and then to store the issued access

84

token. The second call to validate the token, only perform one database call to check

validity. While there can be other affecting reasons this seems to have a contribution

to the slight difference.

While the main objective of the project is to suggest a viable architecture to address

authorization in a dynamically scaling heterogeneous system, the response times can

also play a major role when the solution is to be applied on an environment based on

microservices architecture, where time scale is on milliseconds. There is space within

the solution to improve response times making use of caching mechanisms which

will be considered for the future. In addition to that the communication link between

the on-premise and cloud components were through the public network in the

evaluation setup. Hence providing a dedicated cloud VPN with enough bandwidth

can also be expected to reduce the response times.

85

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

This project addresses a requirement that has been raised with the rising scale of

developments happening with the digital transformation in the industries. It was

evident that enterprises are looking to break the boundaries for the maximum benefit,

without being vendor locked. Multi-cloud enterprise systems are a result of this. For

example, enterprises may run computing intensive tasks on one cloud, keep sensitive

information processing in an on-premise cloud and use a SaaS-based system

consuming an already established well-reputed vendor in the field. This raises new

challenges in information security aspects starting from workload authentication, as

the involved identities join the system from various origins.

This solution ‘Dvaara’ provides an approach to address workload authorization

challenge across a multi-cloud enterprise system, based on the well-established

protocols such as TLS and OAuth 2.0 and consuming cutting edge technologies such

as SPIFFE and OPA. The research community has already provided a solution for

workload authentication in a multi-cloud system with the introduction of SPIFFE

standard. Dvaara takes a step forward based on this protocol to provide workload

authorization. It builds a bridge between the SPIFFE based workload identification

and OAuth 2.0 protocol, by providing an implementation that consumes SPIFFE

based identity for OAuth 2.0 client authentication. This can also act as a mediation

bridge between existing enterprise systems that are based on TLS and OAuth 2.0 to

work with modern systems based on SPIFFE. In addition, the solution injects more

fine-grained authorization capabilities to the system via OAuth 2.0 protocol ‘scopes’

concept making use of OPA engine. Without being narrowly focused on just an

OAuth 2.0 based solution, this provides a flexible authorization architecture that can

deal with fine granular details in making service authorization decisions.

86

Dvaara demonstrates a proof of concept on how an existing authorization server that

supports OAuth 2.0 control can be enabled to provide workload authorization in a

multi-cloud system. It achieves this by implementing 3 main components. An

authenticator that bridges SPIFFE based authentication for OAuth 2.0, a scope

handler that selects the OAuth 2.0 scopes based on an OPA policy and an OAuth 2.0

token validator that honors OPA rules plugged into WSO2-IS enabled it to act as the

authorization server in the suggested authorization architecture. With the successful

achievement at the end of the project, it is proven that any other OAuth 2.0

supporting authorization can also act as this bridge by implementing these 3

components as suitable.

The approach of consuming already established infrastructure based identity in a

trusted manner has made Dvaara solution much more extendible while keeping the

design simple. It also enables running strict authorization policies at resource access

that consider fine-grained details to the level of HTTP methods, resource, and

consumer and server identity. Additionally, it also allows dynamic modification of

these policies honoring the agile requirements of modern enterprises.

When enterprises look forward to multi-cloud systems, they will be benefited by the

approach demonstrated by Dvaara, to control the resource access across the systems

in a fine-grained manner under the below mentioned limitations.

6.2. Limitations

While enabling enterprises to make use of multiple clouds, Dvaara also has few

limitations on where it can be applied.

- In order for this solution to work as a whole, the workload consumer should

identify themselves under the SPIFFE protocol. The SPIFFE implementation

used - SPIRE - supports automated node attestation capabilities only for

AWS, GCP, Azure, Kubernetes and workload attestation based on Unix,

Kubernetes, and Docker. In case we use another cloud provider or if there is a

87

requirement for a different workload attestation mechanism, that needs to be

implemented as an extension to SPIRE or we need to use a token-based

mechanism with manual intervention.

- The service providing workload needs to be able to work on OAuth 2.0

protocol or at least have the flexibility to place an OAuth 2.0 based access

controller in front of them, that can extract necessary details for authorization

and honor the decision to deny or permit the request.

The observed response time can also limit the Dvaara usage in an environment where

high responsiveness is expected. When Dvaara is to be applied in such an

environment, the communication links between the clouds needs to be fast enough

and other suggested caching implementations needs to be incorporated to enhance

performance.

6.3. Future Work

Dvaara can be improved further in many ways to provide better functionality as

follows.

- Dvaara currently makes use of a random string generated by the authorization

server as the OAuth 2.0 token. This can be converted into a self-contained

JWT token that can carry more useful information between the workloads. If

this JWT can be sent signed by the trusted certificate of the authorization

server, then the token validation can also be done by the receiving workload

agent itself without calling back to the authorization server. Then an external

call will happen only for OPA policy evaluation with the details received

within the JWT.

- This architecture can be evaluated to expand further with the federation. If

there is a trust network between the SPIRE servers, each domain handled by

each SPIRE server, can also consume workloads from a totally different

domain. In such occasion how this authorization architecture can handle the

added complexity can be studied further.

88

- The solution depends on the TLS layer to securely transport the OAuth 2.0

token from the authorization server to the workload, to make use of it at

service call. However, being a bearer token, if some malicious party could get

hold of this token, they can make use of this token to access a resource. In

that matter, OPA policy can add some protection, but the best solution would

be if the token can be bound with the TLS connection initiated by the

workload. In that case, it will restrict token to be used by a connection made

by the intended bearer of the token, reducing the risk.

- At the token validation, Dvaara expects the workload to make a call to the

authorization server and check it’s validity. This involves a cost with the call

through the network and an OPA policy invocation each time. This can be

avoided if the validation response can be cached in the workload for a given

time. This has a trade-off between accuracy against the cost as token

revocations, policy updates might be neglected for a certain time. Hence this

improvement needs to be done with proper cache invalidations in place and

cache eviction functionality to avoid infinite memory growth with tokens

saved to cache.

- SPIRE server doesn’t have a clearly defined way to retrieve its attestation

policy used in issuing the SPIFFE IDs. After a discussion in their ‘Slack’

channel, this is now tracked at [45]. Once this is available it can be integrated

into the OPA policy engine replacing current manual policy definition used to

identify the clearance level issued to an SPIFFE ID.

- It will also be useful to have an intuitive UI that provides a single view of the

authentication and authorization policy across the system. This help

administering the system, evaluating current privilege levels of each

workload, applying modifications, doing evaluations and auditing.

89

REFERENCES

[1] R. Chandramouli, M. Iorga, and S. Chokhani, “Cryptographic Key Management
Issues and Challenges in Cloud Services,” in Secure Cloud Computing,
Springer, 2013, pp. 1–30. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4614-9278-8_1. [Accessed 23
Nov. 2018].

[2] VansonBourne and Nutanix, Inc., “Nutanix Enterprise Cloud Index,” 2018.
[online] Available:
https://www.nutanix.com/enterprise-cloud-index/docs/enterprise-cloud-index.pd
f. [Accessed 23 Nov. 2018].

[3] A. Jessup, “Building trust between modern distributed systems with SPIFFE,”
21-Feb-2018. [Online]. Available:
https://www.slideshare.net/ajessup/building-trust-between-modern-distributed-s
ystems-with-spiffe. [Accessed: 07-Dec-2018].

[4] D. Smith and E. Anderson, “Hype Cycle for Cloud Computing, 2018,” Gartner,
Inc., 31-Jul-2018. [Online]. Available:
https://www.gartner.com/doc/3884671/hype-cycle-cloud-computing-.
[Accessed: 06-Dec-2018].

[5] P. Rabinovich, “Building Identity Into Microservices,” Gartner, Inc.,
15-Aug-2017. [Online]. Available:
https://www.gartner.com/doc/3784664/building-identity-microservices.
[Accessed: 27-Dec-2018].

[6] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE
Commun. Mag., vol. 32, no. 9, pp. 40–48, 1994. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/312842. [Accessed: 27-Dec-2018].

[7] C. De Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence, “Generic
AAA architecture,” 2000. [Online]. Available:
https://www.rfc-editor.org/info/rfc2903. [Accessed: 27-Dec-2018].

[8] E. Rissanen and Axiomatics, “extensible access control markup language
(xacml) version 3.0,” OASIS standard, 2013. [Online]. Available:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf. [Accessed:
27-Dec-2018].

[9] D. Brossard and Axiomatics, “JSON Profile of XACML 3.0 Version 1.0,”
OASIS standard, 2017. [Online]. Available:
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cos01/xacml-json-http-v1
.0-cos01.pdf. [Accessed: 26-Dec-2018].

[10] Openpolicyagent.org, "How Does OPA Work?", 2018. [Online]. Available:

90

http://paperpile.com/b/eZiDa9/Zkgm
http://paperpile.com/b/eZiDa9/Zkgm
http://paperpile.com/b/eZiDa9/Zkgm
http://paperpile.com/b/eZiDa9/Zkgm
http://paperpile.com/b/eZiDa9/Zkgm
http://paperpile.com/b/eZiDa9/3SNt
https://link.springer.com/chapter/10.1007/978-1-4614-9278-8_1
https://www.nutanix.com/enterprise-cloud-index/docs/enterprise-cloud-index.pdf
https://www.nutanix.com/enterprise-cloud-index/docs/enterprise-cloud-index.pdf
http://paperpile.com/b/eZiDa9/3SNt
http://paperpile.com/b/eZiDa9/3SNt
https://www.slideshare.net/ajessup/building-trust-between-modern-distributed-systems-with-spiffe
https://www.slideshare.net/ajessup/building-trust-between-modern-distributed-systems-with-spiffe
http://paperpile.com/b/eZiDa9/3SNt
http://paperpile.com/b/eZiDa9/ibg3
http://paperpile.com/b/eZiDa9/ibg3
http://paperpile.com/b/eZiDa9/ibg3
http://paperpile.com/b/eZiDa9/ibg3
https://www.gartner.com/doc/3884671/hype-cycle-cloud-computing-
http://paperpile.com/b/eZiDa9/ibg3
http://paperpile.com/b/eZiDa9/ibg3
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/paht
https://www.gartner.com/doc/3784664/building-identity-microservices
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/UXHT
http://paperpile.com/b/eZiDa9/UXHT
http://paperpile.com/b/eZiDa9/UXHT
http://paperpile.com/b/eZiDa9/UXHT
http://paperpile.com/b/eZiDa9/paht
https://ieeexplore.ieee.org/abstract/document/312842
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/As23
http://paperpile.com/b/eZiDa9/As23
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/paht
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/paht
http://paperpile.com/b/eZiDa9/Z309
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/1JdX
http://paperpile.com/b/eZiDa9/Z309
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cos01/xacml-json-http-v1.0-cos01.pdf
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cos01/xacml-json-http-v1.0-cos01.pdf
http://paperpile.com/b/eZiDa9/Z309

https://www.openpolicyagent.org/docs/how-does-opa-work.html.[Accessed:
12-Dec-2018].

[11] Openpolicyagent.org, “Comparison to Other Systems.” in Open Policy Agent
Documentation, 2018. [Online]. Available:
https://www.openpolicyagent.org/docs/comparison-to-other-systems.html.
[Accessed: 27-Dec-2018].

[12] D. Gollmann, “Computer security,” WIREs Comp Stat, vol. 2, no. 5, pp.
544–554, Sep. 2010. [Online]. Available:
http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WICS106.html.
[Accessed: 27-Dec-2018].

[13] R. S. Sandhu, “Lattice-based access control models,” Computer , no. 11, pp.
9–19, 1993. [Online]. Available: https://ieeexplore.ieee.org/document/241422.
[Accessed: 27-Dec-2018].

[14] D. D. Clark and D. R. Wilson, “A Comparison of Commercial and Military

Computer Security Policies,” in 1987 IEEE Symposium on Security and Privacy,
1987, pp. 184–184. [Online]. Available:
https://www.semanticscholar.org/paper/A-Comparison-of-Commercial-and-Mili
tary-Computer-Clark-Wilson/1b7dd069a40900cd781a9cf97c8e819c09b4a346.
[Accessed: 27-Dec-2018].

[15] D. F. C. Brewer and M. J. Nash, "The Chinese Wall security policy,"

Proceedings. 1989 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, 1989, pp. 206-214. doi:10.1109/SECPRI.1989.36295.

[16] Timetoast timelines, “Cloud Computing History timeline,” Timetoast. [Online].

Available: https://www.timetoast.com/timelines/cloud-computing-history.
[Accessed: 06-Dec-2018].

[17] C. Stamford, “Gartner Forecasts Worldwide Public Cloud Revenue to Grow

17.3 Percent in 2019.” [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-foreca
sts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019. [Accessed:
28-Jan-2019].

[18] V. D'costa, "Is hyperconverged infrastructure equivalent to the public cloud?",

Web Werks. 2016 [Online]. Available:
http://blog.webwerks.in/cloud-hosting-blog/is-hyperconverged-infrastructure-eq
uivalent-to-the-public-cloud. [Accessed: 08- Jan- 2019]

[19] J. McArthur, K. Yamada, P. Dawson, and J. Palmer, “Magic Quadrant for

Hyperconverged Infrastructure,” Gartner, Inc., 02-Jan-2019. [Online].
Available:

91

https://www.openpolicyagent.org/docs/how-does-opa-work.html
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/lCzF
https://www.openpolicyagent.org/docs/comparison-to-other-systems.html
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/ZhAw
http://paperpile.com/b/eZiDa9/ZhAw
http://paperpile.com/b/eZiDa9/ZhAw
http://paperpile.com/b/eZiDa9/ZhAw
http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WICS106.html
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/4hSG
http://paperpile.com/b/eZiDa9/4hSG
http://paperpile.com/b/eZiDa9/4hSG
http://paperpile.com/b/eZiDa9/4hSG
https://ieeexplore.ieee.org/document/241422
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/Jihb
http://paperpile.com/b/eZiDa9/Jihb
http://paperpile.com/b/eZiDa9/Jihb
http://paperpile.com/b/eZiDa9/Jihb
http://paperpile.com/b/eZiDa9/Jihb
https://www.semanticscholar.org/paper/A-Comparison-of-Commercial-and-Military-Computer-Clark-Wilson/1b7dd069a40900cd781a9cf97c8e819c09b4a346
https://www.semanticscholar.org/paper/A-Comparison-of-Commercial-and-Military-Computer-Clark-Wilson/1b7dd069a40900cd781a9cf97c8e819c09b4a346
http://paperpile.com/b/eZiDa9/lCzF
http://paperpile.com/b/eZiDa9/FE92
http://paperpile.com/b/eZiDa9/FE92
http://paperpile.com/b/eZiDa9/FE92
http://paperpile.com/b/eZiDa9/FE92
https://www.timetoast.com/timelines/cloud-computing-history
http://paperpile.com/b/eZiDa9/FE92
http://paperpile.com/b/eZiDa9/Dq48
http://paperpile.com/b/eZiDa9/Dq48
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
http://paperpile.com/b/eZiDa9/Dq48
http://paperpile.com/b/eZiDa9/Dq48
http://paperpile.com/b/eZiDa9/XvMh
http://paperpile.com/b/eZiDa9/UBcy
http://paperpile.com/b/eZiDa9/UBcy
http://paperpile.com/b/eZiDa9/UBcy
http://paperpile.com/b/eZiDa9/UBcy
http://paperpile.com/b/eZiDa9/UBcy

https://www.gartner.com/doc/3894101/magic-quadrant-hyperconverged-infrastr
ucture. [Accessed: 28-Jan-2019].

[20] M. C. Calzarossa, M. L. Della Vedova, L. Massari, D. Petcu, M. I. M. Tabash,

and D. Tessera, “Workloads in the Clouds,”, Springer International Publishing,
2016, pp. 525–550. doi:10.1007/978-3-319-30599-8_20.

[21] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in

large networks of computers,” Xerox, Palo Alto Research Center, 1978.
doi:10.1145/359657.359659.

[22] C. Neuman and J. Kohl, “The Kerberos Network Authentication Service (V5),”

Sep. 1993. doi:10.17487/RFC1510.

[23] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for computer

networks,” IEEE Commun. Mag., vol. 32, no. 9, pp. 33–38, Sep. 1994.
doi:10.1109/35.312841.

[24] Amazon Web Services, Inc., “Instance Identity Documents - Amazon Elastic

Compute Cloud,” Amazon Web Services, Inc. [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-docu
ments.html. [Accessed: 29-Jan-2019].

[25] Google Cloud, “Verifying the Identity of Instances | Compute Engine

Documentation | Google Cloud,” Google Cloud. [Online]. Available:
https://cloud.google.com/compute/docs/instances/verifying-instance-identity.
[Accessed: 27-Jan-2019].

[26] N. Sakimura, J. Bradley, M. Jones B. de Medeiros and C. Mortimore, “Final:

OpenID Connect Core 1.0 incorporating errata set 1.” [Online]. Available:
https://openid.net/specs/openid-connect-core-1_0.html. [Accessed:
27-Jan-2019].

[27] D. Hardt, “The OAuth 2.0 authorization framework,” IETF. 2012. [Online].

Available: https://tools.ietf.org/pdf/rfc6749.pdf. [Accessed: 06-Dec-2018].

[28] The SPIFFE authors, “SPIFFE – Secure Production Identity Framework for

Everyone.” [Online]. Available: https://spiffe.io/spiffe/. [Accessed:
29-Jan-2019].

[29] The Istio Team, “Introducing Istio,” Istio. [Online]. Available:

https://istio.io/blog/2017/0.1-announcement/. [Accessed: 06-Dec-2018].

[30] F. Lardinois, “The Istio service mesh hits version 1.0,” TechCrunch,

31-Jul-2018. [Online]. Available:
http://social.techcrunch.com/2018/07/31/the-open-source-istio-service-mesh-for-

92

https://www.gartner.com/doc/3894101/magic-quadrant-hyperconverged-infrastructure
https://www.gartner.com/doc/3894101/magic-quadrant-hyperconverged-infrastructure
http://paperpile.com/b/eZiDa9/UBcy
http://paperpile.com/b/eZiDa9/EbIc
http://paperpile.com/b/eZiDa9/EbIc
http://paperpile.com/b/eZiDa9/EbIc
http://paperpile.com/b/eZiDa9/kRny
http://paperpile.com/b/eZiDa9/kRny
https://doi.org/10.1145/359657.359659
http://paperpile.com/b/eZiDa9/NpoH
http://paperpile.com/b/eZiDa9/NpoH
http://paperpile.com/b/eZiDa9/SxLC
http://paperpile.com/b/eZiDa9/SxLC
http://paperpile.com/b/eZiDa9/SxLC
http://paperpile.com/b/eZiDa9/SxLC
https://doi.org/10.1109/35.312841
http://paperpile.com/b/eZiDa9/2gzO
http://paperpile.com/b/eZiDa9/2gzO
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
http://paperpile.com/b/eZiDa9/2gzO
http://paperpile.com/b/eZiDa9/T4eM
http://paperpile.com/b/eZiDa9/T4eM
http://paperpile.com/b/eZiDa9/T4eM
http://paperpile.com/b/eZiDa9/T4eM
https://cloud.google.com/compute/docs/instances/verifying-instance-identity
http://paperpile.com/b/eZiDa9/T4eM
http://paperpile.com/b/eZiDa9/T4eM
http://paperpile.com/b/eZiDa9/7YmS
http://paperpile.com/b/eZiDa9/7YmS
https://openid.net/specs/openid-connect-core-1_0.html
http://paperpile.com/b/eZiDa9/7YmS
http://paperpile.com/b/eZiDa9/7YmS
http://paperpile.com/b/eZiDa9/lOZF
http://paperpile.com/b/eZiDa9/BFqi
http://paperpile.com/b/eZiDa9/BFqi
https://tools.ietf.org/pdf/rfc6749.pdf
http://paperpile.com/b/eZiDa9/fTSX
http://paperpile.com/b/eZiDa9/BFqi
http://paperpile.com/b/eZiDa9/BFqi
http://paperpile.com/b/eZiDa9/BFqi
http://paperpile.com/b/eZiDa9/fTSX
http://paperpile.com/b/eZiDa9/fTSX
http://paperpile.com/b/eZiDa9/fTSX
https://istio.io/blog/2017/0.1-announcement/
http://paperpile.com/b/eZiDa9/fTSX
http://paperpile.com/b/eZiDa9/e8il
http://paperpile.com/b/eZiDa9/e8il
http://paperpile.com/b/eZiDa9/e8il
http://paperpile.com/b/eZiDa9/e8il
http://social.techcrunch.com/2018/07/31/the-open-source-istio-service-mesh-for-microservices-hits-version-1-0/

microservices-hits-version-1-0/. [Accessed: 06-Dec-2018].

[31] O. Gould, “spiffe support · Issue #1570 · linkerd/linkerd,” GitHub. [Online].

Available: https://github.com/linkerd/linkerd/issues/1570. [Accessed:
29-Jan-2019].

[32] Kubernetes - Container Identity Working Group, “ Container Identity Working

Group proposal,” Google Docs. [Online]. Available:
https://docs.google.com/document/d/1bCK-1_Zy2WfsrMBJkdaV72d2hidaxZBh
S5YQHAgscPI/edit. [Accessed: 22-Feb-2019].

[33] E. Hammer-Lahav, “The OAuth 1.0 Protocol,” Apr. 2010. [Online]. Available:

https://tools.ietf.org/pdf/rfc5849.pdf. [Accessed: 26-Dec-2018].

[34] M. Jones, B. Campbell, J. Bradley and W. Denniss, “OAuth 2.0 Token

Binding,” Oct. 2018. [Online]. Available:
https://tools.ietf.org/pdf/draft-ietf-oauth-token-binding-08.pdf. [Accessed:
26-Dec-2018].

[35] B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt, “OAuth 2.0 Mutual

TLS Client Authentication and Certificate Bound Access Tokens,” OAuth
Working Group, 2018. [Online]. Available:
https://tools.ietf.org/id/draft-ietf-oauth-mtls-07.html. [Accessed: 26-Dec-2018].

[36] Keycloak community and Redhat, Inc., “Keycloak 4.0.0.Final.” Redhat.

[Online]. Available:
https://www.keycloak.org/docs/4.0/release_notes/index.html. [Accessed:
26-Dec-2018].

[37] M. Schwartz, "Support OAuth MTLS Client Authentication and Certificate

Bound Access Tokens · Issue #946 · GluuFederation/oxAuth", GitHub, 2018.
[Online]. Available: https://github.com/GluuFederation/oxAuth/issues/946.
[Accessed: 26-Dec-2018].

[38] D. Jack & V. O. Tom, “OAuth 2.0 Mutual TLS and Certificate Bound Access

Tokens in IBM API Connect v5.0.8+,” developer. ibm.com, 28-Sep-2018.
[Online]. Available:
https://developer.ibm.com/apiconnect/2018/09/28/oauth-2-0-mutual-tls-certificat
e-bound-access-tokens-ibm-api-connect-v5-0-8/. [Accessed: 26-Dec-2018].

[39] F. Carbone, “How to Enable Open Banking Dynamic Client Registration with

Ping Identity.” [Online]. Available:
https://www.pingidentity.com/en/company/blog/posts/2018/enable-open-bankin
g-dynamic-client-registration-with-ping-identity.html. [Accessed: 26-Dec-2018].

[40] WSO2 Inc.,“Mutual TLS for OAuth Clients - Identity Server 5.5.0 - WSO2

93

http://social.techcrunch.com/2018/07/31/the-open-source-istio-service-mesh-for-microservices-hits-version-1-0/
http://paperpile.com/b/eZiDa9/e8il
http://paperpile.com/b/eZiDa9/S3du
http://paperpile.com/b/eZiDa9/S3du
http://paperpile.com/b/eZiDa9/S3du
http://paperpile.com/b/eZiDa9/S3du
https://github.com/linkerd/linkerd/issues/1570
http://paperpile.com/b/eZiDa9/S3du
http://paperpile.com/b/eZiDa9/S3du
http://paperpile.com/b/eZiDa9/UJNq
http://paperpile.com/b/eZiDa9/UJNq
http://paperpile.com/b/eZiDa9/UJNq
http://paperpile.com/b/eZiDa9/UJNq
https://docs.google.com/document/d/1bCK-1_Zy2WfsrMBJkdaV72d2hidaxZBhS5YQHAgscPI/edit
https://docs.google.com/document/d/1bCK-1_Zy2WfsrMBJkdaV72d2hidaxZBhS5YQHAgscPI/edit
http://paperpile.com/b/eZiDa9/UJNq
http://paperpile.com/b/eZiDa9/dKlw
http://paperpile.com/b/eZiDa9/fTSX
https://tools.ietf.org/pdf/rfc5849.pdf
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/Y5Hv
http://paperpile.com/b/eZiDa9/Y5Hv
http://paperpile.com/b/eZiDa9/jNrs
https://tools.ietf.org/pdf/draft-ietf-oauth-token-binding-08.pdf
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/72oI
http://paperpile.com/b/eZiDa9/72oI
http://paperpile.com/b/eZiDa9/72oI
http://paperpile.com/b/eZiDa9/72oI
http://paperpile.com/b/eZiDa9/72oI
http://paperpile.com/b/eZiDa9/jNrs
https://tools.ietf.org/id/draft-ietf-oauth-mtls-07.html
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/jNrs
https://www.keycloak.org/docs/4.0/release_notes/index.html
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/jNrs
https://github.com/GluuFederation/oxAuth/issues/946
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/jNrs
http://paperpile.com/b/eZiDa9/dMCT
http://paperpile.com/b/eZiDa9/dMCT
http://paperpile.com/b/eZiDa9/dMCT
http://paperpile.com/b/eZiDa9/dMCT
http://paperpile.com/b/eZiDa9/dMCT
http://paperpile.com/b/eZiDa9/vluc
http://paperpile.com/b/eZiDa9/vluc
https://www.pingidentity.com/en/company/blog/posts/2018/enable-open-banking-dynamic-client-registration-with-ping-identity.html
https://www.pingidentity.com/en/company/blog/posts/2018/enable-open-banking-dynamic-client-registration-with-ping-identity.html
http://paperpile.com/b/eZiDa9/vluc
http://paperpile.com/b/eZiDa9/fh2C

Documentation.” [Online]. Available:
https://docs.wso2.com/display/IS550/Mutual+TLS+for+OAuth+Clients.
[Accessed: 26-Dec-2018].

[41] A. Cser, “XACML is dead,” Forrester, 07-May-2013. [Online]. Available:

https://go.forrester.com/blogs/13-05-07-xacml_is_dead/. [Accessed:
17-Feb-2019].

[42] Spiffe community, “spiffe/java-spiffe,” GitHub. [Online]. Available:

https://github.com/spiffe/java-spiffe. [Accessed: 24-Feb-2019].

[43] P. Jayawardhana, “Dvaara,” GitHub. [Online]. Available:

https://github.com/Dvaara. [Accessed: 23-Feb-2019].

[44] P. Jayawardhana, “SPIFFE based KeyStore/TrustStore and OAuth2.0 with
WSO2 IS Authorization Server,” GitHub. [Online]. Available:
https://github.com/Dvaara/demonstration. [Accessed: 23-Feb-2019].

[45] A. Jessup, "Document the registration API · Issue #41 · spiffe/spiffe.io",
GitHub, 2019. [Online]. Available: https://github.com/spiffe/spiffe.io/issues/41.
[Accessed: 23- Feb- 2019]. [Accessed: 23-Feb-2019].

94

http://paperpile.com/b/eZiDa9/fh2C
https://docs.wso2.com/display/IS550/Mutual+TLS+for+OAuth+Clients
http://paperpile.com/b/eZiDa9/fh2C
http://paperpile.com/b/eZiDa9/fh2C
http://paperpile.com/b/eZiDa9/IkwG
http://paperpile.com/b/eZiDa9/IkwG
http://paperpile.com/b/eZiDa9/IkwG
https://go.forrester.com/blogs/13-05-07-xacml_is_dead/
http://paperpile.com/b/eZiDa9/IkwG
http://paperpile.com/b/eZiDa9/IkwG
http://paperpile.com/b/eZiDa9/vpkq
http://paperpile.com/b/eZiDa9/vpkq
http://paperpile.com/b/eZiDa9/vpkq
https://github.com/spiffe/java-spiffe
http://paperpile.com/b/eZiDa9/vpkq
http://paperpile.com/b/eZiDa9/8CWE
http://paperpile.com/b/eZiDa9/8CWE
http://paperpile.com/b/eZiDa9/8CWE
https://github.com/Dvaara
http://paperpile.com/b/eZiDa9/8CWE

APPENDIX

1. Sample XACML Policy
● Anyone who is trying to access the resource ‘MonitoringSystem’ should be

authorized under this policy.

● ‘Any’ action of the resource is permitted if the below conditions are met.

○ Organization ID is either WSO2 or Yenlo

○ Nationality LK or EU

○ Work-effort is on Predictions or DetailedView

○ Current time is before 4 pm of the day in +5:00 timezone.

<Policy PolicyId="urn:curtiss:ba:taa:taa-1.1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overri
des">
 <Description>Enterprise Business Authorization</Description>
 <Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">MonitoringSystem</AttributeValue>
 <AttributeDesignator MustBePresent="true"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
AttributeId="urn:curtiss:names:tc:xacml:1.0:resource:Topics"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Rule Effect="Permit">
 <Description />
 <Target>
 <Actions>
 <Action>
 <ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">Any</AttributeValue>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply type="AtLeastMemberOf"
functionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of">
 <Apply functionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
 <AttributeValue

95

DataType="http://www.w3.org/2001/XMLSchema#string">WSO2</AttributeValue>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">Yenlo</AttributeValue>
 </Apply>
 <AttributeDesignator
AttributeId="http://schemas.tscp.org/2012-03/claims/OrganizationID"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </Apply>
 <Apply type="AtLeastMemberOf"
functionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of">
 <Apply functionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">LK</AttributeValue>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">EU</AttributeValue>
 </Apply>
 <AttributeDesignator
AttributeId="http://schemas.tscp.org/2012-03/claims/Nationality"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </Apply>
 <Apply type="AtLeastMemberOf"
functionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of">
 <Apply functionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">DetailedView</AttributeValue>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">Predictions</AttributeValue>
 </Apply>
 <AttributeDesignator
AttributeId="http://schemas.tscp.org/2012-03/claims/Work-Effort"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </Apply>
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
 <AttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:environment"
DataType="http://www.w3.org/2001/XMLSchema#time" MustBePresent="true" />
 </Apply>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">16:00:00+05:00</AttributeValue>
 </Apply>
 <Apply type="AndFunction"
functionId="urn:oasis:names:tc:xacml:1.0:function:and" />
 </Condition>
 </Rule>
</Policy>

96

2. Sample OPA policy
This below policy in OPA defines the same policy define in XACML previously.

package xacml

input = {
user = {"name": "alice",
"organization": "WSO2",
"nationality": "LK",
"work_effort": "Predictions"},
resource = {"MonitoringSystem": true},
action = {"name": "read"}
time =
}

permit {
 # Check that resource has a "MonitoringSystem" entry
 input.resource["MonitoringSystem"]

 # Check that organization is one of the options (underscore implements "any")
 org_options = ["WSO2", "Yenlo"]
 input.user.organization = org_options[_]

 # Check that nationality is one of the options (underscore implements "any")
 nationality_options = ["LK", "EU"]
 input.user.nationality = nationality_options[_]

 # Check that work_effort is one of the options (underscore implements "any")
 work_options = ["DetailedView", "Predictions"]
 input.user.work_effort = work_options[_]
 #Check the time condition
 time.now_ns() <= 16:00:00+05:00
}

97

3. Sample SPIFFE SVID X.509 certificate

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 10608244402538346926 (0x93380e1447d2f9ae)
 Signature Algorithm: ecdsa-with-SHA512
 Issuer: C=US, O=SPIFFE
 Validity
 Not Before: May 13 19:33:47 2018 GMT
 Not After : May 12 19:33:47 2023 GMT
 Subject: C=US, O=SPIFFE
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (384 bit)
 pub:
 04:5a:30:7e:9d:21:92:c4:86:22:ce:76:fc:e3:1b:
 b9:58:60:d9:8f:cd:27:2f:b5:b5:73:7c:df:e3:c5:
 a1:cb:49:9a:ed:8e:e6:08:12:b3:7d:09:2b:80:38:
 2e:23:88:f4:67:ed:3f:b4:31:ff:af:c8:2d:3a:d2:
 cb:ac:8a:6e:33:05:87:a1:ee:2f:6d:50:45:b5:ed:
 6f:8f:a5:ed:e9:67:84:f2:55:f0:70:2b:cb:b3:f9:
 9c:9a:f3:ea:54:af:63
 ASN1 OID: secp384r1
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 87:A5:F3:57:A2:F0:35:AC:C0:F8:64:C4:54:E7:6E:D3:BA:39:C8:E8
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Alternative Name:
 URI:spiffe://local
 Signature Algorithm: ecdsa-with-SHA512
 30:64:02:30:13:83:1e:d7:7a:8c:0b:d8:ba:16:4c:74:87:6e:
 b2:d3:d4:19:21:bb:91:a8:0f:69:b8:b8:3d:01:e7:80:03:2a:
 39:b4:1c:d1:97:56:0b:d0:a3:44:a7:4d:95:29:26:09:02:30:
 5d:78:9b:ea:8c:9f:70:5b:9e:4e:1a:3d:49:43:00:c5:0f:b9:
 16:78:40:7a:a0:c9:70:3d:b2:3f:e6:11:18:dd:ac:c9:8b:5e:
 88:d2:e3:75:25:26:13:49:61:92:a9:67
-----BEGIN CERTIFICATE-----
MIIBzDCCAVOgAwIBAgIJAJM4DhRH0vmuMAoGCCqGSM49BAMEMB4xC
zAJBgNVBAYT

98

AlVTMQ8wDQYDVQQKDAZTUElGRkUwHhcNMTgwNTEzMTkzMzQ3Whc
NMjMwNTEyMTkz
MzQ3WjAeMQswCQYDVQQGEwJVUzEPMA0GA1UECgwGU1BJRkZFMHY
wEAYHKoZIzj0C
AQYFK4EEACIDYgAEWjB+nSGSxIYiznb84xu5WGDZj80nL7W1c3zf48Why0
ma7Y7m
CBKzfQkrgDguI4j0Z+0/tDH/r8gtOtLLrIpuMwWHoe4vbVBFte1vj6Xt6WeE8lX
w
cCvLs/mcmvPqVK9jo10wWzAdBgNVHQ4EFgQUh6XzV6LwNazA+GTEVOdu
07o5yOgw
DwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwGQYDVR
0RBBIwEIYOc3Bp
ZmZlOi8vbG9jYWwwCgYIKoZIzj0EAwQDZwAwZAIwE4Me13qMC9i6Fkx0h
26y09QZ
IbuRqA9puLg9AeeAAyo5tBzRl1YL0KNEp02VKSYJAjBdeJvqjJ9wW55OGj1J
QwDF
D7kWeEB6oMlwPbI/5hEY3azJi16I0uN1JSYTSWGSqWc=
-----END CERTIFICATE-----

99

