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Abstract

Job Shop Scheduling Problem (JSSP) is a non-deterministic, polynomial-time (NP) hard
combinatorial optimization problem. It is one of the most common problems in manufacturing
due to its widespread application and the usability across the manufacturing industry. Due
to the vast solution space the JSSP problem deals with, it is impossible to apply brute force
search techniques to obtain an optimal solution. Indeed, it is not possible to obtain an optimal
solution when the number of jobs and the machines increase. Numerous researches have been
carried out studying many approaches to solve this problem. In this research, Genetic Algo-
rithm (GA) which is another widely used nonlinear optimization technique has been used to
propose an algorithm. A novel chromosome representation (indirect) with an encoding based
on time is introduced in this research. The proposed solution is capable of handling multiple
disruptions which are new job arrivals, sudden machine breakdown and unplanned machine
maintenance. The proposed algorithm is tested against benchmark problems in Static JSSP
and some developed scenarios to simulate Dynamic JSSP conditions. The results show that
the proposed algorithm generates near optimal schedules for Static JSSP. This algorithm can
be used as a planning tool by the planners. It is possible to simulate almost all the real-life
scenarios using this algorithms and schedules can be generated satisfying the required condi-
tions. The algorithm can be developed further by employing a local search algorithm which
produced more precious, optimal schedules.

Keywords: Dynamic Job Shop Scheduling Problem, Genetic Algorithm, Disrup-
tions in Job Shops
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Chapter 1

Introduction

Job Shop Scheduling Problem (JSSP) is a nson-deterministic, polynomial-time
(NP) hard combinatorial optimization problem which is one of the widely studied prob-
lems in manufacturing engineering, due to the strong relevance to the manufacturing
industry. As a result of the various complex requirements in the industry, solving the
scheduling problems incorporating all the real-life scenarios become extremely impor-
tant.

The classical version of the problem, also known as the Static Job Shop Scheduling
Problem (JSSP) does not consider requirements faced by the manufacturing industry,
as it does not consider disruptions such as new job arrivals, machine breakdown etc.
Therefore, Dynamic JSSP which takes such disruptions into consideration become one
of the widely used approaches nowadays. In this research the objective was to study
the Dynamic JSSP.

Chapter 2 is the Literature review where prior studies on JSSP has been discussed.
Both Static and Dynamic problem has been included in detail with techniques, methods
and findings in this chapter.

Chapter 3 elaborates on the Problem definition; First part of the chapter is where
the problem has been identified with the requirements or the expectations regarding the
solution is discussed. The second part of the chapter discusses the Methodology where
the, designing of the Genetic Algorithm and Optimization Algorithm are brought into
light.

Implementation details of the proposed algorithm as outlined in the Chapter 3 and
other related details are elaborated in Chapter 4.

In Chapter 5, obtained test results are presented and then an analysis of the results
has been carried out. It includes a simulation of a problems based on the problem
definition as well. Performance of the Algorithm also has been extensively analyzed
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in this chapter.
Chapter 6 is the conclusion of the findings and suggestions for areas for future

studies.
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Chapter 2

Literature Review

Prior readings related to solving the Job Shop Scheduling Problem (JSSP) include
in this chapter. The JSSP is two fold. One is Static JSSP and the other is Dynamic
JSSP. In the first section of the literature review, literature on Static JSSP is discussed.
The rest is devoted to discuss the literature on Dynamic JSSP.

2.1 Job Shop Scheduling Problem (JSSP)

With increasing demand for manufacturing facilities, it is quite important to plan
the resource allocations for operations so that the demanded constraints such as dead-
lines are met and the finish products are released to the clients with no delays. In this
process, effective utilization of resources such as machines and labor while lowering
the total cost of production is a tedious work. The modern needs of manufacturing,
attributes the increasing complexity of the problem.

The classic JSSP (also known as Static JSSP) deals with assigning set of jobs with
pre-determined order of operations per job to set of machines to minimize the time
taken to finish the jobs. Therefore, JSSP can be considered as one of the most complex
and combinatorial optimization problems in manufacturing systems, mathematically
well known as non-deterministic polynomial hard (NP-hard) combinatorial optimiza-
tion problem [1].

In classical JSSP, n jobs Ji ( i = 1, 2, ... n ) have to be processed on m machines
Mi ( i = 1, 2, ... m ). Some assumptions are associated with the problem. Assumptions
are as follow:

1. Only one operation can be performed by a machine at a given time (no parallel
operations on a machine)
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2. no preemption also known as splitting is allowed (terminating an ongoing oper-
ation on a machine with the intention of resuming it later)

3. only one operation of a given job can be performed at a given time (no parallel
processing operations per job).

A well structured notation to denote JSSP is discussed in paper [2]. It uses three
symbols separated by | to denote the problem. α | β | γ . α is the machine environ-
ment, job characteristics are denoted by β and γ represents the optimal criterion.

Few methods have been developed to derive an optimal solution for JSSP, where
the number of machines are limited. However, there is no optimal method exists to
solve this problem when the number of machines increase. Lot of work has been
carried out in this area in the literature, addressing many aspects. But due to the com-
plexity of the problem no single method proves capable of solving vast majority of
JSSP with a guaranteed optimally. Therefore, the methods are problem dependent and
should be carefully chosen based on the nature of the JSSP that is to be solved. The
problem consists with multi variables, therefore the outcome depends on combination
of values. As the problem expands, there is no way to get an optimal answer. The
interest lies on finding a schedule which satisfies the given constraints.

2.1.1 Varieties of JSSP

Apart from the classical Job Shop Scheduling Problem (JSSP), there are few vari-
ants of the problem. This section briefs those problems.

Flow Shop Scheduling Problem Flow Shop Scheduling is a special case of JSSP.
The restriction is in the machine order. Each job is processed in similar machine or-
der[3]. For an example if there are n jobs, all n jobs are processed in m machines
in the same order, mi where i = 1,2,3... m .

Open Shop Scheduling Problem Open Shop Scheduling is one of the special cases
of JSSP, the main difference is that there is no pre-determined order in which the
operations of a job should be performed. Each machine performs a different operation.
Only one operation per job can be processed at a time and no multiple operations are
allowed on a machine at a given time [4].

Flexible Job Shop Scheduling Problem Also know as Job Shop Scheduling with
multi-purpose machines. The Flexible Job Shop Problem is a generalization of the
classical job shop scheduling problem which allows an operation to be processed by
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any machine from a given set. These kinds of problems arise in Flexible Manufactur-
ing Systems. The problem is to assign each operation to a machine and to order the
operations on the machines, such that the maximal completion time (makespan) of all
operations is minimized. [5]

2.2 Methods for Solving Static JSSP

Static Job Shop Scheduling Problem (Static JSSP) is a problem where the environ-
ment is fixed throughout the time span of the problem considered. Once the problem
has been formulated it is assumed that the parameters of the environment will not be
changed. In this approach disturbances to the current schedule will not be considered
or assume negligible though such situation is highly uncommon in real-life situations.
But this is the kind of JSSP studies first by simplifying the problem based on series of
assumptions.

Static Job Shop Scheduling Problem is widely and commonly addressed. As lot of
work has already been carried out in this area, there are plenty of methods covering
varieties of JSSP using many different approaches. The methods can be classified
based on the approach uses to solve the problem. In this sub section, some widely used
approaches are discussed briefly.

2.2.1 Heuristic Approach

Static JSSP has been initially dealt by Johnson in 1954 and he has developed a
heuristic method [6] to get the optimal process schedule. The method which is termed
as two stage production schedules or three stage production schedules with many num-
ber of jobs could handle up to three machines. This approach can be used in the sim-
plest form of the Static JSSP to solve 2 machines or 3 machines, for n jobs problem.
Following the above-mentioned method, some methods are designed for m machines
and n jobs, for example this method [7] suggests a heuristic method based on collec-
tion of heuristic methods to get a near optimal solution.

In this paper [8] four methods have been tested for the performance for 3 ma-
chines 6 jobs problem. Integer linear programming, linear programming with answers
rounded to integers, a heuristic algorithm based on Johnson’s method and Monte Carlo
approach are tested. Johnson approximation is used to apply the two-machine method
of Johnson to three-machine problem. The Monte Carlo approach is the most promis-
ing approach however there is no indication that the best solution obtained is the opti-
mal.
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Priority rule based scheduling is also another approach in heuristics. [4]. That is
arranging the schedule following some pre-defined rules. Indeed, this is the widely
used approach in early days. The sequencing of jobs is carried out as per the set rules.
For example, widely used sequencing rule, Shortest Processing Time (SPT) rule is a
priority sequencing rule which specifies that the job requiring the shortest processing
time is the next job to be processed. Likewise there are rules such as First Come, First
Served (FCFS), Earliest Due Date (EDD), Critical Ratio (CR) etc.[9] One rule or set
of collection of rules can be used to solve the problem.

Hyper-heuristic method termed NELLI-GP [10] has been developed for solving
JSSP based on rule based dispatching rules. The initial problem is divided into sub-
sets of problems and then use heuristics to solve each sub-set problems. Using this
method, it was able to achieve superior results on known benchmark problems in the
literature.

Using methods based on Branch and Bound was also used to solve JSSP in early
days. Heuristics developed based on Branch and Bound method seems effective [11].
However, when the number of machines and/or jobs increases this heuristic method
has failed to obtain solutions in the given time span.

2.2.2 Neighborhood Search Method

Heuristic methods mentioned in the earlier section, are promising and popular early
days. However, as the complexity increases heuristic method alone cannot produce sat-
isfying solutions. Therefore, new ways of solving JSSP emerges. One of such methods
are neighborhood search methods. Neighborhood search methods are popular among
the solutions for JSSP . Shifting bottleneck method, Tabu search, Simulated anneal-
ing and Genetic algorithms are some widely used techniques related to neighborhood
search method.

2.2.3 Shifting Bottleneck

Earlier priority rule based dispatching methods are used to obtain schedules for
JSSP. It is a local optimization method. In order to improve the scheduling efficiency
Shifting Bottleneck method has been proposed [12]. In this method, one machine at
a time is sequenced. Then one-machine scheduling problem has been solved for each
machine not yet sequenced. The result is used to rank the machines and to sequence
the machine with highest rank. Once a machine is ranked, the already ranked machine
sequences are re-considered and re-optimized. That solved the local optimization issue
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increasing the efficiency of the schedules.

2.2.4 Simulated Annealing

The Simulated Annealing algorithm is commonly used for solving combinatorial
optimization problems. In this research [13], decomposition based optimization algo-
rithm is proposed for solving large JSSP. Constraint Propagation theory has been used
initially to derive the orientation of a portion of disjunctive arcs. Then use the sim-
ulated annealing algorithm to find a decomposition policy. Simultaneously, each sub
problem is successively solved using the simulated annealing algorithm which in re-
turn leads to a solution of the initial JSSP. Method has been tested against benchmark
JSSP and results are promising.

2.2.5 Tabu Search

Tabu Search is a global iterative optimization method. It begins in the same way
as ordinary local search or neighborhood search. It progresses iteratively from one
solution to another until the chosen termination criterion is met. Tabu Search uses
adaptive memory, as a result the search behavior is comparatively flexible. Compared
to other neighborhood search methods, the Tabu Search approach keeps tracks the
visited solutions in a short-term memory. As a result, this method effectively gets rid
of the local optimal solutions.

When Tabu Search is applied to solve the job shop scheduling problem, it was
observed that this method is much more efficient than shifting bottle neck procedure
and simulated annealing implementations [14]. Dynamic Tabu Search method has used
in this study [15].

2.2.6 Artificial Intelligence

Different approaches were taken to solve JSSP based on Artificial Intelligence (AI)
related methods. The advantages of AI methods are using the collected prior knowl-
edge on decision making process. Those methods are capable of developing more
complex problems specific heuristics using the prior knowledge which is a step for-
ward when compared to other heuristic methods. However, these AI methods are dif-
ficult to organize as they are highly problem specific. The AI system should be trained
first to solve a specific problem, and vast number of data is required for that purpose.
When there is a new problem then again, the AI system should be trained to solve the

7



new problem. Due to this limitation, in the literature AI based methods are combined
with other methods to solve JSSP.

2.2.7 Expert Systems

Expert systems are also known as Knowledge-base Systems as well. It contains
a knowledge-base and an inference engine. As the name suggests the inference en-
gine uses the gathered knowledge to get into conclusions. The process is similar to
how humans come to consultations using their prior experience and knowledge on that
specific problem and the domain. The specialty is, Expert systems can handle more
knowledge in a higher processing speed than a human can do due to the advancement
of the processing power of computers.

ISIS [16] is the first major expert system specifically designed for solving JSSP
using three level, hierarchical constrained-directed search approach. The method uses
five constraint categories out of three are main constraint categories as mentioned be-
low.

• Organizational Goals – Determines measures of how the organization should
perform. For example, due dates, Work-In-Process (WIP), Resource Level etc.
• Physical – Specify characteristics which limit functionality, for an example there

is a maximum limit for the work-piece that can be formed in a CNC machine.
Work-piece larger than the maximum specification cannot be formed in that spe-
cific CNC machine due to the workbench limitation on its dimensions.
• Casual – Define what conditions must be satisfied before initiating an opera-

tion. For an example, precedence of operations of the job, resource requirement,
machine availability etc.
• Preference – This can be identified as a resource selection criterion, for an ex-

ample when selecting a machine for an operation if there are more than one
machine available, then operator might prefer to select one machine over the
other considering a parameter (if the machine are not identical) such as quality
of the output etc.
• Availability – the availability of a resource for the time-period of the operation.

2.2.8 Distributed AI – Agents

When solving large-complex problems, single AI agents are less effective due to
their limited knowledge and limited capacity on problem solving. Instead of having a
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single AI agent (or an expert system or a knowledge-base) to solve the problem, in this
approach several AI agents are employed.

Single agent in the networks acts as an expert in a specific domain. DPSN in-
terconnects single intelligent agents which are considered as problem solving nodes
which can solve a part of the problem related to the domain of their knowledge and the
solution is communicated to the other sub-problems.

Compared to heuristic methods discussed earlier, Expert systems are less popu-
lar for solving JSSP as organizing problem specific knowledge-bases and maintaining
them is quite challenging.

2.2.9 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a concept of processing data inspired by the
way biological nervous system works. Neurons are the building blocks of the human
nervous system. In ANN this system is simulated using processing power of comput-
ers. Neural Networks are capable of identifying patterns based on set of data, which
are complex for humans to notice or even for another computer system.

Another remarkable feature of ANN is the ability to learn. Apart from those, self-
organization, real time operation and fault tolerance can be identified as key advan-
tages of using ANN. However, using ANN is not comparatively yielding better results
against conventional methods. The parallel processing is an advantage in this specific
method. Further studies are required in this filed [17].

Swarm Intelligence Swarm Intelligence (SI) is the collective behavior of decentral-
ized, self-organized systems inspired by the behaviors of the insects in the nature.

Particle Swarm Algorithm Particle Swarm Optimization (PSO) algorithm is a method
for optimizing continuous nonlinear functions using random optimization approach
based on SI. The inspirations come from a motion of flock of birds searching for food
[18]. In this method, each particle remembers the best position of the particles and
shares the information between particles. The optimization is achieved through coop-
eration and competition between the particles of the population.

This algorithm is tested against the benchmark JSSP and it was able to achieve op-
timal results [19]. Due to the fact that there is no guarantee on global convergence in
traditional PSO algorithms, much improved version of the concept is developed in the
literature as well. A hybrid PSO algorithm has also been developed. PSO algorithm
has been combined with Giffler and Thompson algorithm (known as G&T Algorithm)
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[20] to avoid local optimal solutions stagnation. To avoid the local optimal solutions,
an improved version of PSO has been developed [21]. The performance of this algo-
rithm is compared with the results of the benchmark problems solved using Genetic
Algorithm and tabu search. The results are inline with the results obtained using the
other methods.

Hybrid algorithm [1] is developed combining PSO algorithm and the Artificial Im-
mune System algorithm. It was possible to obtain comparable results for benchmark
problem and obtained optimal solutions for some benchmark problems. Therefore,
PSO (highly effective when used with other algorithms) can be identified as a reliable
approach to solve the static JSSP.

Ant Colony Optimization Ant Colony optimization is a stochastic optimization al-
gorithm, a model derived from the study of artificial ant colonies and inspired by the
studies of the behavior of the real ants[22].

Ant Colony Optimization has been used to solve the JSSP in few studies. If an
isolated ant is considered, it moves according to a local, greedy heuristic. It gener-
ates local optimal moves, the tour followed by the ant consists of good and bad parts.
Therefore, instead of an isolated ant, now the presence of many ants is considered si-
multaneously. Each ant contributes to a part of the tour distributions. Good parts are
followed by many while the bad parts are followed by few. Due to that effect the pro-
cess converges to a good solution without getting stagnated in local optimal solutions
[23]. However the Ant system easily deals with combinatorial optimization problems
defined on non-symmetric graphs.

The time-complexity of Ant systems increase exponentially when the population
size increases [24]. That is the main disadvantage for Ant System approach. In the
same study, it is suggested that Genetic Algorithm approach will be more suitable for
optimization problems that can be defined by symmetric graphs.

Bee Colony Optimization Bee Colony algorithm is inspired by the behavior of the
bees, same as the Ant Colony algorithms discussed earlier. In the literature, attempts
were made to use this approach to solve JSSP. Results are in line with the Ant Colony
approach but less effective than the Tabu Search methods [25].

2.2.10 Evolutionary Algorithms

Evolutionary Algorithms are inspired by the Davinchi’s biological evolution.
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Genetic Algorithms (GA) Relatively more work has been carried on applying ge-
netic algorithm to solve static JSSP in the literature. Genetic algorithm is first used in
this study to solve JSSP [26].

In the following study [27], it has been studied on how to apply the conventional
genetic algorithms through representation, evaluation and survival to solve the JSSP.
Results obtained for benchmark problems in this study shows that the results are as
good as the results obtained using branch and bound method.

GA method is a general optimization method. Therefore in order to be effective
the method should be altered to align with the problem. It has been studied that the
effectiveness increases when problem related operators are introduced. It has been
proposed a multi-step crossover (MSX) method which uses neighborhood structure and
a distance in the problem space [27]. It attributes promising performance development
over the new operator.

However even though the scope of the problem can be addressed with Genetic
Algorithm method, GA are not good at finding the global optimal solutions as it tends
to trap in local optimal, [28] as a result it is advantageous to couple GA with a local
search algorithm such as Tabu search, Simulated Annealing etc. Finally in the local
search the final solution depends on the initial solution.

Hybrid algorithms are developed [29] to avoid premature convergence, in other
words getting trapped in the local optima. In this research Single Genetic Algorithm
and Parallel Genetic Algorithm are used. Instead of applying GA operations to a sin-
gle initial population, in this method various sub-populations are used simultaneously,
these sub populations evolve independently, hence it is called Parallel Genetic Algo-
rithm. Having independently evolving populations on genetic Algorithm also known
as the island model is studied [30] and proven effective to avoid premature conver-
gence. This approach was tested on five benchmark JSSP problems and achieved good
performances. It was observed that processing time is limited, this method achieved
effective superior solutions.

Often ANN and GA combined used to solve problems, same approach is taken in
this research, developing a hybrid model of ANN and GA [31].

Compared to other approaches, in the literature it seems like GA is one of the
methods extensively used to solve JSSP.
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2.3 Method for Solving Dynamic JSSP

Unlike the Static Job Shop Scheduling Problem (JSSP), Dynamic JSSP handles un-
certainties in scheduling which is very common in real life scenarios. Although JSSP
has received great attention in the literature, the usefulness of the classical scheduling
is limited in the real world. Many studies in the literature were trying to solve the clas-
sical JSSP which is discussed in the earlier sub section under solving Static JSSP. In
order to fill the gaps between classical scheduling and the practical use of the schedul-
ing, the dynamic behavior of the factors which influence the manufacturing processes
should be considered. Otherwise the schedule formulated for the Static JSSP becomes
useless once a single change occurs in the ongoing manufacturing process.

Dynamic behavior of the factors related to manufacturing change as information
related to the JSSP changes time to time. This can be identified as a disruption to the
ongoing schedule. In static JSSP, these disruptions are ignored, based on the assump-
tions. But in the real world, possibility of occurring such events are high and cannot
be simply ignored or compensated based on assumptions.

The parameters involve can be deterministic or stochastic. If the change of param-
eters can be assumed those parameters can be considered deterministic. For example,
arrival of new jobs might roughly follows poison distribution[32]. On the other hand,
if a parameter is stochastic, it is not possible to assume the degree of the change of the
specific parameter. Sudden machine breakdown can be taken as an example.

These disruptions can be identified into two categories.[33]
Data Uncertainties – Processed data plays a major role in the scheduling process,

for an example the time required to complete an operation in a machine. Operation
time is merely an estimation based on prior experience and/or data. However the time
required can be vary from the estimated time. The time depends on the condition of the
machine and may be unseen complexity could be occurred which are not encountered
at the estimation process.

Real-time Events – This category can be further divided into two sub categories.

• Disruptions during Execution – Disruptions can be occurred during an exe-
cution of an operation such as haphazard machine breakdown. The operations
could be partially completed at that time.
• Unpredictable Events – Unpredictable events might occur as the schedule pro-

cesses. These are not haphazard but influence the schedule, for an example ar-
rival of new jobs in a continues and stochastic pattern can be considered. In such
situations, most of the time the operations that are currently being processed in a
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machine might not be disturbed, but the active schedule needs to be re-evaluated
to check how the new requirements can be accommodated.

Again, in the real world scenario, most of the time not a single disruption occurs.
Most of the time many disruptions can be encountered simultaneously. Problems as-
sociated with more than one change in the scheduling are known as Multi-Constraint
Dynamic JSSP. Therefore, to be effective, multiple disruptions could be handled at
once, understanding the effect of those disruptions to the ongoing schedule. Some-
times disruptions are linked, one disruption can trigger one or more other disruptions.
For an example, shortage of machine operators due to high work load leads to the
reduction of the efficiency hence increase operation times than estimated values.

As noted when discussing the Dynamic JSSP, the classical static JSSP Solutions
become useless as there is no mechanism to respond to the developments/ changes/
requests. There is a gap between the schedule derived from the theories of the clas-
sical problem and the practical usage [34]. The paper discussed the use of real-time
information in scheduling.

Uncertainties can be categorized into three categories [35].
Completely Unknown – Highly unpredictable events which are completely un-

known till such an event takes place.
Suspicions about the future – These kinds of events are quite predictable with the

experience.
Known Uncertainties – These are the events where some information is available

at the time of scheduling. Such events can be predicted. For example, machine break-
down can be considered. With available information machine breakdown might be
predicated.

Events which are completely unknown and suspicious about the future are hard to
accommodate in the scheduling process as they make the Dynamic JSSP much more
complex and demand complex computation.

However, it is not practical to consider all the disturbances at the scheduling phase
as it is not possible to consider all the uncertainties that could occur. It is required to
understand the impact of the disruptions and then priorities their effect on meeting the
objectives of Dynamic JSSP.

Typical objectives of Dynamic JSSP can be categorized into three main categories
[33].

• The Shop Efficiency – Among the several objectives relate to job shop effi-
ciency, completion time based and tardiness based objectives are commonly
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used. Completion time is the time taken to complete a job from the time it is
arrived the shop. Tardiness on the other hand, is the penalty on delayed jobs.
When the completion time is greater than the due date a penalty can be imposed.
Maximizing flow time, maximizing the utilization of machines, minimizing ma-
chine idle time, minimizing the total waiting period can be identified as other
objectives related to the shop efficiency.
• Robustness – Due to data uncertainties in dynamic JSSP, robustness measures

the sensitivity of the schedule quality to disturbances. A schedule is robust if it’s
performance deviates in a small amount under disruptions. [36]
• Stability – Once a disruption takes place the current schedule needs to be resched-

uled to accommodate the change. Stability is a measurement that measure the
deviation from the original schedule to the revised schedule.

It is required to understand the trade-off between the objectives and select one or
few objectives to carry out the scheduling effectively.

In the literature, Dynamic JSSP has been defined using following categories. Com-
pletely Reactive Scheduling – This method uses local scheduling most of the time
using priority rule based methods. This method is not suitable as the global optimally
is not considered.

Robust Pro-active Scheduling – In this method disruptions are predicted, and those
disruptions are accommodated in the schedule. As a result, even though a disruption
occurs it does not affect the schedule as the effect is minimal. The greatest challenge in
this method is to determine the disruptions. Widely used in accommodating machine
breakdowns. Policies, Frameworks are developed [37] to encounter this issue.

Predictive-reactive schedule – This is the most common strategy used in the liter-
ature. It accommodates revising the schedule in a presence of a real-time disruption.
However as rescheduling takes place each time when a disruption occurs leads to bad
performance. Therefore, the focus is to generate robust predictive–reactive sched-
ules that minimize the effect of reschedule on performances. A typical solution is to
reschedule considering the schedule efficiency and the schedule stability simultane-
ously. [16]

Finally, once a disruption occurs the schedule should be revised. As discussed
earlier if the schedule is robust enough no modification will be required. However due
to the nature of the real-life events modifications might be required. In such situations
it is important to understand when-to-reschedule and how-to-reschedule.

When-To-Reschedule – In the literature three main methods can be identified to
solve this problem.
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Periodic Scheduling – In this method schedules are periodically generated taking
information available at that specific instance. The advantage of this method is decom-
position of the Dynamic JSSP into series of Static JSSP and solve it using classical
Static JSSP solving methods. Once the schedule is generated for the period there will
be no revision till the next periodical schedule generation. The time intervals can be
fixed or variable.

Event Driven Scheduling – In this method real-life disruption triggers the reschedul-
ing. For example, once a new job has been arrived the existing schedule is revised
with a newly scheduled schedule using the information available at that instance. A
slight variance of this method is known as adaptive scheduling in which the reschedul-
ing takes place after predetermined amount of deviations from the original schedule
is observed. For example, if series of events cause the schedule deviation of 2 days
compared to the original schedule, that triggers rescheduling. [x11]

Hybrid Scheduling – A combination of Periodic and Event Driven method can
be identified as the hybrid method. As an example, the period scheduling is carried
out in specific time intervals. However, if a real-life event occurs which is considered
‘critical’ then a rescheduling takes place immediately. [need10]

Hybrid and the Period methods come under rolling horizon policy. However most
of the dynamic scheduling use Event Driven approach.

How-To-Reschedule – Determining how to revise or update the schedules at a
reschedule, also knowns as rescheduling strategies. Two methods are schedule repair
and complete reschedule. In schedule repair, the schedule is locally adjusted to counter
the change. On the other hand, the schedule will be completely revised in complete
rescheduling method. Complete rescheduling is an optimal way to handle the change.
However, the new schedule might me completely different to the original schedule.
Such situations might contribute shop floor nervousness and/or additional costs due to
drastically changes. [need12]

It is possible to find some of the literature for methods of solving Dynamic JSSP.
However due to the complexity of real world events the nature of the events, one prob-
lem is different from one another.

2.3.1 Heuristics

Heuristic methods are widely discussed in the literature to handle rescheduling due
to the simplicity. Heuristic approach, priority rule based scheduling can be used to
find a solution for dynamic JSSP in a short amount of time as it does less calculations
relatively. [need11]
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In a research where the performance of schedule repair using right-shift heuristic
and complete rescheduling using branch and bound method. The result shows that the
right-shift heuristics outperformed the other approaches. However, it is known fact
that the right shifting method increases the makespan as it moves the current schedule
forward by the amount of the disruption. Therefore, even though the method is less
complex, it is not the right way to address the dynamic scheduling.

In order to overcome the issue in the above method, it is required to focus on a
complete reschedule while matching the new schedule to the preplanned schedule as
well. Such a method to match up the schedule[29] was developed. The term Matchup
Schedule Algorithm (MUSA) uses integer programming approach and alternatively
priority rule approach as well. MUSA assumes that the processing and setup times
can vary continuously, and an optimal matching schedule can be found. However, in
real-life scenarios it is not true always. However, the match up schedule strategy is
effective in terms of schedule quality, computation time and schedule stability.

Studies has carried out to study various factors, as an example the queueing time
of the remaining operations has been considered in the following study even though
the main objective is to meet due dates per jobs. Consideration of queue time achieved
significant improvement over the methods that consider meting due date as the only
criterion.

In complete reactive scheduling, variety of dispatching rules have been used to deal
with real-time events. Simulations [32] were carried out to assess the performance of
various dispatching rules under different dynamic and stochastic conditions. Variety
of dispatching rules were examined against common performance criteria discussed in
the literature, such as minimum and maximum flow time, mean tardiness, maximum
tardiness and variance of flow time, etc. The study shows that no rule performs well
in all the situations. Therefore, it can be concluded that according to the nature of the
problem, rules that should be selected vary.

Therefore heuristic approach to solve dynamic JSSP cannot be considered a promis-
ing approach.

2.3.2 Metaheuristics

In the literature, it is possible to find out meta-heuristic methods used to solve dy-
namic JSSP successfully. Meta-heuristics are high-level heuristics which helps heuris-
tics to escape from local optimal. Meta-heuristic methods such as Tabu search, simu-
lated annealing, genetic algorithms and varieties of these methods are widely used in
static JSSP but little work has been carried out in dynamic JSSP.
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2.3.3 Simulated annealing and Tabu search

Simulated annealing method has been used in iterative repair schedule method, the
inspiration was to avoid cycles and local optima. Another study [30] on uncertainty
of operation times, Tabu search is used to escape from the local optima. Both studies
show the importance of using meta-heuristics to avoid getting trapped in local optimal
solutions.

2.3.4 Genetic Algorithms (GA)

Genetic Algorithms (GA) is a meta-heuristic approach to solve the Dynamic JSSP.
This method is the most widely used approach to solve Dynamic JSSP in the literature
next to heuristic methods such as methods based on dispatching rules.

Solving Dynamic JSSP considering arrival of jobs has been studied [38] in this
study. Both deterministic and stochastic approaches are considered. The stochastic
approach, tested under various manufacturing environments with respect to machine
workload imbalances and tight due dates. In this study GA used to solve Static JSSP
has been slightly modified to accommodate the dynamic nature. Two approaches of
rescheduling which are repair schedule and complete reschedule has been studies. In
complete reschedule a new JSSP has been generated and the rescheduled from the
scratch. However, in repair schedule approach, the last population of the earlier sched-
ule was taken with few modifications as the initial population of the new problem. This
is a special feature in GA observed in the following study by Bierwirth. [39]. However
in the same study[34] they have incorporated G&T Algorithm to further modify the
adapted population. Repair schedule approach is performing better than the complete
reschedule according to the results of this study.

Same result has obtained in this study[41]. Order-Based operators combined with
the G&T repair method (hence the method called OBGT) performed well in large
problems. The study suggested future studies to implement parallel version of OBGT
using Island Model.

Another gift [39] has focused on alternate job routings, unreliable machine (ma-
chine breakdown) and multiple scheduling criterion. The method is tested on various
job shop conditions such as alternate number of suitable resources to process a job op-
eration, tightness of the due dates and inclusion of machine breakdowns/ repairs. The
method was tested against some selected dispatching rules such as SPT, FIFO, LIFO
and random dispatching rule. Results indicated that the performance of the processed
method is superior than the dispatching rules heuristics [41].
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In fact, Genetic Algorithms are widely used in the literature due to promising per-
formance factor. Genetic algorithms based on Bottleneck Resource is introduced using
Intelligent Agents for the dynamic JSSP. In the research [5] to perform bottleneck local
search on the selective Chromosome s of the population an AI has been used, termed
as Bottleneck Local Search Agent (BLSA).

Methods have been developed to solve dynamic JSSP combining meta-heuristic ap-
proaches. Such as using heuristic rules to formulate the initial population[44-SPECIAL].
In this research Genetic Algorithm has been combined with tabu-search [40] to solve
a multi-objective Dynamic JSSP. The results are evaluated against the schedule effi-
ciency and the schedule stability. When job arrival rate goes high the method shows
some performance drop in terms of schedule efficiency, but it has performed well in
other circumstances.

2.3.5 Artificial Intelligence (AI)

Study has carried out introducing Artificial Intelligence (AI) based method to solve
dynamic JSSP. Multiple AI agent based [41]method has been introduced. The method
considers different manufacturing environment conditions such as loading factor, stochas-
tic machine breakdown and job arrivals. The task assignment mechanism is dis-
tributed and executed through the communication network for inter-cell scheduling
and a knowledge-based system for cell-level scheduling.

Many studies found in the literature have engaged AI based methods to improve the
performances of the main method. AI based method is used in conjunction with GA
[42] hence termed as Genetic Algorithm-based Machine Learning (GBML). GBML is
an automated learning process to discover condition action rules which are IF-THEN
clauses to perform desired actions. In this method GA generates and develops con-
dition action rules. Using reward mechanism, the strength of successful condition
action rules are increased and the strength of unsuccessful condition action rules are
decreased. GA try to improve the overall performance by replacing unsuccessful rules
with successful rules. Learning is achieved generating condition action rules that max-
imize the amount of rewards.

2.3.6 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) has been used to solve Dynamic JSSP. Ap-
proaches such as Hopfield type ANN has been used in the literature [43]. ANN adopts
learning based on the prior data. However as the ANN should be trained per each set
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up and it takes time and should available data to perform the training. It is a drawback
of ANN.

Most of the time ANN are used with combination of another algorithm. Genetic
Algorithm-based Machine Learning (VNS) [44] and ANN is used to develop an effec-
tive method to solved multi objective Dynamic JSSP [45].

2.4 Chapter Summary

In this chapter, the study on the literature related to Dynamic JSSP has been dis-
cussed. The different methods of solving static and dynamic JSSP has been studied
extensively.
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Chapter 3

Methodology

Chapter defines the problem and discusses the methodology. A brief overview
of Genetic Algorithms (GA) related to Job Shop Scheduling Problem (JSSP) is also
mentioned in the beginning of this chapter. Afterwards the design of the algorithm is
discussed in detail.

3.1 Problem Definition

As described in the previous chapter, deviations can be expected in a job shop
for the ongoing schedule due to various reasons, termed as disruptions. Due to the
complex nature of modern businesses, dynamic scheduling plays an important role.
Unlike in the classic JSSP, in Dynamic JSSP, the focus is to address the dynamic nature
of the Job Shop and the orders (jobs). Deviations could occur due to number of unseen
reasons. The status of the Job Shop changes with the time. Once such deviation occurs,
a new schedule has to be generated to meet the set expectations, specially parameters
like order fulfillment dates (due dates). The objective is to manage several disruptions
affecting a schedule simultaneously.

The initial problem is based on n number of jobs and m number of machines in the
manufacturing environment which operates as a Job Shop.

Assumptions are as follows;

1. Each job contains pre-defined, ordered set of operations which needs to be car-
ried out in order.

2. A machine can only perform one specific task at any given time. Machines are
not multi-tasking (run more than an operation at once) nor diversified to handle
variety of jobs.
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3. No preemption is allowed when scheduling. (it is not possible to pause an on-
going operation on a machine and then resume and/or assign another operation
till the current operation on the machine is completed).

4. Time required for a given operations is known before hand.

Scheduling is carried out based on the above assumptions while following Disrup-
tions are considered.

1. Stochastic Job Arrival – Job Shop should be able to accept new jobs as those
jobs arrive. A level of priority has been assigned to each and every job. When
scheduling, critical jobs are given a high priority level.

2. Stochastic Machine Break-down – Machine breakdowns are not deterministic
but stochastic. A break-down could occur at any given time. Once such incident
occurs, a requirement arises to re-evaluate the schedule with the available new
information.

3. Unplanned Machine Maintenance – Machines might experience unpredictable
maintenance requirements. Those are not planned maintenance activities. Such
incidents, if possible, should be dealt in a manner in which the machine main-
tenance would not disrupt the currently processing operation. However, the
machine should be maintained once the current operation finishes. In such a
situation, a new schedule is required to be generated if the machine is kept un-
available for a longer time. In other words the algorithm should be able to handle
future maintenance of machines which are in operation (such information is not
available at the time of generating the initial schedule).

4. Other Disruptions – Apart from the above-mentioned forms of disruptions,
there can be number of other factors that demand a schedule change. Change
in operational time due to a newly discovered fault of a machine, skilled opera-
tor shortage due to a sudden unavailability of operators etc. are some common
situations to note. However, these disruptions can be modeled as one of the
disruptions (1,2 and 3) mentioned above.

When an aforementioned disruption occurs, the schedule needs to be evaluated
again incorporating the information of the new change. Thus, a new schedule sub-
sequently generated and followed-up until another rescheduling incident takes place.
A time instance of demanding a rescheduling when a disruption occur is termed as a
Rescheduling Point (RP) on the schedule. The threshold of the RP needs to be decided
based on the control required.
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3.1.1 Disruption Demanding A Schedule Change

Stochastic Job Arrival While the current schedule progresses, new jobs can be ar-
rived at the facility, making the current schedule no longer valid as it doesn’t facilitate
the new jobs. Once there is a new order in the Job Shop, a new schedule has to be
generated considering the parameters of the new job. For example if the criticalness
of the newly arrived job is higher, it should be given higher priority among jobs that
are already being executed. As long as the new jobs satisfy the basic requirements and
assumptions of the JSSP, such jobs can be included in the new schedule.

In most of the practical scenarios, new jobs cannot be started directly as and when
it is received to the facility, due to other resource constraints such as material handling,
resource allocation etc. Allocating required raw material is one of good examples.
Normally manufacturing facilities do not store required material for all of the future
needs and when required such materials will be ordered from the supplier. Therefore,
it should be possible to schedule operations considering a future start date/time. The
usual practice is to terminate the schedule when the new operation of the new job is
initiating. However, it might be beneficial to check if there is an added advantage
of terminating the current schedule before the new operation physically initiated. Of
course, the new schedule should be generated including the newly arrived job and its
information. Often such simulations could help the planners to decide which schedule
to follow. Should the current schedule be terminated with immediate effect or in a
future date/time.

For an example if the current time of the schedule is T1 and due to resource con-
straints on raw materials, the earliest projected starting date of the newly arrived jobs
could be T2, then it should be possible to simulate and check if it worths terminating
the current schedule at time unit T3 which is in between time T1 and T2. If there is an
overall effect of terminating the current schedule on T3, the planner then can make the
decision of terminating the current schedule early.

Unplanned Machine Break-Down Machine breakdown is an unpredictable disrup-
tion on ongoing schedules demanding a generation of a new schedule. At the time of
the machine breakdown, an ongoing operation could be getting partially completed on
that machine. Therefore, the current operation should be continued once the machine
is repaired (as per one of the assumptions made above). New operations on this ma-
chine can only be scheduled after the ongoing operation is finished, once the repair
work is finished.

However, in many practical scenarios, it is beneficial to complete the operations of
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the current schedule up to some extend without those operations getting rescheduled.
For an example, consider an instance where the required material for the next opera-
tion of the machine has already been received to the facility. Once the machine breaks
down at the current operation, the option is to generate a new schedule taking the ma-
chine repair time into consideration. Given that the related job (the next job for which
raw material has already received) is re-allocated in the new schedule in an different
date, there might be a cost involved in handling material which is an unnecessary ad-
ditional cost if it is decided to adopt the new scheduled time for the operation. In such
a situation, without an argument, it is beneficial to generate the new schedule keep-
ing the next operation fixed. When scheduling, the next operation is ignored and the
other operations are scheduled accordingly. The time required to complete the fixed
operation should be allocated on the respective machine as only one operation can be
executed at a given time.

This requirement leads to the concept of fixed operations in the schedule. This is
one of the features that can be used in the planning and simulation process. Because
some operations cannot be scheduled as required. Such operations should be fixed
and ignored by the scheduler. However no other operation should be allocated to that
machine in that time period. Therefore such operations cannot be simply ignored but
need provisions to handle such requirements in the algorithm.

Unplanned Machine Maintenance In some situations, even though a machine in
the current schedule requires a fix, it can afford to wait for few time units or at least
till the current operation is completed. In such situations immediate termination of the
schedule might not be required. If an immediate termination is demanded, then it falls
to the scenario explained above, unplanned machine break-down.

Therefore, it should be possible to simulate the future outage of a machine and
generate a new schedule to facilitate the future outage of the machine.

This is similar to consider planned machine break-down at the initial schedule gen-
eration stage. However, the current ongoing schedule is to be terminated at a time
point where at the same time most probably the other operations are being partially
completed on the other machines. For those machines, the problem can be modeled
as an unplanned machine break-down of zero duration. The new schedule should be
generated considering current operation completion amount in such operations as well.
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3.1.2 Conditions to Satisfy When Scheduling

The generated schedule should be a feasible schedule for all machines. Apart from
being feasible, the schedule should meet set expectations. Such expectations are dis-
cussed in detail in this section.

Meeting Due Dates : Completing the jobs before the set deadlines is one of the
expectations and responsibilities of a planner. Therefore, generating schedule should
be optimized considering minimization of makespan which is minimizing the time
required to complete jobs. However, when tight due dates are imposed, it might not
be possible to meet all of the due dates for all the jobs. In such scenarios, it should be
possible to minimize the total tardiness (decrease the lateness of jobs), also known as
minimization of total tardiness. However, minimization of makespan for critical jobs
is required, in the presence of tight due dates minimization of total tardiness of critical
jobs can be considered.

Schedule Efficiency and Productivity : Generated schedules should be efficient.
The first objective is to meet due dates and then the focus should be increasing the
schedule efficiency. In order to increase the schedule efficiency, it is required to elimi-
nate machine idle time in between the operations of the machines. In return that helps
reducing the makespan of the jobs as well. However, this becomes quite challenging
when disruptions occur often demanding schedule changes eventually. The objective
is to maximize the utilization of a machine.

3.1.3 Requirements to Satisfy

According to the discussion in the above section, an algorithm is to be developed
to address the following requirements in summary:

1. Dynamic JSSP to solve for n jobs, m machines problem. Operations are se-
quences and the number of the operations per job can be vary.

2. The solution should be capable of handling stochastically arriving new jobs.
3. The solution should be capable of handling unplanned machine break-down and

unplanned machine maintenance in an ongoing schedule. Once a machine break-
down occurs no preemption is allowed on operations.

4. The solution needs to handle future machine unavailability at the scheduling
stage and starting time fixed operations so that such operations kept unchanged
when a new schedule is being generated. Such feature would be highly useful in
simulations.
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5. Finally, considering all the requirements and constraints, schedules should be
feasible schedules meeting the set expectations.

3.2 Methodology

The problem define in the previous section should be dealt with the proposed algo-
rithm. In this section the methodology for developing the algorithm is discussed.

The proposed method is based on Genetic Algorithms (GA). The purpose of using
GA was noted in the literature survey such that GA is the heavily used meta-heuristic
method to solve these kind of optimization problems. It is considered robust over
other approaches to solve Job Shop Scheduling Problem (JSSP) and thus used in this
research as well. However the main reason for the selection of GA for the implemen-
tation is the reliability of this method over the number of complex scenarios. Not de-
pending on the problem formation, this approach is stable when generating solutions.
This algorithm is capable of searching the global solution space effectively. However,
it was found in the literature survey that there has not been a significant amount of
work carried out to solve Dynamic JSSP using GA covering the scenarios mentioned
in the problem definition.

GA by design is capable of exploring global solutions for a given optimization
problem, specially the solution space contains nearly infinitely large, feasible com-
binations. However, it has two main drawbacks, as GA in elementary form is not
competitive among other meta-heuristics. GA is good at exploring solutions in the
global solution space, but it is not capable of identifying local optimal solutions within
the identified subset of global solutions space. GA needs several iterations to identify
such local optimal solutions and there is a high possibility of missing the optimal solu-
tion as well [46]. The other issue is, once such local optimum has been found there is a
tendency of getting trapped in that local optimum without exploring the other solutions
in the solution space.

Therefore, to make it more effective, it is required to associate the GA with a local
search algorithm to explore local optimal solutions within the feasible local solutions
space. A way of getting rid of local optima is also required. In this research, GA is
used to explore the solutions space and a local search algorithm to optimize the results
making the resultant output is much effective than using the GA in isolation.
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3.2.1 GA related to JSSP

GAis an algorithm inspired by the process of ”Natural Selection” necessary for
evolution or the ”Survival of the fittest” [47]. The intelligent use of random search is
used in GA to generate high quality solutions for optimization problems. Randomized,
exploitation of historical information is used in GA to direct the search into a better
performance space.

GA simulates the survival of the fittest through consecutive generation of individ-
uals who are the points in a search space and are also feasible solutions to the prob-
lem. Then the population of individuals get subjected to a process of evolution. Each
individual (Chromosome in genetic analogy) is coded as a finite length vector of com-
ponents or variables (Gene in genetic analogy). The individuals or solutions are then
given a fitness score based on the ability to compete where the GA aims to produce
offspring better than parents through selective breeding of highly fit parents. As off-
spring is produced, individuals in the population die and replaced by new solutions to
keep the population at a static size. This ensures the survival of the fittest. The better
generations thrive while the generations with least fit die out.

Eventually, when the population reaches to a point where offspring is not notice-
ably different from the previous generations, the algorithm itself is said to have con-
verged to a set of solutions to the problem at hand.

The solutions are mapped to a structure called Chromosome. The genetic oper-
ations are applied to the Chromosomes and evolve them. In common approaches to
solve JSSP using GA, operation order based Chromosome structure has been used
in the literature. This is a widely-used and also efficient method of representing the
Chromosome for Static JSSP (also known as the classic JSSP).

3.2.2 How GA works

This section is a brief introduction of Genetic Algorithms (GA).
The first step of the algorithm is to generate a population. This is randomly gen-

erated. That ensures a wide variety set of solutions to start with. Those solutions are
ranked against a fitness criteria, so that the fitness of each member of the generation is
known.

After the random generation of the Population, the Algorithm evolves through 3
operations;

1. Selection
2. Crossover
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3. Mutation

Selection - During each successive generation, a portion of the existing population is
selected to generate a new generation where individuals are selected based on their fit-
ness values. Certain selection methods rate the fitness of each solution to find the best
solutions (individuals) while some rate only a random sample of the population, since
the former is time-consuming. The fitness function is defined over the genetic repre-
sentation and measures the quality of the represented solution. The fitness function is
always problem dependent where in some problems, it is hard or even impossible to
define the fitness expression. In JSSP context, most of the studies, a simulation has
been carried out to identify overlapping of machine allocations and to calculate the
fitness value which is most of the time the makespan, tardiness etc.

Crossover - Crossover operator distinguishes GA from other optimization techniques.
Crossover is a genetic operator used to vary the programming of a Chromosome or
Chromosomes from one generation to the next. Since it recombines portions of good
individuals, the process is likely to create better offspring. There are several methods
for selection of the Chromosome s.

a) Single Point All data beyond a selected crossover point is swapped
b) Two Point Data between the selected crossover points is swapped
c) Uniform and Half Uniform Fixed mixing ratio between two parents is used.

Unlike single-point and two-point crossover, the uniform crossover enables the
parent Chromosomes to contribute the gene level rather than the segment level
enabling more complete search of a design space.

Ex: If the mixing ratio is 0.5, the offspring has approximately half of the genes
from first parent and the other half from second parent while cross over points can be
randomly chosen.

In the half uniform crossover scheme (HUX), exactly half of the non-matching bits
are swapped [48].

Mutation - To maintain diversity within the population and inhibit premature con-
vergence, concept of mutation is used in GA. A randomly decided portion of the new
individuals will have some of their bits flipped. However, the probability of flipping
should be set low. Unless otherwise the search will turn into a primitive random search.

Among the types of mutation are;
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a) Bit string mutation - Bit strings are flipped at random positions.
b) Flip bit - Inverting the bits of a chosen Chromosome .
c) Boundary - Chromosome is randomly replaced with the lower or upper bound.
d) Uniform - This operator replaces the value of the chosen gene with a uniform

random value selected between the user-specified upper and lower bounds for
that gene.

e) Non-uniform - The probability that amount of mutation will go to 0 with the
next generation is increased by using non-uniform mutation operator. It keeps
the population from stagnating in the early stages of the evolution. It tunes solu-
tion in later stages of evolution.

After Mutation operations, the selection process makes sure a new generation is
selected and it is called the off-spring. The process repeats until there is no significant
improvements of the generations. This is a brief explanation of how GA works.

3.3 Design of the Algorithm

The development of the proposed algorithm is elaborated in this section. It’s broken
down to basic steps of a GA which are;

1. Chromosome representation
2. Generating initial population
3. Crossover and mutation operations
4. Selection of the new generation
5. Termination criteria

3.3.1 Chromosome Representation - A novel approach

The first step in GA is the representation of the Chromosome. A Chromosome
is a feasible solution to the problem. The Gene is the building-block of the chromo-
some. Genotype is the term used to describe the representation of the solution in the
algorithm.

Basically, there are two main methods of representing the genotype in GA. They
are Direct and Indirect representation[49]. As per the literature, however the direct
representation is the widely used approach to represent genotype based on machine
order. This method is faster as there is no encoding.

The research started with a direct representation and the genotype is coded accord-
ing to the operations for jobs. This is one of the common ways found in the literature.
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However, it is realized that use of this representation contributes lot of infeasible so-
lutions when it comes to disruptions handling in Dynamic JSSP. Lot of computation
power is required to identify infeasible solutions, therefore is it is not computationally
profitable. Due to the above fact, in this research, the indirect representation is used
with an encoding.

Each operation is associated with a starting time unit of the specific operation which
is referred to as Starting Time Unit (STU). Genetic operations such as crossover, mu-
tation is also being carried-out on this value. The objective is to identify the optimal
operation start time for each operation which directly leads to optimizing the entire
schedule. Whereas use of operation order is the most common approach which did not
work as expected in this problem. Use of such encoding was not found in the literature
therefore it is decided to check how this new representation performs. In fact this is a
novel concept introduces in this research.

The main reason of eliminating other representations and adopting a new encoding
based on time, is a point of importance in this study. As time being a major factor in
a schedule, the variable now can be used to optimize the schedule. Time plays a vital
role in schedules without an argument. However in Static JSSP, information on time is
not a necessity at the first place. Based on the duration of the operations starting time
units can be calculated. In contrast, in Dynamic JSSP, it is quite crucial as it deals with
time as an vital information.

On the other hand, this method helps elimination of generating infeasible sched-
ules. It saves a considerable computation time in contrast to other approaches which
generates infeasible solutions and then later correct them or discard them. In the Dy-
namic JSSP, there are lot of constraints such as machine outages, fixed operations etc.
On top of that it is required to maintain the operation order of the job. As a result,
the chances of getting infeasible schedules are higher. Therefore, generating solutions
and later correcting them is not an efficient method when Dynamic JSSP is considered.
This is one of the main reasons to develop an alternative method to manage the prob-
lem, introducing STU to the chromosome structure. Introduction of the STU increases
the efficiency of the algorithm by reducing generation of infeasible solutions to zero.

3.3.2 Generating Initial Population

Generating the initial population is the starting point of a GA. It is considered as
the first generation which is used to reproduce the next generation of the population.
Generating the initial population is a vital step as it evolves through the entire schedul-
ing process. In other words, the quality of the initial population affects the quality of
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the output of the entire process. Chromosome is a collection of Genes. A gene can be
mapped to an operation on a machine.

Since the population is a collection of Chromosomes, the objective is to generate
Chromosomes. An individual Chromosome in a population is termed as a ”Member”
of the population. There are plenty of techniques found in the literature in generating
a Chromosome.

Rule based techniques have been used throughout the literature for the same pur-
pose (discussed in Chapter 2). As already mentioned, Chromosomes are solutions,
feasible schedules and therefore generating a Chromosome can be considered as gen-
erating a schedule.

It is also important to figure out the kind of schedule required to be developed. In
order to maximize the randomness of the solutions, it is possible to generate schedules
randomly. The drawback of this method is many infeasible schedules is getting gener-
ated. Therefore, this method is not a good approach on JSSP, especially in Dynamic
JSSP unless a mechanism is in place to eliminate the generation of infeasible solutions.

Schedules can be divided into two main categories which are feasible and infea-
sible schedules. Feasible schedule has the correct operation job order in JSSP and
importantly there is no overlapping operations or machine resource allocations where
as in infeasible schedules, both can be contained[45]. Extra computation is required
to filter-out the infeasible solutions thereafter, which is not an efficient method of han-
dling the problem.

Active schedule means, there are no idle time and jobs which cannot be com-
pleted without delaying some operations. The interest lies on generating feasible-active
schedules. In order to maintain the feasibility a special routine has been introduced in
this algorithm.

Figure 3.1: Genearted Feasible Solutions

Figure: 3.1 shows generation of solutions in solutions space. In the left figure
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it shows random generation of solutions, in that case only few solutions are feasible.
When solutions are generated using the controlled mechanism described afterwards,
all the solutions are feasible solutions in the solution space.

When generating the schedule, the algorithm iteratively creates Genes. Assigning
STU for a Gene is controlled in order to avoid getting infeasible schedules. When gen-
erating the STU of an operation, a routine first checks the next available STU related
to the job and it’s order of operations. The next available STU for the operation is set
as follow:

nextSTU = endtimeunito f thelastoperationo f the jobscheduled +1
Then the machine availability is checked against the above tentative STU. If the

machine is available for the entire duration of the operation, then it returns the tenta-
tive STU as the STU of the operation. If the machine is not available throughout the
duration of the operation then the end time unit of the event (as there can be already
assigned operations or planned machine maintenance or fixed STU operations) will be
assigned to the tentative STU and runs the machine availability check until an alloca-
tion is found. Due to this process, the assigned STU is not violating the operation order
of the job and there will be no machine allocation overlaps.

Figure 3.2: Assigning Operations to Machines

In Figure: 3.2 , it shows qualified operation assignments on machines. If opera-
tions of job A and Bare already assigned to a machine as in the figure, it is not possible
to assign another job, F to the machine.

Following relationship should always be true. Otherwise it is not possible to add
an operation of a job to a machine. Where STUx is the Starting Time Unit (STU) of
operation x.
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STUA +duration(A)< STUF

AND

STUF +duration(F)< STUB

1. Random: A job is randomly picked and get the next operation to be scheduled as
the next operation to assigned to the Gene of the Chromosome. This the method
used more frequently when generating initial solutions, as it introduces plenty of
variations compared to other methods.

2. Weighted Shortest Processing Time: Duration of the operation is being con-
sidered with the priority.

3. Weighted Eeriest Due Date: Operations of the job which needs to be completed
earlier will be considered with the job’s priority.

Figure 3.3: Continuity of STU on the timeline

Dis-Continuity of Starting Time Unit (STU) Even though it seems like STU a ran-
dom, continuous value, it is not. In a given operation (machine), STU cannot take all
the continues values along the time line. Some values are not part of the specific so-
lutions. Hence, the ultimate purpose is to find out possible values for STU per given
schedule. If an infeasible value is generated for a STU of an operations, it automati-
cally adjusted to reflect the qualified STU for the solution. The concept is illustrated
in Figure: 3.3
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3.3.3 Fitness Calculation

Once the initial population is ready, the next step is to rank them according to
their fitness values. Members of the population are ranked based on the fitness value.
The fitness function is directly related to the objectives which are attempted to be
optimized. For an example, if the objective is to minimize the total makespan for
all the jobs, then the members of the Chromosomes are ranked where the schedules
having lowest makespan is ranked as higher as it has the largest fitness among other
member Chromosomes. However, not every schedule performs in the same manner
and depends on the factors which are trying to be optimized.

Therefore, objectives are followed by different schedules to achieve their relevant
objective. A member of the population can be ranked higher for a fitness function
where the objective is to minimize the total makespan while the same Chromosome
can be ranked lower when using a fitness function with different objective.

Following are the optimization approaches considered in this study.

Minimum Makespan Makespan is the time required to complete a job, in this ap-
proach it is planning to minimize the time taken to complete all the jobs. Therefore,
the time required to complete each job is sum up and then taken the reciprocal of the
sum. That ensures the higher fitness for members having smaller total makespan. In
the equation, jn denotes the total makespan for nth job.

f itness =
1

∑
n
n=1 jn

Weighted Minimum Makespan Meeting the set completions dates per job is impor-
tant, meeting the due dates for higher prioritize jobs are crucial. In such situation, if
all jobs aren’t possible to schedule to meet due dates of the all the jobs, then it should
focus on scheduling jobs which are crucial. In such instance this method can be used
as it tries to schedule the operations considering the completion of highest prioritized
jobs first.p is the priority of the job.

f itness =
1

∑
n
n=1 p× jn

Weighted Minimum Tardiness In some situations, it is not possible to schedule
all the jobs within the given deadline. In such situations, it is required to complete
the critical jobs within the deadline and then try to reduce the other jobs overshoots
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(possible overrun after the deadline). Dn is the deadline for the nth job which is a fixed
amount. cn is the time required to complete the nth job.

f itness =
1

∑
n
n=1 Dn− cn

3.3.4 Crossover

Once the ranking has been carried out for the population the next step in the GA is
the reproduction of new members. The members of the population is ranked according
to the fitness and the mating is being carried out according to their position in the
ranking. The idea is to give a priority for the members having a higher fitness value
(higher rank). The objective is to propagate and improve the generations.

There are two steps in mating, one is selecting members out of the population. The
next step is performing the crossover and generate a new member. The real meaning of
the crossover operation is to introduce values in the other solutions to the new solution,
so that the suitability can be checked with the fitness function.

Selecting Parents In this approach, it is required to select high ranked members
more often and it helps passing of nearly optimized STU in those members to the new
generations. Tournament Selection (TS) method and Roulette Wheel Selection (RWS)
will be carried out to select parents as those methods select parents in a biased-random
manner.

Roulette Wheel Selection (RWS)

1. Select Regions of ranked population
2. Assign priorities to regions
3. Select a region with bias probability
4. Select members from the selected region randomly

Tournament Selection (TS)

1. Select n members randomly and form k teams.
2. Select the weakest and the strongest members from a team.
3. Based on the fitness values of those two members execute a bias random selec-

tion.
4. Eliminate the member based on the biased probability value from the selected

two members.
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5. Repeat this till m members are selected from each team.
6. Repeat the same for other teams
7. Form the new population from those selected members.

Crossover Process Once parent members have been selected, crossover is being car-
ried out. Crossover rate governs the rate of applying the crossover operation. Crossover
rate decides if it is required to perform the crossover. One member is treated as the
weak member and the other is considered as the strong member. The weak member’s
Chromosome is the base for the new member. If it decides to perform the crossover,
then the STU of the corresponding operation of the weak member is replaced by STU
of the strong member. This is illustrated in Figure: 3.4 . This process is being carried
out for each and every Gene in the Chromosome to produce the new member in the
new generation. This method of crossover is a slight variation of which is known in
the literature as Position Based Crossover (PBX) [50].

Again, the generated new member should be a feasible schedule as in the initial
population. There are two approaches, one is to check the value of the STU before
assigning the value to the gene, as it was carried out when generating the initial popu-
lation. The other approach is to adjust the schedule once the member is generated.

Figure 3.4: Crossover and Mutation process

The first approach is used in this instance (reason for this selection is described
under the mutation operation), check the value before assigning it to the Gene. The
same algorithm noted in the generation of the initial population is used here as well.
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3.3.5 Mutation

In the crossover operation values exist in other solutions are introduced. But in the
mutation operation new values can be introduced to the solutions. That is the main
purpose of the mutation operation. Introducing new values help the GA to explore the
other areas of the solution space and also get rid from the local optimal.

In this algorithm mutation rate governs the rate of mutation per Gene in the Chro-
mosome after the crossover. The value, STU is generated randomly and then the value
is checked against the feasibility of the schedule. If the value contributes to not fea-
sible schedule, then the values is altered, as in the crossover operation using the same
algorithm.

Figure 3.5: Crossover and Mutation

As described earlier, the values for STU represent the solutions in the solution
space. As shown in the Figure: 3.5 , even though the value of STU is inherited by a
parent, that value cannot be directly used in the schedule. Remember that the STU is
encoded and the value is related to the schedule. In some instances, the inherited value
cannot be directly used because that value is not in the related solution space. In that
case the related value for the STU should be calculated for the right schedule.

3.3.6 Natural Selection

The created new members are known as the off-spring. Before absorbing the new
members to the population, their fitness should be evaluated. This is carried out by the
same function discussed in the earlier section, calculating the fitness values. Once the
members of the offspring is evaluated against the fitness function, these members need
to be positioned according to the fitness values.
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The new generation should include not only new members but also the members
of the previous generation as well. The strategy used in this algorithm is to rank the
members of the previous generation and the members of the offspring and then select
out of those and create the new population.

To select the members for the new generation following methods has been em-
ployed. As same in the methods used in parent selection, TS and RWS methods have
been used for selecting new members for the new generation. The purpose is to intro-
duce the biased randomness over the selection.

3.4 Optimization

As noted Genetic Algorithms (GA) alone does not suffice and does not yield good
results. GA is good to explore the solution space though it is not good at finding the
local optimum, at least with an effective speed. Therefore, a separate algorithm is
required to get this work done.

The main objective is to optimize the generated solutions further. That algorithm
optimizes each Chromosome, once the crossover and the mutation process are com-
pleted before calculating the fitness value.

The local search algorithm employed in this model, eliminated machine idle time
to optimize the generated solution. The local search algorithm is not allowed to make
drastic changes other than adjusting the STU. Otherwise it might destroy the values
derived by the GA. More sophisticated searching algorithms, such as Tabu Search
could have been applied if new local solutions are expected.

In the local search used in this study, optimizes the schedule by removing idle time
in between operations (it considers machine outages and fixed time operations as well).

3.5 Dynamic JSSP

The previous section describes the development of the algorithm and the optimiza-
tion techniques used. In this section it is described how to use the developed algorithm
and techniques to manage the dynamic behavior of the JSSP. The Dynamic JSSP is
possible to convert to a Static JSSP and solve once a disruption occurs. However, the
converted problem is not efficient if a GA is not specially design to handle the problem.

This algorithm has added-features to deal with the historical operations which was
in the initial schedule. When a disruption occurs, the new problem is to be generated
along with the previous information on operations which are partially or completely
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executed. Such information is used by the algorithm to produce feasible effective
schedules.

Time based schedule Generation As described in the Chromosome representation
section, the small building block of the Chromosome is the Gene. Gene contains in-
formation on the starting time of the operation compared to conventional algorithms
based on GA. That helps to define starting time points of the operations along the
schedule. Hence the start of any operation is not relative, it is abstract. It is easy to
define the exact time the operation has executed in the history (for operation which
has already started). Other than the operations, it helps defining future and ongoing
machine break down on the schedule as well. Therefore, the algorithms refrains as-
signing operation on machines when there are outages on specific machines. Further
disregarding whether an operation has taken place or not, it is possible to define the
starting point of the future operation along the schedule.

Completion Factor Introduction of the operation starting point, Starting Time Unit
alone does not provide any advantage discussed in the last paragraph. The completion
factor to be associated as well. If an operation is nearly completed, as mentioned
earlier the starting time of the operation can be fixed. However, the Algorithm doesn’t
have information to identify if the operation is already taken place or not. That is why
the completion factor is required. It holds information on the degree of completion
of the operation. If an operation is already completed it is 100% and if it is partially
completed, the amount of completed amount can be noted. So that when scheduling
the Algorithm understand and calculated the remaining duration.

For an example if an operation says it is 20% completed and the total duration
of the operation is 5 time units, the algorithm allocates the resource to complete the
specific operation in 4 days. As 1 day of work has already being carried out on that
operation.

How these features and concepts individually useful in given disruptions modes are
discussed extensively in coming sections.

3.6 Disruptions

3.6.1 Arrival of new jobs

When new jobs arrive, the ongoing schedule could no longer be valid. A new
schedule has to be generated including the new operations. The new jobs have levels
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of priority and due dates to meet. Furthermore, in some situations the start time of the
first operation of the new job needs to be fixed. Because it is not possible to start a
job once it is received to the manufacturing facility, as discussed earlier. May be the
material required to carry out an operation takes time to receive from a supplier even
though the information of the job is received to the facility beforehand.

In such a situation it should be possible to generate a feasible schedule for the
future jobs. That helps the facility to get prepared to accept the new job and alter the
schedule effectively without waiting till the new job’s actual starting date. It is possible
to simulate and check the best solution and decide whether it is beneficial to wait till
the new jobs start date (where materials are expected to be received) or if it is beneficial
to terminate the ongoing schedule beforehand.

The Algorithm can handle new job arrivals. New information of the new jobs
has to be provided and it is required to alter the schedule to reflect operation that has
already been partially or completely executed. Partially completed operation should
be indicated by the amount of competition percentage and the time the operation has
actually started.

The Algorithm ignores the operation which are completed. Operations which are
completed partially are taken as fixed operations and the duration is calculated based
on the completed percentage of the operation.

Furthermore, it is possible to fix the start time of the first operation of the new job
or any other operation as required. The Algorithm ignore the fixed operations and start
scheduling other operations to meet the given objective.

3.6.2 Unplanned machine breakdown

The next disruption is identified as machine breakdown in a middle of an ongoing
schedule. When a machine fails without a warning there is no option other than delay-
ing the currently processing operation till the machine get fixed. In such a situation, a
new schedule is required to generate.

Information on duration of the machine unavailability (time required to fix the ma-
chine) and the current progress of the operations need to be provided. The algorithm
ignores already completed operations and fixed operations if there is any. Then cur-
rently processing operation is scheduled first before start planning other operations. As
it is possible to fix future operations, it is possible to use this algorithm and instruct the
algorithm to fix adjacent operation after the currently processing operation. Because
there can be instances like the material required to process the next operation is already
arrived at the facility before the machine breaks down.
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As this suddenly get out when it is fixed it is required to run the at least the oper-
ation where there are materials as planned. In such situations this Algorithm can be
effectively used as it is possible to fix operations.

3.6.3 Unplanned machine maintenance

If there is any machine maintenance required and if those information is available
at the time of Generating the schedule it is possible to provide those information to
the Algorithm. But there can be situations such requirements occur suddenly as the
schedule progresses. These incidents are not critical as unplanned machine breakdown.
The machine needs a maintenance before the next operation can be executed.

In such a situation if the time required to carry out the maintenance is not enough
as the next operation is schedule with a lesser gap, the schedule is required to be re-
evaluated with the newly discovered information. The only difference at this situation
compared to unplanned machine breakdown is, that there is no ongoing operations in
the particular machine. However, information on the duration of the maintenance of
the machine is required to provide. Apart from that if any operation needs to be fixed
such information can be provided as well.
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Chapter 4

Implementation

The basic design of the algorithm is discussed in the previous chapter. In this
chapter, the implementation of the designed algorithm is discussed.

4.1 Implementation Approach

The main algorithm consists of two sub algorithms. To perform the global search
Genetic Algorithms (GA) is employed. To optimize the local search, another algorithm
is used. It is identified as Local Search Optimization Algorithm (LSOA). Together
these algorithms perform the scheduling and the systems is termed as Scheduling En-
gine (SE).

Inputs to the system should be feed in text file format. The output is then written
to a text file. Both are in Comma-Separated Values (CSV) file type.

Python programming language (version 3.0) has been used to implement the al-
gorithm as it is a widely used and popular scripting language among the scientific
community. It is not as fast as other well known languages such as C or C++, but in
contrast it is easy to use. As a result Python has been chosen to implement the al-
gorithm. A visualizer has also been developed to visualize the output which is saved
as a Comma-Separated Values (CSV) file. It is developed using PHP programming
language. The visualizer helps understanding the generated schedule graphically.

The SE acts as the server which receives inputs and then carry out the scheduling
operation to solve the given problem. Then the output file can be fed to the visualizer
which generates an easy to understand graphic image of the output. Due to selected two
languages it is fairly easy to implement this program as a client – server architecture
program which can be used over the World Wide Web. SE needs high performance
computer as the algorithm uses more resources as the complexity increases. Due to
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the client-server architecture, it is possible to implement SE in a high performance
machine and access it using workstations/ personal computers.

4.2 Standards in the Implementation

The chromosome representation is one of the vital features in GA as it relates to the
phenotype and genotype representations as well. Genotype contains encoded data of
the schedule while Phenotype presents the actual solution to the problem which is the
schedule. The building block of the chromosome is the Gene and it is decided to use
indirect representation with an encoding using the start time of the operation, termed
as Starting Time Unit (STU).

Time Unit – The time unit used in the algorithm is a non-abstract continuous value.
It is a relative measurement of the time, it can be hours, days or even weeks as it suits
the problem. The unit needs to be defined as required. The STU concept is introduced
as the starting time unit of an operation. Together with the duration information, the
end time of the operation can be calculated.

4.3 Inputs to the Algorithm

Input to the Scheduling Engine (SE) should consists following information. For
the Static Job Shop Scheduling Problem (JSSP) item no. 1 and 2 would suffice. For
the Dynamic JSSP other items are required.

1. Operation sequence per job
2. Duration per operations
3. Information on machine unavailability
4. Historical information on the current schedule
5. Information on constraints

4.3.1 Operation Sequence per Job

Each job should have to have sequence of noninterchangeable set of operations.
The operations should be followed in order, sequentially. Number of operations can be
different from job to job. In the input file, operations are denoted by numbers. As per
the assumptions laid out in the previous sections. There is a one to one relationship
in operations to machines. Because only one operation can be carried out in a given
machine in a given time.
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4.3.2 Duration per operations

The operations described in the previous sections has a pre-determined duration.
That is a mandatory value per operation which should be included in the input file as
well.

4.3.3 Information on machine unavailability

This is not a mandatory information to solve the problem and can be skipped.
However this is a mandatory information if the algorithm should consider planned
machine maintenance or machine un-availability or fixed STU operations constraints.
This is handled as an array with a pre-defined format as follow.

Figure 4.1: Format of the Events

• Index 1 – Type of the event (noted in Table 4.1)
• Index 2 – Job number, 0 for machine outages
• Index 3 – Percentage of completion of the operation or the duration of an event
• Index 4 – Starting Time Unit of the operation or the event.

The input of a machine outage has been illustrated in the first figure of Figure: 4.2
. It translates as, machine breakdown at time unit 300 for machine 3. The duration is
100 and as this is a machine outage job should be 0.

Figure 4.2: Examples for defined Events

The second figure in Figure: 4.2 , illustrates an input of a partially completed
operation. It is the operation no. 4 of the job number 5. Type has been set as 70 as
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Table 4.1: Type codes

Code Type Related Events
50 Future machine outage (Job no and Completion perc. not required)
60 Historical information, 100% completed operations
70 Partially Completed Operations
80 Operations with fixed starting time

it is the corresponding type code for partially completed operations. 75% has been
completed so far and it needs to be started at 250th time unit in the new schedule.

4.3.4 Historical Information on the Current Schedule

It is required to provide historical information as part of the problem when a dis-
ruption occurs. Historical information includes, completion amounts of the operations
which are being executed at the moment of the disruptions. The amount of completion
is given in percentage (%) and the STU of the operation should be provided. It is not
required to provide the STU of the operation, if the operation is fully processed, then
completion amount is 100%.

4.3.5 Information on Constraints

To denote operations with Fixed Starting Units, then this feature can be used. There
are instance where the starting time an operation can be pre-defined. For example if
the raw-materials required for an operation might be arriving late to the facility.

In the algorithm, if it encounters a fixed starting time unit, then it checks the com-
pletion amount. If it is 0% then the algorithm identifies it as a new job and total
duration of the operation is used when planning.

In case the completion amount is greater than 0% but lesser than 100%, the algo-
rithm considers the operation as a partially executed operation with a fixed time unit.
The remaining duration for the operation is derived by calculating the original duration
against the remaining completion time.

• Original duration = to
• Amount of Completion = C
• Remaining duration = tr

tr = to×
(1−C)

100
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4.3.6 Graphically Visualization the Schedule

The output of the Scheduling Engine (SE) is a Comma-Separated Values (CSV)
file which is hard to understand by humans. Therefore the visualizer generates an
graphical image to visualize the final schedule which is easy to understand.
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Chapter 5

Results and Analysis

In this chapter, obtained test results are presented in the beginning. Then the results
are analysed.

Unlike the Dynamic JSSP, Static JSSP is well investigated optimization problem in
the literature. As a result, the proposed algorithm is tested against static JSSP bench-
mark problems[51] in the literature. The performance of the new algorithm can be
assessed on it’s capability of solving basic problem. Another reason to test the pro-
posed algorithm on the static JSSP is, it is not possible to find benchmark problems in
the same settings as we defined the problem in the previous chapter. If the algorithm
solves the static JSSP benchmark problems then it can be fairly assumed that the con-
ceptual design of the novel approach is a feasible approach to tackle JSSP problems.
Therefore the first section is devoted to test the algorithm in general in Static JSSP
context and evaluate the performance of the algorithm.

5.1 Tests for Solving Static JSSP

The idea here is to analyse the performance of the algorithm against the selected
parameters in the proposed algorithm. GA generates stochastic solutions. Therefore
the final output could depend on the selections of the intermediate steps. Following are
important steps in GA.

1. Generation of the initial population
2. Ranking of the fitness of the individual member
3. Crossover and Mutation genetic operations
4. Generation of the Off-Spring

It is important to identify the behavior of the each step against the techniques use
in the algorithm. Therefore initially few common techniques are selected and tested.

46



Out of above mentioned four steps, step 1 has been ignored. The used technique is
random generation of the initial population. The reason for the decision is to include
random sets of solution members initially, covering the whole solution space. Other-
wise there is a chance of getting biased solutions which then caused stagnation of local
minima.

Calculation of the fitness of the generated members depends on the problem itself.
It is a function of the variables that it is trying to be optimized and termed as the object
function. We have considered three approaches in deriving the object functions which
are mentioned in the chapter 4 under the section Fitness Calculation.

1. Minimization of Total Make Span - Trying to optimize the time required to
complete all jobs.

2. Minimization of Total Tardiness - Trying to optimize the schedule by reducing
the delays of the jobs.

3. Minimization of the Make Span of weighted jobs - Trying to minimize the
total time required by prioritizing the important jobs.

Then the other vital steps, Crossover and Mutation genetic operations. These are
the most important steps in Genetic Algorithms. Selection of the Crossover rate and
the Mutation rate is essential and then the method to achieve the operations need to be
designed. Early testings of the algorithm experienced trapping the solutions in local
minima, therefore it is decided to use variable crossover and mutation rates. As a
result, the algorithm starts with low Crossover and Mutation rates. But when a local
minima is hit, the algorithm automatically increases the rates so that it can escape the
local minima. Probability of having a Mutation based on the probability of having
a Crossover. The rate of Mutation is controlled unless otherwise it can lead to an
uncontrolled random search.

As the rates are automatically adjusting, when a local minima is hit, the algorithm
tries increasing mainly the mutation rate to introduce new members with higher fitness.
When the algorithm fails to locate an improved fitness members after some trials, the
algorithm terminates.

The pattern of the Crossover and Mutation rates are different from execution to
execution as the rate is automatically adjusted based on the situation in the run-time.
However the common trend is increase of the rate as number of population grows.

In Figure: 5.1 , the moving Crossover and Mutation rates against the problem
LA19 is illustrated. Note that these values are specific to an instance but the profile
remains same.
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As the number of generation increases the solution tent to converge to near optimal
solutions. Hence the rates should be higher to escape current local optimal situations
and find new solutions in the solution space. That is why the rate is continue to increase
as the populations grow. The initial generation is generated randomly and out of those
members new members are evolved with higher fitness. Initial optimization happens
in the initial generations (till around first 50 - 100 generations) and then generations
trap in a local minima. That is why there is a peak in the rates.

Figure 5.1: Movement of Mutation Rate

Actual rate for Crossover and Mutation is calculated using Critical Ratio (CR) and
Mutation Rate (MR) as follow:

ActualMutationRate =CR×MR
100

5.1.1 Parent and Next Generation Selection

Out of many available techniques to select parents and next generation (in GA
terms, off-spring), three common approaches have been used in this study to test the
algorithm. The algorithm is tested with combination of these techniques to get an idea
how the algorithm works based on the techniques selected.

1. Tournament Selection (TS)
2. Roulette Wheel Selection (RWS)
3. Random Selection (RS)
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Figure 5.2: Convergence against the number of generations

Five Static JSSP benchmark problems have been selected from the literature as
mentioned in the beginning of this chapter. They are in same size which is 10 jobs and
10 machines, knows as 10× 10 problems. For each problem 20 schedules have been
generated and the best schedule is selected.

Table 5.1, table 5.2 and table 5.3 present the obtained results. The BKS column de-
notes the Best-Known Solution for the given problem. The makespan column denotes
the best values achieved by the proposed algorithm , out of 20 generated solutions. The
first % column indicate the percentage optimally of the achieved solution against the
BKS. Then the mean of the generated 20 schedules and the variance of those schedules
are mentioned.

According to the test results, the proposed algorithm has been able to generate
optimal solutions with around 85 - 90%. This is a promising result as the algorithm
does not include a strong local search algorithm. The novel concept of STU, inclusion
of data of time component seems to be a feasibility too.

Based on the results, the parent selection method is set to Random Selection (RS)
and next generation method to TS.
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Table 5.1: Parent Selection Method – TS and Next Generation Selection Method – TS
for problems of 10 x 10 (Jobs x Machines)

Problem BKS Makespan % µ % σ

LA16 945 1079 87.58 1116.70 84.62 34.21

LA17 784 903 86.82 957.80 81.85 28.26

LA19 842 1016 82.87 1056.20 79.72 32.00

LA20 902 1048 86.07 1089.30 82.81 32.90

FT10 930 1180 78.81 1241.10 74.93 28.97

Table 5.2: Parent Selection Method – Random and Next Generation Selection Method
– TS for problems of 10 x 10 (Jobs x Machines)

Problem BKS Makespan % µ % σ

LA16 945 1066 88.65 1087.80 86.87 16.92

LA17 784 837 93.67 884.30 88.66 21.53

LA19 842 917 91.82 959.80 87.73 18.81

LA20 902 991 91.02 1030.80 87.50 24.05

FT10 930 1056 88.07 1123.10 82.81 33.19

Table 5.3: Parent Selection Method – RWS and Next Generation Selection Method –
RWS for problems of 10 x 10 (Jobs x Machines)

Problem BKS Makespan % µ % σ

LA16 945 1052 89.83 1076 87.83 19.71

LA17 784 890 88.09 903 86.82 16.99

LA19 842 928 90.73 953.1 88.34 19.47

LA20 902 996 90.56 1035.75 87.09 36.83

FT10 930 1077 86.35 1122.10 82.88 22.72
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5.2 Dynamic JSSP

In the last section, the performance of the GA has been tested over the static JSSP.
In this section, the algorithm should be tested against the problem defined. Because it
is the ultimate goal of the algorithm and solutions should be generated satisfying the
conditions outlined in the problem definition section.

Figure 5.3: Generated Schedule for modified LA19 problem (LA19A)

Since there is no benchmark problems, a new problem is developed based on the
LA19 Static JSSP to simulate the requirements. Disruptions are simulated on the above
mentioned problem and the algorithm is tested.

5.2.1 Scenario A - Arrival of new jobs

The algorithm should be capable of handling a disruption occurs due to arrival of a
new job.

The base problem, L19, has been modified removing the 10th job in it. An initial
schedule has been generated based on LA19 problem but with no 10th job. This prob-
lem is denoted as LA19A. The generated schedule for this problem is shown in Figure:
5.3 . Assume the new job arrives at the time unit 200. At that time, the planner needs to
generate a new schedule including the new job, which is the 10th job in original LA19
problem.

51



Table 5.4: Fully Completed Operations per Job, LA19A

Job Completed Operations

1 3, 4, 6

2 5, 8

3 10, 7, 5, 4

4 2, 3, 8

5 7, 2

6 8

7 7

8 1, 6, 9, 10

9 -

Table 5.5: Partially Completed Operations per Job, LA19A

Job Operation Duration Completed % Remaining Duration

1 5 97 93 14

6 6 93 97 5

7 2 63 77 54

8 4 76 75 20

The first thing to initiate new schedule generation is taking the historical informa-
tion of the earlier schedule. The completed operations and partially completed oper-
ations per job needs to be identified and should be provided as an input. Completed
operations per job listed in the table 5.4 where the partially completed operations per
job with their degree of completion amounts are mentioned in table 5.5.

Handling the partially completed operations on machines is vital once the new
schedule resumes. In the new schedule, these operations should be unchanged.

The proposed algorithm generates the new schedule considering mentioned histor-
ical information, in this scenario it is partially and fully completed operations. The
new schedule is shown in Figure: 5.4 . Note that the completed operations are filtered.
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Schedule starts with partially completed operations. The newly created schedule starts
with the time unit 200. The schedule is relative, that is why the starting time unit is
marked as zero in the schedule. However the abstract values on the should be calcu-
lated by adding another 200 time units to the value in the newest schedule.

Accordingly the total makespan for the problem LA19A is 1077 = 200+877

Figure 5.4: After including the new job in LA19A

5.2.2 Scenario B - Machine break-down

When a machine suddenly goes out of order, the ongoing operation in that machine
cannot be progressed. The machine needs to be fixed and it will be out of service till the
issue is fixed. The current schedule becomes invalid once the machine outage occurs
and need a new schedule based on the new information. If the time required for fixing
the machine is known, it is possible to generate a new schedule with inclusion of the
downtime for the specific machine. However the operation which is being performed at
the time of the breakdown in the machine which goes out of order should be allocated
to the same machine once it is fixed. The concept of fixed operations (remaining time
units) comes into play in this scenario. Further the other operations which are being
processed on the other machines can resume the operations at the start of the new
schedule, same as what happen when a new job arrives.
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5.2.3 Scenario C - Unplanned machine maintenance

Planned machine maintenance is bit different to the scenario discussed in the previ-
ous section because it does not demand an immediate schedule change. This scenario
occurs when a machine requires a maintenance after generating a schedule. It is as-
sumed that the maintenance can wait till the currently processing operation finishes
on the machine. Then after a new schedule can be employed. This scenario can be
modeled as the new job arrival scenario which is discussed in detailed.

5.2.4 Scenario D - Start time fixed operations

Disregarding the completed percentage of the operation, it should be able to instruct
the starting time of the operation. Operations which are partially completed can be re-
scheduled with a fixed starting point for the remaining duration. This concept has been
used in all the scenarios discussed earlier. In new job arrival scenario, the starting point
of partially completed operations at the beginning of the time line of the new schedule.
In the machine break-down scenario, it is a future time unit on the time line.

5.3 Analysis

In this section, obtained results are analyzed. Testing has been carried out to eval-
uate performance of the proposed algorithm and to understand how it behaves under
different scenarios and selected methods.

In testing, the effect on crossover rates and mutation rates has been observed by
varying those rates on standard benchmark problem, LA19. Then some selected meth-
ods used in parents selection and forming new generations (off-spring) have been
tested. Five benchmark problems[51] (LA16, LA17, LA19, LA20, FT10) have been
used for the purpose. Only problems of 10 jobs and 10 machines, commonly known
as 10×10 problems have been used in this study.

Apart from the FT10 problem, other problems are easier to schedule. In FT10 prob-
lem, operations order is quite similar in jobs. Therefore, the demand for machine at a
given time is higher making scheduling tough leading to higher makespan compared
to other problems. That is the reason for selecting FT10 problem to test the algorithm.
However the algorithm was able to generate a feasible schedule for FT10 with around
88% optimally.

When executing the algorithm, it keeps generating solution till the exit criteria is
met. When Genetic Algorithms (GA) is the only approach in the algorithm, it is quite
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challenging to explore the solution space as it converges to local optima in a short
duration. Once it is trapped, GA alone is not capable of escaping itself. That is why
the GA is very powerful when it is used in combination with another local search
algorithm.

In this research, as GA alone used to develop the algorithm, it is set to exit the
program after executing pre-determined execution cycles. In other words, the algo-
rithm stops the execution once number of generated generations reach pre-determined
threshold. Maximum generation of 400 has been used in testing as it is observed that
the algorithm no longer generates new solutions once it passes around 300 generations
in earlier testings. It is possible to terminate when there is no change in new off-spring
members. However with variable crossover and mutation rates this approach gave un-
predictable outcomes. Hence it was decided to terminate after reaching the threshold.

In GA, crossover rate and mutation rate play a major role. Crossover rate decides
if a crossover operation should be carried out. In the meantime, if a crossover opera-
tion takes place application of the mutation operation is decided by the mutation rate.
Crossover is considered as a convergence operation which directs the population to-
wards local optima. On the other hand, mutation is a divergence operation. It helps
inclusion of new solutions which eventually helps discovering new local optima in the
solution space.

To find out the effects of crossover and mutation operations, several tests have been
carried out keeping the mutation rate at a constant value and also varying the mutation
rate. This is carried out on LA19 problem and when observing the test results, it seems
like high crossover rate and high mutation rate contributes towards achieving better
results. in the same time, high mutation rates contribute to random search as well. In
order to prevent that effect rate were controlled using variable rates rather than fixed
rates. In the beginning the rates are at minimum. When the search hits a local minima
the algorithm increases the rate so that it helps escaping the local minima. This is
illustrated in Figure: 5.1 .

In the proposed algorithm, for selecting parent set Random Selection (RS) is used.
For selecting the next generation Tournament Selection (TS) is used. Tests have been
carried out to determine the suitable combination and results suggest the above com-
bination.

Once the algorithm is tested for benchmark static JSSP, the results are used to fine
tune the algorithm for solving the dynamic JSSP which is the main objective of this
research.

A problem constructed based on LA19 static problem, LA19A has been used to test
the algorithm. As discussed there are three main requirements to be fulfilled by the
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algorithm . The algorithm should be able to handle disruptions due to new job arrival,
machine outage due to sudden breakages and planned maintenance requirements. Tests
have been carried out to check the performance of the algorithm.
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Chapter 6

Conclusion

As discussed throughout the report, the main objective is to develop an algorithm to
handle Dynamic Job Shop Scheduling Problem (JSSP) as per the requirements outlined
in the problem definition section. Genetic Algorithms (GA) is used to implement the
algorithm. Tests have been carried out to measure the performances of the proposed
algorithm with combinations of different configurations.

6.1 Conclusion

The main objective of this research is to develop an algorithm based on genetic
algorithms which can be used to solve Dynamic JSSP. As there is no proper way of
benchmarking the performance of the Dynamic JSSP as the constructed requirements
in problem definition, the algorithm is tested on Static JSSP. Tests have been carried
out on five benchmark Static JSSP in the literature, namely LA16, LA17, LA19, LA20
and FT10 which are 10×10 problems.

Based on the test results, it can be fairly stated that the algorithm is capable of
solving the Job Shop Scheduling problem. The generated schedules are nearly opti-
mal, around 85% - 90%. The algorithm did not successfully achieve the Best-Known
Solutions (BKS) for the problems.

The algorithm has been developed for solving the Dynamic JSSP . The algorithm
focuses on managing the dynamic requirements based on the problem definition. For
an example, the introduction of the Starting Time Unit (STU) of an operation to the
Chromosome representation can be taken. Therefore, according to the results obtained,
it seems that the new representation requires further optimization approaches to reach
to the optimal solutions. Genetic Algorithms (GA) alone does not help achieving opti-
mal results.
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Further, the time-based representation used in this research is a novel concept to
solve the Dynamic JSSP using Genetic Algorithms. The results show that it is a fea-
sible and promising. The proposed algorithm can be used to generate nearly optimal
solutions for a given problem. Therefore this algorithm can be used in simulating plan-
ning of jobs in the Job Shop. For the time being the proposed solutions cannot replace
the planner as it is generating nearly optimal schedules. However this algorithm can
be used as a tool to assist the planner’s work as it can be used to generate feasible
schedules covering all the scenarios which could occur in a Job Shop.

In conclusion, the proposed algorithm performed as expected solving Dynamic
JSSP as outlined in the problem definition. It generates nearly optimal schedules as
the solutions for the problems which cover most of the real-life scenarios in a Job
Shop. The results prove that the inclusion of time encoded value as a novel concept
in the Gene is a feasible approach which is a dominant part of this study. For the time
being this algorithm can be used as a tool, as an assistive tool for planners in decisions
making.

6.2 Future Work

There are few limitations identified when carrying out the testings of the proposed
algorithm.

The inclusion of time encoded value in the Gene, termed as Starting Time Unit
(STU) can be developed further. Critically observing and analyzing the behavior of
the concept could be carried out as a separate study.

Another obstacle identified in testing the algorithm is the convergence of the algo-
rithm and getting trapped in local minima of the solution space. In order to solve this
problem, variable Critical Ratio (CR) and Mutation Rate (MR) in run-time have been
introduced. The algorithm can be coupled with a local search algorithm such as Tabu
Search [52] [53]. According to the literature the combination of GA and Tabu Search
work well.

Another approach to diverge the solutions generated by this algorithm is to imple-
ment the algorithm as a parallel genetic algorithm [54], where other members of the
other parallel solution can be introduced among the solutions using migration opera-
tion. Then, optimal schedules can be obtained for dynamic JSSP and real-life require-
ments that are faced by the industry.

The algorithm in this research is designed to handle JSSP of any number of jobs and
machines. However, the tests have been carried out only for 10 jobs and 10 machines
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problems. Therefore, the algorithm can be tested for larger problems and measure the
performance.

Less focus on performance improvement in time domain was given when imple-
menting the algorithm in the research. The main reason is the use of not high perfor-
mance programming language. The main objective in this research was to prove that
the novel concept, STU is a feasible solution. As a result, easy to use high-level pro-
gramming language has been used. It compromises the performance level. Therefore,
it is possible to search for methods to improve the performances of the algorithm by
optimizing the code structure and methods used or re-implement the algorithm using a
high performance language such as C++.

Further this algorithm can be extended for solving open floor shop scheduling prob-
lems and flexible job shop scheduling problems, the concept of inclusion of time en-
coding can be tested in those problems.

59



REFERENCE LIST

[1] T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: Complexity and
approximation,” Operations research, vol. 26, no. 1, pp. 36–52, 1978.

[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimization and
approximation in deterministic sequencing and scheduling: A survey,” in Annals
of discrete mathematics, vol. 5, Elsevier, 1979, pp. 287–326.

[3] I. H. Osman and C. Potts, “Simulated annealing for permutation flow-shop
scheduling,” Omega, vol. 17, no. 6, pp. 551–557, 1989.

[4] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,”
Journal of the ACM (JACM), vol. 23, no. 4, pp. 665–679, 1976.

[5] N. Nahavandi, S. Zegordi, and M. Abbasian, “Solving the dynamic job shop
scheduling problem using bottleneck and intelligent agents based on genetic
algorithm,” 2016.

[6] S. M. Johnson, “Optimal two-and three-stage production schedules with setup
times included,” Naval research logistics quarterly, vol. 1, no. 1, pp. 61–68,
1954.

[7] H. G. Campbell, R. A. Dudek, and M. L. Smith, “A heuristic algorithm for the
n job, m machine sequencing problem,” Management science, vol. 16, no. 10,
B–630, 1970.

[8] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and
jobshop scheduling,” Mathematics of operations research, vol. 1, no. 2, pp. 117–
129, 1976.

[9] A. Kaban, Z. Othman, and D. Rohmah, “Comparison of dispatching rules in job-
shop scheduling problem using simulation: A case study,” International Journal
of Simulation Modelling, vol. 11, no. 3, pp. 129–141, 2012.

[10] E. Hart and K. Sim, “A hyper-heuristic ensemble method for static job-shop
scheduling,” Evolutionary computation, vol. 24, no. 4, pp. 609–635, 2016.

60



[11] Z. Lomnicki, “A “branch-and-bound” algorithm for the exact solution of the
three-machine scheduling problem,” Journal of the Operational Research Soci-
ety, vol. 16, no. 1, pp. 89–100, 1965.

[12] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck procedure for job
shop scheduling,” Management Science, vol. 34, pp. 391–401, Mar. 1988. DOI:
10.1287/mnsc.34.3.391.

[13] R. Zhang, “A simulated annealing-based heuristic algorithm for job shop schedul-
ing to minimize lateness,” International Journal of Advanced Robotic Systems,
vol. 10, no. 4, p. 214, 2013.

[14] E. D. Taillard, “Parallel taboo search techniques for the job shop scheduling
problem,” ORSA journal on Computing, vol. 6, no. 2, pp. 108–117, 1994.

[15] J. B. Chambers and J. W. Barnes, “New tabu search results for the job shop
scheduling problem,” The University of Texas, Austin, Technical Report Series
ORP96-06, Graduate Program in Operations Research and Industrial Engi-
neering, 1996.

[16] M. S. Fox, “Constraint-directed search: A case study of job-shop scheduling.,”
CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST, Tech. Rep.,
1983.

[17] A. Jones, L. C. Rabelo, and A. T. Sharawi, “Survey of job shop scheduling
techniques,” Wiley encyclopedia of electrical and electronics engineering, 2001.

[18] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, Ieee, 1995, pp. 39–43.

[19] T.-L. Lin, S.-J. Horng, T.-W. Kao, Y.-H. Chen, R.-S. Run, R.-J. Chen, J.-L.
Lai, and I.-H. Kuo, “An efficient job-shop scheduling algorithm based on par-
ticle swarm optimization,” Expert Systems with Applications, vol. 37, no. 3,
pp. 2629–2636, 2010.

[20] B. Giffler and G. L. Thompson, “Algorithms for solving production-scheduling
problems,” Operations research, vol. 8, no. 4, pp. 487–503, 1960.

[21] Z. ZHONG, “Research on job-shop scheduling problem based on improved par-
ticle swarm optimization.,” Journal of Theoretical & Applied Information Tech-
nology, vol. 47, no. 2, 2013.

61



[22] M. Dorigo and G. Di Caro, “Ant colony optimization: A new meta-heuristic,”
in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat.
No. 99TH8406), IEEE, vol. 2, 1999, pp. 1470–1477.

[23] M. Dorigo, M. Dorigo, V. Manjezzo, and M. Trubian, “Ant system for job-shop
scheduling,” Belgian Journal of Operations Research, vol. 34, pp. 39–53, 1994.

[24] S. Van der Zwaan and C. Marques, “Ant colony optimisation for job shop schedul-
ing,” in Proceedings of the’99 Workshop on Genetic Algorithms and Artficial
Life GAAL’99, 1999.

[25] C. S. Chong, A. I. Sivakumar, M. Y. H. Low, and K. L. Gay, “A bee colony
optimization algorithm to job shop scheduling,” in Proceedings of the 38th con-
ference on Winter simulation, Winter Simulation Conference, 2006, pp. 1954–
1961.

[26] A. S. Jain and S. Meeran, “Deterministic job-shop scheduling: Past, present and
future,” European journal of operational research, vol. 113, no. 2, pp. 390–434,
1999.

[27] T. Yamada and R. Nakano, “Genetic algorithms for job-shop scheduling prob-
lems,” 1997.

[28] A. Moraglio, H. Ten Eikelder, and R. Tadei, “Genetic local search for job shop
scheduling problem,” sottoposto per la pubblicazione a European Journal of
Operational Research, 2005.

[29] B. J. Park, H. R. Choi, and H. S. Kim, “A hybrid genetic algorithm for the job
shop scheduling problems,” Computers & industrial engineering, vol. 45, no. 4,
pp. 597–613, 2003.

[30] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic algo-
rithm: On separability, population size and convergence,” Journal of computing
and information technology, vol. 7, no. 1, pp. 33–47, 1999.

[31] J. Chen and B. J. Adams, “Integration of artificial neural networks with con-
ceptual models in rainfall-runoff modeling,” Journal of Hydrology, vol. 318,
no. 1-4, pp. 232–249, 2006.

[32] R. Ramasesh, “Dynamic job shop scheduling: A survey of simulation research,”
Omega, vol. 18, no. 1, pp. 43–57, 1990.

[33] X. Shen, M. Zhang, and J. Fu, “Multi-objective dynamic job shop scheduling: A
survey and prospects,” Int J Innov Comput Inf Control, vol. 10, no. 6, pp. 2113–
2126, 2014.

62



[34] P. Cowling and M. Johansson, “Using real time information for effective dy-
namic scheduling,” European journal of operational research, vol. 139, no. 2,
pp. 230–244, 2002.

[35] P. Lou, Q. Liu, Z. Zhou, H. Wang, and S. X. Sun, “Multi-agent-based proactive–
reactive scheduling for a job shop,” The International Journal of Advanced Man-
ufacturing Technology, vol. 59, no. 1-4, pp. 311–324, 2012.

[36] V. Jorge Leon, S. David Wu, and R. H. Storer, “Robustness measures and robust
scheduling for job shops,” IIE transactions, vol. 26, no. 5, pp. 32–43, 1994.

[37] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling manufacturing sys-
tems: A framework of strategies, policies, and methods,” Journal of scheduling,
vol. 6, no. 1, pp. 39–62, 2003.

[38] I. Moon and J. Lee, “Genetic algorithm application to the job shop scheduling
problem with alternative routings,” Pusan National University, 2000.

[39] G. Chryssolouris and V. Subramaniam, “Dynamic scheduling of manufactur-
ing job shops using genetic algorithms,” Journal of Intelligent Manufacturing,
vol. 12, no. 3, pp. 281–293, 2001.

[40] L. Zhang, L. Gao, and X. Li, “A hybrid genetic algorithm and tabu search for
a multi-objective dynamic job shop scheduling problem,” International Journal
of Production Research, vol. 51, no. 12, pp. 3516–3531, 2013.

[41] A. Madureira and J. Santos, “Proposal of multi-agent based model for dynamic
scheduling in manufacturing.,” WSEAS Transactions on Information Science
and Applications, vol. 2, no. 5, pp. 600–605, 2005.

[42] M. Kapanoglu and M. Alikalfa, “Learning if–then priority rules for dynamic job
shops using genetic algorithms,” Robotics and Computer-Integrated Manufac-
turing, vol. 27, no. 1, pp. 47–55, 2011.

[43] T. Eguchi, F. Oba, and T. Hirai, “A neural network approach to dynamic job
shop scheduling,” in Global Production Management, Springer, 1999, pp. 152–
159.
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Appendix A

Program Code

A.1 Implementation of the Proposed Algorithm
This is the main program file, main.py. It uses standard time and standard rnd

(for random number generation) libraries in Python. Python NumPy library which
is an open source library also used. Other libraries (Tournament Selection, Roulette
Wheel Selection) are developed from the scratch to implement the proposed algorithm
in Python programming language.

Instructions for use: Locate all three files in the same directory. Change the pa-
rameters according to the problem in the ”Problem Specific Basic Setting” section.
Execute the code, use Python version 3.0 interpreter.

## File : main.py ##
##Algorithm implemented by Buddhika Kurera, (c) 2017##
## Email − bckurera AT geneai dot edu dot com ##

import numpy as np
import gen lib as gen lib
import debug as DEBUG
import time
import tournament selection as TSel

DO DEBUG = 0

import json as json
import sys

##Problem Specific Basic Setting##

M = 10 # max number of Machines
J = 10 # max number of Jobs
MR = 10 # mutation rate in %
CR = 80 # crossover rate in %
DEADLINE = 842 # for LA19, 842 is the smallest
MAX GEN = 200
INIT POP SIZE = 100
JSSP TYPE = ’STATIC’ #’STATIC’ or ’DYNAMIC’
GENERATION COUNT = 1
FITNESS FUNC = ’M’ #T and M

Oij = np.array([
(2, 7, 10, 9, 8, 3, 1, 5, 4, 6),
(5, 3, 6, 10, 1, 8, 2, 9, 7, 4),
(4, 3, 9, 2, 5, 10, 8, 7, 1, 6),
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(2, 4, 3, 8, 9, 10, 7, 1, 6, 5),
(3, 1, 6, 7, 8, 2, 5, 10, 4, 9),
(3, 4, 6, 10, 5, 7, 1, 9, 2, 8),
(4, 3, 1, 2, 10, 9, 7, 6, 5, 8),
(2, 1, 4, 5, 7, 10, 9, 6, 3, 8),
(5, 3, 9, 6, 4, 8, 2, 7, 10, 1),
(9, 10, 3, 5, 4, 1, 8, 7, 2, 6)

]) # Tasks per job and the operation related to the task [Op <−> Machine]

Dij = np.array([
(44, 5, 58, 97, 9, 84, 77, 96, 58, 89),
(15, 31, 87, 57, 77, 85, 81, 39, 73, 21),
(82, 22, 10, 70, 49, 40, 34, 48, 80, 71),
(91, 17, 62, 75, 47, 11, 7, 72, 35, 55),
(71, 90, 75, 64, 94, 15, 12, 67, 20, 50),
(70, 93, 77, 29, 58, 93, 68, 57, 7, 52),
(87, 63, 26, 6, 82, 27, 56, 48, 36, 95),
(36, 15, 41, 78, 76, 84, 30, 76, 36, 8),
(88, 81, 13, 82, 54, 13, 29, 40, 78, 75),
(88, 54, 64, 32, 52, 6, 54, 82, 6, 26)

]) # Duration for individual operations

Events = np.array([
(100,50,6,100,0)

]) # Events[Seq, Type, Machine, Duration, STU]

OP info = np.array([
(50, 0, 6, 100,0),
(80, 1, 8, 82, 0),
(80, 2, 1, 75, 0),
(80, 3, 2, 51, 0),
(70, 6, 9, 77, 100),
(70, 4, 7, 72, 0)

])

PRIOTIRY = ([1,1,1,2,2,2,3,3,3,4])

##End of Basic Settings##

def generate a chromo(): ##Generate a chromosome using random job−op−machine allocation method
##DEFINE##
rem ops count per job = get ops count per job()
op count per job = get ops count per job()
chromo = [0]∗(sum(rem ops count per job)∗6)
clear vectors()

##EXECUTE##
process = True
while process:

random job index = gen lib.get random number(0, J)
op index = rem ops count per job[random job index]
if(op index!=0):

rem ops count per job[random job index] = op index − 1
order of op in job = op count per job[random job index] − op index
gene = generate a gene(op count per job, random job index, order of op in job)

gene seq = gene[0] ∗ 6

for j in range(0, 6):
chromo[gene seq + j] = gene[j]

##exit criteria##
if(sum(rem ops count per job)==0):

DEBUG. print (chromo, 0, DO DEBUG)
break

DEBUG. save to file (chromo, ’chromosome.dat’, DO DEBUG)

overlap detect(np.array(chromo))
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x = fvc chromo(chromo)
DEBUG. save to file (chromo, ’chromosome’+str(x)+’.dat’, DO DEBUG)

return chromo
##−−−−−end of method generate a chromo()−−−−−##

JOB ORDER VECTOR = []
MACHINE ALLOC VECTOR = []

def get next stu(job, op, tentative stu, duration): #Get the next STU considering the JOB ORDER VECTOR and the
↪→ MACHINE ALLOC VECTOR

get next stu by job order vector = JOB ORDER VECTOR[job−1]

if(tentative stu < get next stu by job order vector):
tentative stu = get next stu by job order vector

tentative stu = get next stu on machine(op, tentative stu, duration)

return tentative stu

def get next stu on machine(machine, tentative stu, duration):
no of allocations = int(len(MACHINE ALLOC VECTOR[machine−1])/5)
if(no of allocations==0):

return tentative stu

fixed allocations = MACHINE ALLOC VECTOR[machine−1]

check overlaps = True
while check overlaps:

proposed stu = [0]
no of overlaps = 0
for i in range(0, no of allocations):

alloc = fixed allocations[5∗i: 5∗i+5]
fixed start = alloc[3]
fixed end = alloc[4]
legal alloc = check legal machine alloc(tentative stu, tentative stu + duration, fixed start, fixed end)
if(legal alloc==False):

proposed stu.append(fixed end + 1)
no of overlaps = no of overlaps + 1

if(no of overlaps>0):
tentative stu = max(proposed stu)

if(no of overlaps==0):
check overlaps = False

return tentative stu

def check legal machine alloc(temp start, temp end, fixed start, fixed end):
if((temp start < fixed start) and (temp end < fixed start)):

return True

if((temp start > fixed end) and (temp end > fixed end)):
return True

return False

def update machine alloc vector(job, machine, type, duration, stu):
global MACHINE ALLOC VECTOR
temp = [0]∗5
temp[0] = job
temp[1] = type
temp[2] = duration
temp[3] = stu
temp[4] = stu+duration
MACHINE ALLOC VECTOR[machine−1].extend(temp)
a = 1

def update job order vector(job, time unit):
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global JOB ORDER VECTOR
JOB ORDER VECTOR[job−1] = time unit

def clear vectors(): #Clear and re−define vectors
global JOB ORDER VECTOR
global MACHINE ALLOC VECTOR
del JOB ORDER VECTOR
del MACHINE ALLOC VECTOR

JOB ORDER VECTOR = [0] ∗ J
MACHINE ALLOC VECTOR = [[] for i in range(0, M)]

if(JSSP TYPE==’DYNAMIC’):

for i in range(0, len(Events)):
job = 0
machine = Events[i][2]
type = Events[i][1]
duration = Events[i][3]
stu = Events[i][4]
#update machine alloc vector(job, machine, type, duration, stu)

for i in range(0, len(OP info)):
type = OP info[i][0]
job = OP info[i][1]
machine = OP info[i][2]
comp prec = OP info[i][3]
stu = OP info[i][4]
if(type != 50):

duration = get duration by job op(job, machine)
else:

duration = comp prec

adj duration = 0
#user needs to feed the STU after deducting the work that has already been took place
if(type == 70):

adj duration = int((100 − comp prec) ∗ (duration / 100))
update machine alloc vector(job, machine, type, adj duration, stu)
update job order vector(job, adj duration)

if(type==80):
adj duration = int((100 − comp prec) ∗ (duration / 100))
update machine alloc vector(job, machine, type, adj duration, stu)
update job order vector(job, adj duration)

def get duration by job op(job, machine):
ext op per job = Oij[job−1]
#ext op per job = x.tolist()
op index = ext op per job.index(machine)
output = Dij[job−1][op index]
return output

def get ops count per job(): #Return the number of operation each job has
ops count = [0]∗J
for i in range(0, J):

ops count[i] = len(Oij[i])
return ops count

def calculate gene position(op count per jobs, job index, op index): #The absolute position of the gene in the chromosome
↪→ is calcualted

previous job sum = sum(op count per jobs[0:job index])
return previous job sum + op index

def get comp prec by op(job, op):

if(JSSP TYPE==’DYNAMIC’):
size = len(OP info)
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for i in range(0, size):
ext info = OP info[i]
if((job == ext info[1]) and (op == ext info[2])):

if(ext info[0]==80):
comp prec = ext info[3]
return comp prec

if(ext info[0]==70):
comp prec = 1000
return comp prec

if (ext info[0] == 50):
comp prec = ext info[3]
return comp prec

return 0

def get stu by op(job, op):
size = len(OP info)

for i in range(0, size):
ext info = OP info[i]
if((job == ext info[1]) and (op == ext info[2])):

if((ext info[3]==80) or (ext info[3]==70)):
return ext info[4]

else:
return ext info[4]

else:
return 0

def generate a gene(op count per jobs, job index, op index): #Generate a gene 1 x 6 [Seq.][Jop][Operation][Comppletion
↪→ %][Duration][STU]

rnd start = gen lib.get random number(0,100)
job = job index + 1

operation = Oij[job index] [op index]
duration = Dij[job index][op index]
stu = get next stu(job, operation, rnd start, duration)
comp prec = get comp prec by op(job, operation)

if((comp prec>0) and (comp prec!=1000)):
duration = int(((100−comp prec)∗duration)/100)
stu = get stu by op(job, operation)

gene = [0]∗6
gene[0] = calculate gene position(op count per jobs, job index, op index)
gene[1] = job
gene[2] = operation
gene[3] = comp prec
gene[4] = duration
gene[5] = stu
time unit = stu + duration + 1
update job order vector(job, time unit)
update machine alloc vector(job, operation, 0,duration,stu)
return gene

def fvc chromo(chromo):#Calculates the fitness value for a chromosome
ops count per job = get ops count per job()
end time = [0]∗J
for i in range(0, J):

if(FITNESS FUNC == ’T’):
last op = ops count per job[i]−1
op position = calculate gene position(ops count per job, i, last op) ∗ 6
extract gene = chromo[op position: op position+6]
end time[i] = extract gene[4] + extract gene[5]
output = sum(end time)

if(FITNESS FUNC == ’M’):
output = calculate makespan(chromo)
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#if(FITNESS FUNC == ’WT’):
#calculated weighted tardiness(chromo):

return output

def calculate fitness of population(population): #Populate the Penalty filed[3] in the population element
pop size = len(population)
for i in range(0,pop size):

optimized chromo = optimize(population[i][4])
fitness value = fvc chromo(optimized chromo)
population[i][3] = fitness value

return population

def generate init population():
init pop = [[] for j in range(0, INIT POP SIZE)]
for i in range(0,INIT POP SIZE):

chromosome = generate a chromo()
temp = [[] for k in range(0, 8)]
temp[0] = GENERATION COUNT
temp[1] = i + 1
temp[2] = 0
temp[3] = 0
temp[4] = chromosome
temp[5] = GENERATION COUNT∗1000 + (i+1)
temp[6] = 0
temp[7] = 0
init pop[i] = temp

return init pop

def rank members of pop(population):
pop size = len(population)
for i in range(0, pop size):

temp pointer = i
temp min = population[i][3]
for j in range(i+1, pop size):

temp = population[j][3]
if(temp min < temp):

temp min = temp
temp pointer = j

if(temp pointer!=i):
temp placeholder = population[temp pointer]
population[temp pointer] = population[i]
population[i] = temp placeholder
x = population[i][5]

id = generate unique id(population[i][5], i)
population[i][5] = id

#for i in range(0,pop size):
#print(’Ranking ’, population[i][3], population[i][5])

return population

def generate unique id(current id, ref):
generation = int(current id/1000)
member id = current id%1000

return (generation∗1000)+(ref+1)

def generate mate plan(population):
parent size = 25
#mate plan = TSel.get mate plan(population, parent size)
mate plan = generate random mate plan(population, parent size)
return mate plan

def generate random mate plan(population, size):
pop size = len(population)
order list = [i for i in range(0, pop size)]
mate plan = []
for i in range(0, size):

parent set = []
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for j in range(0,2):
current pop size = len(order list)
parent index = gen lib.get random number(0, current pop size)
parent index in pop = order list[parent index]
parent id = population[parent index in pop][5]
parent penalty = population[parent index in pop][3]
list = [parent id,parent penalty]
parent set.append(list )

mate plan.append(parent set)
return mate plan

def generate offspring(population, mate plan):
mate count = len(mate plan)
offspring chromo = []
for i in range(0, mate count):

mate pattern = mate plan[i]
weak parent = mate pattern[0][0]
strong parent = mate pattern[1][0]
weak parent = get member from unique id(population, weak parent)
strong parent = get member from unique id(population, strong parent)
offspring chromo.append(crossover(weak parent, strong parent))

offspring = construct offspring population(offspring chromo, mate plan)
return offspring

def construct offspring population(chromo set, mate plan):
pop size = len(chromo set)
new population = []
for i in range(0, pop size):

temp = [[] for k in range(0, 8)]
temp[0] = 99999
temp[1] = i + 1
temp[2] = 0
temp[3] = 0
temp[4] = chromo set[i]
temp[5] = 99999 ∗ 1000 + (i + 1)
temp[6] = mate plan[i][0][0]
temp[7] = mate plan[i][1][0]
new population.append(temp)
a =1

return new population

def get member from unique id(population, unique id):
pop size = len(population)
for i in range(0, pop size):

if(population[i][5] == unique id):
return population[i]

def get fixed stu(job, op):
size = len(OP info)

for i in range(0, size):
ext info = OP info[i]
if ((job == ext info[1]) and (op == ext info[2])):

return ext info[4]
return 0

def crossover(weak parent, strong parent):
weak chromo = weak parent[4]
strong chromo = strong parent[4]
gene count = int(len(weak chromo) / 6)
offspring member = []

clear vectors()

crossover operation = True
p = 0
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while crossover operation:
gene = [0]∗6
stu = 0
seq = weak chromo[6 ∗ p]
job = weak chromo[6 ∗ p + 1]
operation = weak chromo[6 ∗ p + 2]
comp prec = weak chromo[6 ∗ p + 3]
duration = weak chromo[6 ∗ p + 4]
stu from strong parent = strong chromo[6 ∗ p + 5]
if(comp prec>0):

a=1

if(comp prec==0):
if(gen lib.biased binary random decision(CR)):

if(gen lib.biased binary random decision(MR)): #Mutate instead of crossover
gene[0] = seq
gene[1] = job
gene[2] = operation
gene[3] = comp prec
gene[4] = duration
random stu = gen lib.get random number(0,stu from strong parent+150)
stu = get next stu(job, operation, random stu, duration)
gene[5] = stu

else: #Crossover operation only
gene[0] = seq
gene[1] = job
gene[2] = operation
gene[3] = comp prec
gene[4] = duration
stu = get next stu(job, operation, stu from strong parent, duration)
gene[5] = stu

else:
gene[0] = seq
gene[1] = job
gene[2] = operation
gene[3] = comp prec
gene[4] = duration
stu = get next stu(job, operation, weak chromo[6 ∗ p + 5], duration)
gene[5] = stu

if((comp prec>0) and (comp prec<=100)):
stu = get fixed stu(job, operation)
gene[0] = seq
gene[1] = job
gene[2] = operation
gene[3] = comp prec
gene[4] = duration
# stu = get next stu(job, operation, weak chromo[6 ∗ p + 5], duration)
gene[5] = get fixed stu(job, operation)

if(comp prec==1000):
stu = get fixed stu(job, operation)
gene[0] = seq
gene[1] = job
gene[2] = operation
gene[3] = 1000
gene[4] = duration
#stu = get next stu(job, operation, weak chromo[6 ∗ p + 5], duration)
gene[5] = get fixed stu(job, operation)

offspring member.extend(gene)
x = len(weak chromo)
y = len(offspring member)

time unit = stu + duration + 1
update job order vector(job, time unit)
update machine alloc vector(job, operation, 0, duration, stu)
p = p + 1
if(len(weak chromo) == len(offspring member)):

crossover operation = False
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DEBUG. save to file (offspring member,’crossover result.dat’,DO DEBUG)

return offspring member

def selection(parent generation, offspring 1, offspring 2, new pop size):
global GENERATION COUNT
GENERATION COUNT = GENERATION COUNT+1
total pop = []
total pop.extend(parent generation)
total pop.extend(offspring 1)
total pop.extend(offspring 2)

#new population = TSel.ts for new gen(total pop, 50)
new population = random new gen selection(total pop, 50)

for i in range(0, len(new population)):
new population[i][0] = GENERATION COUNT

DEBUG. save to file (new population[25][4],’new.dat’,DO DEBUG)
return new population

def random new gen selection(total pop, size):
pop size = len(total pop)
order list = [i for i in range(0, pop size)]
new gen = []
for i in range(0, size):

current pop size = len(order list)
member index = gen lib.get random number(0, current pop size)
member index in pop = order list[member index]
member = total pop[member index in pop]

new gen.append(member)
return new gen

SOL TRACK = []
SOL CHROMO = 0

def calculate makespan(chromo):
extract stu=chromo[5::6]
extract duration = chromo[4::6]
#end point = extract stu + extract duration
end point = [extract stu[i] + extract duration[i] for i in range(0, len(extract stu))]
makespan = max(end point)
#duration index = extract stu.index(makespan)
#makespan = makespan + extract duration[duration index]
return makespan

def best solution tracker(member, fv):
global SOL CHROMO

print(’Total Makespan ’,calculate makespan(member))

if(len(SOL TRACK)!=0):
min value = min(SOL TRACK)
if(fv < min value):

SOL CHROMO = member
else:

SOL CHROMO= member
SOL TRACK.append(fv)

##−−−−−−−−−−−−−−Main Prog Starts−−−−−−−−−−−−−−−−##
def main():

started time = time.time()

initial population = generate init population()
initial population = calculate fitness of population(initial population)
initial population = rank members of pop(initial population)

mate plan = generate mate plan(initial population)
offspring G1 = generate offspring(initial population, mate plan)
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offspring G1 = calculate fitness of population(offspring G1)
offspring G1 = rank members of pop(offspring G1)

mate plan = generate mate plan(initial population)
offspring G2 = generate offspring(initial population, mate plan)
offspring G2 = calculate fitness of population(offspring G2)
offspring G2 = rank members of pop(offspring G2)

new population = selection(initial population, offspring G1, offspring G2, 50)

for i in range(0,MAX GEN−1):
min value = 0
if(len(SOL TRACK)!=0):

min value = min(SOL TRACK)

print(’started ’,GENERATION COUNT, new population[49][3], min value)
new population = calculate fitness of population(new population)
new population = rank members of pop(new population)
mate plan = generate mate plan(new population)
offspring G1 = generate offspring(new population, mate plan)
offspring G1 = calculate fitness of population(offspring G1)
offspring G1 = rank members of pop(offspring G1)

mate plan = generate mate plan(new population)
offspring G2 = generate offspring(new population, mate plan)
offspring G2 = calculate fitness of population(offspring G2)
offspring G2 = rank members of pop(offspring G2)

new population = selection(new population, offspring G1, offspring G2, 50)

best solution tracker(new population[49][4], new population[49][3])

DEBUG. save to file (SOL CHROMO,’solutions’+str(min(SOL TRACK))+’.dat’,1)

#print(’mate plan[0]’,mate plan)

ended time = time.time()
print(’Execution Time : ’,(ended time − started time),’s’)

##−−−−−−−−−−−−−−Main Prog Ends−−−−−−−−−−−−−−−−##

##Overlap Detection − Use for DeBug
def overlap detect(chromo):

#print (’Overlap detect init’)
genes count = int(chromo.size/6)
violation detected = False
for i in range(0,J):

op pointer = 0
ext job order = Oij[i]
no of ops in job = len(ext job order)
for j in range (0, no of ops in job):

selected op = ext job order[j]
for k in range(0,genes count):

if((chromo[k∗6+1]==i+1) and (chromo[k∗6+2]==selected op)):
duration = chromo[k ∗ 6 + 4]
op start = chromo[k ∗ 6 + 5]
op end = op start + duration
if(op end < op pointer):

print (’Violation Found’,chromo[k∗6:k∗6+5],op start,duration, op end)
violation detected = True
#For DeBug purposes
#sys.exit()

op pointer = op end + 1 #points to the next starting date
return violation detected

##−−−−−−−−−−−−−Local Optimization−−−−−−−−−−−−−−−−−−−−−−##

def optimize(chromo):
clear vectors()
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sorted chromo = sort chromo(chromo)
genes = int(len(sorted chromo)/6)

for i in range(0, genes):
ext gene = sorted chromo[6 ∗ i : 6 ∗ i + 6]

job = ext gene[1]
operation = ext gene[2]
comp prec = ext gene[3]
duration = ext gene[4]
if(comp prec>0):

stu = get fixed stu(job, operation)
else:

stu = get next stu(job, operation, 0, duration)
sorted chromo[6 ∗ i + 5] = stu

time unit = stu + duration + 1
update job order vector(job, time unit)
update machine alloc vector(job, operation, 0, duration, stu)

DEBUG. save to file (sorted chromo, ’lso.dat’,DO DEBUG)

return sorted chromo

def sort chromo(chromo):
genes = int(len(chromo)/6)

for i in range(0, genes):
temp min = chromo[6 ∗ i + 5]
pointer = i
for j in range(i, genes):

if(chromo[6 ∗ j + 5] < temp min):
temp min = chromo[6 ∗ j + 5]
pointer = j

if(pointer!=i):
place holder = chromo[6 ∗pointer: 6 ∗ pointer + 6]
for k in range(0,6):

chromo[pointer ∗ 6 + k] = chromo[i ∗ 6 + k]

for k in range(0,6):
chromo[i ∗ 6 + k] = place holder[k]

return chromo

##END OF PROGRAM##
########################################################

A.2 Tournament Selection Algorithm

## File : tournament selection.py.py ##
##Algorithm implemented by Buddhika Kurera, (c) 2017##
## Email − bckurera AT geneai dot edu dot com ##
import gen lib as GL

def get mate plan(population, parents size):
pop size = len(population)
selected parents = []
create mate plan = True
while create mate plan:

selection = tournament selection(population, 4, 6)
selection 1 = selection[0]
selection 2 = selection[1]

if(selection 1[1] < selection 2[1]):
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selection[0] = selection 2
selection[1] = selection 1

else:
selection[0] = selection 1
selection[1] = selection 2

duplicates found = check for duplicates(selection, selection 1[0], selection 2[0])

if(duplicates found==False):
selected parents.append(selection)

if(len(selected parents)==parents size):
create mate plan = False

return selected parents

def check for duplicates(string, value 1, value 2):
occurance 1 = sum(string[i].count(value 1) for i in range(0,len(string)))
occurance 2 = sum(string[i].count(value 2) for i in range(0, len(string)))

if((occurance 1>1) or (occurance 2>1)):
return True

else:
return False

def tournament selection(population, teams , team size):
pop size = len(population)
team list = [[] for i in range(0, teams)]
member list = []

for i in range(0, pop size):
set = [0]∗2
set[0] = population[i][5]
set[1] = population[i][3]
member list.append(set)

team forming = True
while team forming:

remaining member count = len(member list)
selected team = GL.get random number(0, teams)
if (len(team list[selected team]) != team size):

random no = GL.get random number(0, remaining member count)
selected member = member list.pop(random no)
team list[selected team].append(selected member)

if(sum(len(team list[i]) for i in range(0,teams)) == teams∗team size):
team forming = False

for i in range(0, teams):
team list[i] = sort teams(team list[i])

for i in range(0, teams):
for j in range(0,len(team list[i]) − 1):

current team size = len(team list[i]) − 1
competitor 1 = team list[i][current team size]
competitor 2 = team list[i][0]

total fv = competitor 1[1] + competitor 2[1]
comp 1 prob = int((competitor 2[1]∗100)/(total fv))

game result = GL.biased binary random decision(comp 1 prob)

if(game result):#True − competitor 1 wins
team list[i].pop(0)

else:
team list[i].pop(current team size)

a = 1
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final round team = []
for i in range(0, teams):

final round team.append(team list[i][0])
final round team = sort teams(final round team)

for i in range(0,len(final round team) − 2):
current team size = len(final round team) − 1
competitor 1 = final round team[current team size]
competitor 2 = final round team[0]

total fv = competitor 1[1] + competitor 2[1]
comp 1 prob = int((competitor 2[1]∗100)/(total fv))

game result = GL.biased binary random decision(comp 1 prob)

if(game result):#True − competitor 1 wins
final round team.pop(0)

else:
final round team.pop(current team size)

#print(’final round team’, final round team)
return final round team

def sort teams(team): #[unique id, penalty]
team size = len(team)
for i in range(0, team size):

temp min = team[i][1]
temp pointer = i
for j in range(i, team size):

temp = team[j][1]
if(temp>temp min):

temp min = temp
temp pointer = j

if(temp pointer!=i):
place holder = team[temp pointer]
team[temp pointer] = team[i]
team[i] = place holder

return team

def ts for new gen(old population, size):
total population size = len(old population)
order list = [i for i in range(0,total population size)]
new population = []

team size = 8
teams = 5

run selection = True
while run selection:

order list = [i for i in range(0, total population size)]
game teams = [[] for i in range(0, teams)]
for i in range(0, teams):

for j in range(0, team size):
current size = len(order list)
select random member index = GL.get random number(0, current size)
selected member ref = order list.pop(select random member index)
selected member = old population[selected member ref]
game teams[i].append(selected member)

for i in range(0, teams):
play game = True
while play game:

remaining team size = len(game teams[i])
if(remaining team size==2):

break
competitor 1 = game teams[i][remaining team size−1]
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competitor 2 = game teams[i][0]
penalty = [competitor 1[3], competitor 2[3]]

probability = int((max(penalty)∗100)/sum(penalty))

if(GL.biased binary random decision(probability)): #True − competitor 1 wins
game teams[i].pop(remaining team size−1)

else:
game teams[i].pop(0)

for i in range(0, teams):
if (len(new population) != size):

occurance = new population.count(game teams[i][0])
occurance = occurance + new population.count(game teams[i][0])
if(occurance == 0):

new population.append(game teams[i][0])
new population.append(game teams[i][1])

else:
run selection = False

return new population

A.3 Roulette Wheel Selection Algorithm

## File : rol.py ##
##Algorithm implemented by Buddhika Kurera, (c) 2017##
## Email − bckurera AT geneai dot edu dot com ##

import numpy as np
import random as rand

roulette wheel = np.array((0))
slot count = 0

def init roul wheel(value array):

slot count = 0
i=0
arrsize = value array.size
while i < arrsize/2:

slot count = slot count + value array[2∗i+1]
i = i + 1

roulette wheel = np.zeros((slot count),dtype=np.int)
#print(roulette wheel)
i = 0

while i < arrsize/2:
rv = value array[2∗i]
bv = value array[2∗i+1]
j = 0
while j<bv:

t = rand.randint(0,slot count−1)
wheel alloc = roulette wheel[t]
if wheel alloc == 0:

roulette wheel[t] = rv
j = j + 1

i = i + 1
return (roulette wheel)

def spin(rw):
slot count = rw.size
randno = rand.randint(0,100000)
rot degree = randno%360
#rot degree = rand.randint(0,359)
rot unit = 360/slot count
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rol no = (rot degree − (rot degree%(rot unit)))/rot unit
rol value = rw[int(rol no)]
return rol value
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