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Abstract

Thin membranes underpin many light weight deployable space systems. Folds

introduced in these membrane structures for logistics and storage, alter their

in-orbit behaviour while deploying. Numerical modelling is relied on as a

promising tool in studying the deployment behaviour of these space structures.

However, most numerical models aimed at studying deployment behaviour, fail

to incorporate fold-line properties due to unavailability of reliable experimental

data.

In this research, an attempt has been made to virtually predict the fold-line

mechanics using finite element analysis. For this purpose, materially and

geometrically nonlinear contact analyses using Abaqus FEA were performed to

simulate creased geometry and conduct numerical tensile tests on single folded

thin Kapton membranes. Moment - angle responses were plotted using results

of simulations and compared with the data obtained from physical experiments

and a justifiable agreement was achieved. A further comparison with results

from Elastica theory highlights the viability of the proposed numerical approach

over analytical models. The use of virtual simulations to characterize the

mechanics of fold-lines has proved to be an efficient technique.

The developed fold-line behaviour model was then implemented in

commercial finite element package, Abaqus for deployment simulation of single

folded thin Kapton membranes using connector elements defined with rotational

stiffness. The results were validated against physical experiments and compared

with other simulation techniques found in literature. The proposed technique

with connector elements is meritorious over other techniques as it captures both

the deformed profile and axial displacements along the folded membrane with

close agreement with experimental results.
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A quasi-static deployment simulation of a solar sail model with thin

membrane wrapped around a polygonal hub was carried out using

Abaqus/Explicit package to study the deployment behaviour. The fold-line

idealisation scheme with connectors defined with rotational stiffness was used to

model the fold-lines in this multiply-creased membranes. However, the fold-line

stiffness had little effect on the deployment force of the sail in the range of

deployment carried out experimentally .

Keywords : ultra-thin membranes, finite element simulations, fold-line

mechanics, rotational stiffness, neutral angle
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