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Abstract 

The power system is a dynamic system, which consists of nonlinear elements. 

Generally, methods based on linearization are sufficient to analyse the system under 

both normal operating conditions and perturbations of the variables. However, due to 

the stressed operating conditions, system behaviour is highly influenced by the 

nonlinear elements of the system. Therefore, analysis based on linearized methods is 

not sufficient to understand the system behaviour under such conditions. In this 

thesis, a nonlinear analysis is carried out based on bifurcation theories to identify the 

system behaviour more accurately. 

The case study considers the effect of integrating the Lakvijaya power station to the 

Sri Lankan power system, which can be considered as a small system. Dynamic 

voltage stability assessment based on bifurcation analysis for both intact and 

contingency conditions were carried out for a system under consideration. The 

critical state variables for a bifurcation were identified and mitigation criterions are 

suggested. 
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1 INTRODUCTION 

This chapter presents an introduction of Sri Lankan power system and the role of the 

Lakvijaya power station. In addition, problem statement and objectives of this study 

are presented here. 

1.1 The Background 

Increasing electrical power demand urges effective utilization of all the available 

resources such as power plants, transmission lines and substations to maximize the 

performance and reduce the cost. In order to deliver power while fulfilling the above 

criteria, operation conditions of power plants and other equipment need to be planned 

well and conform to operate within their limits. Sri Lankan power system comprised 

of 4087 MW installed capacity with the diversified generation mix as in Table 1.1 

[1].  

Table 1.1 : Installed Generation Capacity by Source 

Source Installed Capacity (MW) 

Major Hydro 1391 

Mini Hydro 354 

Thermal – Oil 1233 

Thermal – Coal 900 

Other Renewable 209 

Total 4087 

Source: “Statistical Digest,” Ceylon Electricity Board, 2017 

AC transmission network consists of 220 kV (total length of 601 km) and 132 kV 

(total length of 2313 km including both overhead and underground) lines. 

Distribution network at 33 kV and 11 kV covers around 33269 km and around 99.7% 

of the country is electrified [2]. 

In order to diversify the fuel mix in the generation as planned, on March 2011, phase 

one of the Lakvijaya coal fired power plant was commissioned. Phase two was added 

to the system on May 2014, providing 900 MW total. Power station consists of three, 

two pole, cylindrical rotor, synchronous generators with a capacity of 353 MVA each 

connected to a steam turbine. Generated voltage at 20 kV is converted to 220 kV 

using 360 MVA step up transformers and connected to the national grid through two 

double circuit transmission lines. Currently, on a typical day (24 hrs), Lakvijaya 

power plant provides more than 50% of the total energy requirement of Sri Lanka.  
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1.2 Problem Statement 

To get the optimal utilisation of available capacities, it is required to operate the 

system near its stability margins. Therefore, it is vital to have a good understanding 

on stability boundaries and behaviour of system stability based on operational 

conditions. Power system is a nonlinear system comprised of a large number of 

variables and hence analyzing its stability using linearized methods will not give 

precise details when the nonlinearities become prominent. Therefore, it is essential to 

use non-linear analysis methods to a get proper understanding of the system and its 

transient performance. 

1.3 Objectives  

The main objective of this research is to evaluate the parameters affecting the power 

system stability when integrating a large power plant to a small power system. 

Mainly, how to determine the voltage stability region accurately in a given bus and 

its relationship to machine parameters is evaluated. Specific objectives are, 

 To develop a mathematical model to evaluate power system voltage stability 

 To determine the stability region accurately considering the nonlinearities in 

the power system 

 To apply the proposed method to evaluate the parameters affecting power 

system stability in integrating Lakvijaya power station to the Sri Lankan 

power system 

1.4 Thesis Outline 

The thesis is divided into six chapters as follows; 

Chapter 2 – This gives a complete review on literature related to analysing the 

nonlinear system using nonlinear techniques. Stability criterion of the system based 

on Lyapunov definitions and eigenvalues based techniques are also presented.  

Chapter 3 – Presents the methodology used to achieve the identified objectives of the 

study. Each step described briefly. 

Chapter 4 – Gives a complete overview of modelling the system. Technical aspects 

of each element are discussed here. 

Chapter 5 – Present the results of the study based on analysis considering both intact 

and contingency situation of a system. Analysis based on both traditional eigenvalue 

method and nonlinear bifurcation method is presented. 

Chapter 6 – Recapitulate major findings of the study and present future directions 
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2 LITERATURE REVIEW 

This chapter presents a comprehensive review of literature related to the subject area 

of the nonlinear dynamics and bifurcation theory. 

2.1 Dynamic System 

Dynamic system is a system in which the state continuously changes with time. 

These changes are governed by a set of rules that specify the states of the system for 

either discrete (governed by algebraic equations) or continuous (governed by 

differential equations) values of time. 

2.2 State Space Representation 

Formulating a system model is vital to get proper representation of the system 

behaviour under the transient and sub transient conditions. State space can be 

identified as a normalized space of independent coordinates required to describe the 

behaviour of the dynamic system. These independent coordinates are called the state 

variables and it is the smallest set of variables that required to represent the system. 

A nonlinear system can be described by a set of differential and algebraic equations 

as in Equation (2.1) and (2.2) respectively [3] [4]. 

 

𝑥 = 𝐹  𝑥 ,𝑢 , 𝑡    2.1 

𝑦 = 𝐺 (𝑥 ,𝑢 , 𝑡) 2.2 

 

Here x represents the states and u represents the inputs of the system. Inputs and 

states can be any number that required to represents the system accurately. Using 

vector matrix notation for a system having n states and m inputs, x, u and F can be 

represented by 

𝑥 =  

 
 
 
 
𝑥1
𝑥2

:
𝑥𝑖
𝑥𝑛 
 
 
 

 , 𝑢 =  

 
 
 
 
𝑢1
𝑢2

:
𝑢𝑖
𝑢𝑚  

 
 
 

 , 𝐹 =

 
 
 
 
 
𝐹1

𝐹2

:
𝐹𝑖
𝐹𝑛  
 
 
 
 

 

 

2.3 

In both Equations (2.1) and (2.2), time is denoted by t. If the derivatives of the state 

variables (i.e.  𝒙  ) are not explicitly depend on time, the system is said to be 

autonomous or otherwise non-autonomous [5]. 

2.3 Linearization 

It is possible to linearize the nonlinear system equation about the equilibrium point as 

follows [5].  In Equation (2.1), if 𝒙𝟎  and 𝒖𝟎  are the state and input vectors 

respectively, which satisfy the equilibrium of the system, then, 
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𝑥 = 𝐹 𝑥0 ,𝑢0 = 0   2.4 

With small deviation to the above equilibrium point, 

𝑥 =  𝑥0 +  ∆𝑥 , 𝑢 =  𝑢0 +  ∆𝑢  2.5 

Substituting the Equation (2.1), 

𝑥 = 𝑥 0 + ∆𝑥  =  𝐹[ 𝑥0 +  ∆𝑥 , (𝑢0 +  ∆𝑢)] 2.6 

Using Taylor´s series expansion and neglecting higher derivatives following 

equations can be obtained;  

∆𝑥 𝑖 =  
𝜕𝐹𝑖
𝜕𝑥1

∆𝑥𝑖 +  …+  
𝜕𝐹𝑖
𝜕𝑥𝑛

∆𝑥𝑛 +  
𝜕𝐹𝑖
𝜕𝑢1

∆𝑢1 +  …+
𝜕𝐹𝑖
𝜕𝑢𝑚

∆𝑢𝑚  2.7 

∆𝑦𝑗 =  
𝜕𝐺𝑗
𝜕𝑥1

∆𝑥𝑖 +  …+ 
𝜕𝐺𝑗
𝜕𝑥𝑛

∆𝑥𝑛 +  
𝜕𝐺𝑗
𝜕𝑢1

∆𝑢1 +  …+
𝜕𝐺𝑗
𝜕𝑢𝑚

∆𝑢𝑚  2.8 

 

Where i = 1,2,....,n and  j = 1,2,....,m 

This can be written as,  

∆𝑥 = 𝐴∆𝑥 + 𝐵∆𝑢  2.9 

∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢  2.10 

Where, 

A is the state matrix of size n×n 

B is the input matrix of size n×m 

C is the output matrix of size m×n 

D is the feed forward matrix of size m×m 

2.4 Power System Stability 

Stability of a system can be broadly characterised as steadiness, firmness or strength 

to stand without being overthrown. An equilibrium point of the dynamic system is a 

point in a state plane where there is a constant state of the system at all the time. This 

equilibrium point can be stable or unstable depending on the behaviour of the state 

variables and the inputs. Three quantities are important in power system operation 
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i.e. Power angle, Frequency and the Voltage. Based on these quantities, power 

system stability can be divided into three subsets (Figure 2.1). Rotor angle stability is 

to maintain synchronism through torque balance (between electromagnetic torque 

and mechanical torque) of generators connected to the system. Frequency stability is 

the ability to maintain steady frequency when the power system undergoes 

significant imbalance between generation and load. Voltage stability is the ability to 

maintain steady acceptable voltage following a system disturbance. Voltage 

instability can cause through reactive power unbalance and rotor angle instability. It 

is also important to note that due to the nonlinear nature of the power system, 

stability depends on both the initial condition of the system and the nature of the 

disturbance [3] [6].  

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Voltage Stability 

Voltage stability refers to the ability of the power system to maintain steady voltages 

at all buses in the system after being subjected to a disturbance from a given initial 

operating condition [7]. Voltage instability is generally caused by a stressed system 

resulting progressive fall or rise of voltage of some buses in the power network. The 

main factor for this instability is the inability of the system to meet the demand for 

reactive power. Voltage stability can be classified under the following subcategories. 

Large disturbance voltage stability is defined as the ability to maintain voltage 

stability after the large disturbance such system faults, loss of generation or circuit 

contingencies. Small disturbance voltage stability is defined as the ability to maintain 

stability after small perturbations. These criterions can be further divided into two 

Power 
System 
Stability

Rotor Angle 
Stability

Small 
Disturbance 

Angle 
Stability

Transient 
Stability

Frequency 
Stability

Voltage 
Stability

Large 
Disturbance 

Voltage 
Stability

Small 
Disturbance 

Voltage 
Stability

Figure 2.1 : Stability Criteria 
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based on time as short term and long term stability [5] [7]. Many voltage instability 

phenomena have been reported in recent past where some were leading to the 

cascade failures of the system [8] [9] [10]. Increase in the demand for the electric 

power forces the transmission network to operate near its margins. Further, the 

excessive usage of equipment such as low inertia compressor motors and power 

electronic controllers in both household and industries have a negative impact on 

voltage stability of the system. 

2.6 Lyapunov Stability Definition 

There are several theories that define and characterize the stability of a system. 

However, the Lyapunov stability definitions and related theories are most commonly 

used in defining a stability of a nonlinear system especially in power system. 

Consider the Equation (2.1) where x is a state vector. All the control inputs are 

assumed to be known functions of the system states and time. Assume equilibrium 

point of Equation (2.1) to be, x = 0: 

• Stable if for each 𝜖 > 0 , there is 𝛿 =  𝛿 𝜖, 𝑡0 > 0 such that; 

 

 𝑥(𝑡0) <  𝛿 ⇒   𝑥(𝑡) <  𝜖,∀ 𝑡 ≥  𝑡0   ≥ 0 

 

• Uniformly stable if, for each 𝜖 > 0, there is 𝛿 =  𝛿 𝜖 > 0, independent of  

𝑡0, such that;  

 𝑥(𝑡0) <  𝛿 ⇒   𝑥(𝑡) <  𝜖,∀ 𝑡 ≥  𝑡0   ≥ 0 

• Unstable if not stable 

• Asymptotically stable if it is stable and in addition there is 𝜂 𝑡0 > 0 such 

that;  

 𝑥(𝑡0) <  𝜂 𝑡0  ⇒  𝑥 𝑡 → 0 𝑎𝑠 𝑡 → ∞  

 

• Uniformly asymptotically stable if it is uniformly stable and there is 𝛿0 > 0 , 

independent of  𝑡0, such that for all  

 𝑥(𝑡0) <  𝛿0 ,   𝑥 𝑡 → 0 𝑎𝑠 𝑡 → ∞ 

Uniformly in 𝑡0  and 𝑥(𝑡0), that is for each 𝜖 > 0, there is 𝑇 = 𝑇 𝜖, 𝛿0 > 0 

such that; 

 𝑥(𝑡0) <  𝛿0  ⇒   𝑥(𝑡) <  𝜖, ∀ 𝑡 ≥  𝑡0 +  𝑇 𝜖,𝛿0  

If a system is asymptotic stable, regardless of starting point, system will eventually 

return to the equilibrium point after a disturbance. On the other hand, in uniformly 

asymptotical stable system, it will not return to the equilibrium point but demonstrate 

stable oscillations. 
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2.7 Eigenvalues and Stability 

It is possible to define a scalar parameter (say 𝝀) such a way that there exist non 

trivial solutions for the Equation (2.11). 

𝐴𝜙 =  𝜙𝜆 2.11 

𝑑𝑒𝑡 𝐴 −  𝜆𝐼 =  0 2.12 

Where, 

𝐴 – System matrix of n × n 

𝜙 – Vector of n × 1 

𝐼 – Identity Matrix 

By solving the Equation (2.12), it is possible to find n number of solutions for the 

scalar 𝝀, which is identified as eigenvalue of system matrix A. It should be noted that 

the number of eigenvalues are equal to the number of state variables in the system 

matrix. In general, eigenvalues can be written in a form of (𝝈 + 𝑖𝝎) and depending 

on the value of 𝝈 and 𝝎 the stability of a system matrix can be defined as in Table 

2.1 [5]. 

Table 2.1 : Eigen value Stability Criterion 

Eigen value Type Stability 
Oscillatory 

Behaviour 
Notation 

All real and positive Unstable None Nodal Source 

All real and negative Stable None Nodal sink 

Mixed real Unstable None Saddle point 

𝜎 + 𝑖𝜔 Unstable Un-damped Spiral source 

−𝜎 + 𝑖𝜔 Stable Damped Spiral sink 

 

2.8 Bifurcation Theory 

Although the bifurcation theory has a classical mathematical background from the 

works of a Swiss mathematician Leonhard Euler (1744), its modern development 

begins with a French mathematician Jules H. Poincare (1900). The meaning of the 

bifurcation is some sort of branching process. This is used extensively to describe 

any process in which the quantitative or topological behaviour of the object, which is 

under consideration, alters with the change of a parameter on which the object 
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depends. In order to get a clear idea about the bifurcation and related sub theories 

following terms need to be defined. 

Orbits – These are the curves in the state space parameterised by the time and 

oriented by its direction of increase governed by the system equations under 

consideration. Basically, this is another representation of a system either the 

continuous or discrete [11]. 

Phase portrait – This is a diagram, which partition the state space of a dynamic 

system into orbits. By doing so, it is possible to identify the dynamic behaviour of 

the system under consideration qualitatively [11]. 

Limit cycle – This is a periodic solution or a periodic orbit of a dynamic system.  The 

system is in a dynamic steady state when the trajectory of the system approaches a 

closed curve and remains there for 𝒕 ≥  𝒕𝟎. This closed cycle, towards which the 

trajectory wind, is identified as the limit cycle [11].  

Equation (2.13) shows the continuous dynamic equation where x is a variable and 𝜶 

is a parameter. When the parameter changes, the phase portrait of the system also 

changes. This change might be either topologically equivalent or not equal to the 

original phase portrait. The appearance of a topologically non equivalent phase 

portrait under variation of parameters is called the Bifurcation [12]. 

 𝑥 = 𝐹 𝑥 ,𝛼  2.13 

Therefore, the bifurcation is a change of the phase portrait of the system as the 

parameter under consideration is changed. The particular value of the parameter that 

changes the topology is defined as bifurcation value (or critical value). Bifurcation 

can be broadly divided as a global and local bifurcation. Under these clarifications, 

there are several types of bifurcation phenomena exist (Table 2.2) [13] [14]. In this 

research, only the saddle node bifurcation and Hopf bifurcation were considered. 

 

Table 2.2 : Classification of the Bifurcation 

Global Bifurcation 

• Homoclinic 

• Heteroclinic 

• Infinite period 

 

 

 

Local Bifurcation 

• Saddle node 

• Transcritical 

• Pitchfork 

• Period doubling 

• Hopf 
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2.9 Saddle Node Bifurcation 

Consider Equation (2.13); As discussed in the Section 2.8, 𝜶 is the system parameter 

and assume that at 𝜶 = 0, the system is in equilibrium with 𝒙𝟎 = 0 , 𝝀𝟏 = 0 and 

𝝀𝟐 < 0 , where 𝝀𝟏 , 𝝀𝟐  are eigenvalues. It can be proven that, under the given 

conditions, Equation (2.13) can be decoupled into two locally topologically 

equivalent equations. Further, it can be proven that the phase portraits of the 

decoupled system depend on a selected parameter. The system has two hyperbolic 

equilibriums when 𝜶 < 0. One is a stable node, (Figure 2.2 (a)) and other is a saddle 

point (Figure 2.2 (b)). At 𝜶 = 0 these two points collide each other and form the 

saddle node point. If the parameter increased further i.e. 𝜶 > 0  system will not have 

any equilibrium point [15]. 

2.10 Hopf Bifurcation 

Assume that the system is at hyperbolic equilibrium where 𝒙 = 𝒙𝟎  when the 

parameter 𝜶 = 𝜶𝟎 in Equation (2.13). It can be seen that under the small variation of 

the parameter 𝜶, equilibrium changes slightly but the topology remains hyperbolic. If 

the parameter changes further, there are two possible situations where hyperbolic 

topology can be violated: simple real eigenvalues approaches zero or pair of complex 

eigenvalues reaches the imaginary axis.  

There are two eigenvalues such that (𝝀𝟏,𝟐 =  ±j), where 𝒘 > 0, when the latter 

condition is fulfilled. The bifurcation associated with this condition is defined as 

Hopf bifurcation. This can be described as if the system is having a complex pair of 

eigenvalues, which crosses imaginary axis with non-zero speed with the change of 

the parameter, a unique periodic solution appears or disappears. Hopf bifurcation can 

be divided into two subclasses. i.e. Supercritical Hopf and Subcritical Hopf 

bifurcation. 

Figure 2.2 : Saddle Node Bifurcation [12] 
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Supercritical Hopf Bifurcation - A Hopf bifurcation that forms a stable limit cycle. 

When supercritical bifurcation occurs, stable limit cycle exists around the unstable 

equilibrium point (Figure 2.3) 

 

Figure 2.3 : Supercritical Hopf Bifurcation [12] [16] 

 

Consider the point A in Figure 2.3. At this point, the system is stable. With the 

change in the parameter 𝜶 system moves to the operating point B. As long as the 

system is not undergoing any disturbance, it will stay at point B. But, the point B is 

not stable, and if the system experiences any small disturbance, it will lose its 

original position and exhibit sustained oscillations (Uniformly asymptotically stable) 

[17] [16].  

Subcritical Hopf Bifurcation – In this bifurcation, an unstable limit cycle exists 

around the stable equilibrium point.  

 

Figure 2.4 : Subcritical Hopf Bifurcation [12] [16] 
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Consider the system is operating at point C in the Figure 2.4. Then the system is 

stable and it can sustain small disturbances without losing stability. On the other 

hand, a small disturbance can make the system unstable if the system is at point D 

(i.e. outside the limit cycle). Therefore, the stability region is defined by the limit 

cycle and any operating point outside is not stable. When the disturbance happened, 

the system will move further from the equilibrium point and exhibit un-sustained 

oscillations. [17] [16]. 

2.11 Participation Factors 

As discussed in Section 2.7, a scalar parameter (𝝀) and a non zero column vector (𝝓) 

can be defined such a way that it will satisfy Equation (2.11). Vector 𝝓 is a right 

eigenvector (Equation 2.14) [5] associated with the eigenvalue 𝝀.  

𝜙𝑖 =  

 
 
 
 
 
 
𝜑1𝑖

𝜑2𝑖

.
𝜑𝑖𝑖

.
𝜑𝑛𝑖  

 
 
 
 
 

 2.14 

For an every eigenvalue and a related eigenvector, Equation (2.11) holds and if there 

are n numbers of eigenvalues corresponding to the n numbers of state variables,  

𝐴 [𝜙1 𝜙2 … .𝜙𝑖 … .𝜙𝑛 ] = [𝜙1 𝜙2 … .𝜙𝑖 … .𝜙𝑛 ]  

 
 
 
 
 
𝜆1 0 . 0 0
0 𝜆2 . 0 0
. . . . 0
. . . 𝜆𝑖 .
0 0 . 0 𝜆𝑛  

 
 
 
 

 2.15 

𝐴Φ =  ΦΛ 2.16 

Where, 

Φ = [𝜙1 𝜙2 … .𝜙𝑖 … .𝜙𝑛 ]  

Λ =

 
 
 
 
 
𝜆1 0 . 0 0
0 𝜆2 . 0 0
. . . . 0
. . . 𝜆𝑖 .
0 0 . 0 𝜆𝑛  

 
 
 
 

  

𝜱 is a square matrix and 𝜦 is a diagonal matrix of the eigenvectors and eigenvalues 

of the state matrix A respectively. It can be proven that for the distinct eigenvalues of 

the particular state matrix, corresponding eigenvectors are linearly independent. 

Therefore 𝜱 is a non singular matrix and the inverse (𝜳) exists (Equation 2.17). 
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Φ−1 = [𝜙1 𝜙2 … .𝜙𝑖 … .𝜙𝑛 ]−1 =   Ψ =  

 
 
 
 
 
 
ψ1

ψ2

.
ψ𝑖

.
ψ𝑛  

 
 
 
 
 

 2.17 

ψ𝐴 =  ψ𝜆 2.18 

Further, 

 
 
 
 
 
 
ψ1

ψ2

.
ψ𝑖

.
ψ𝑛  

 
 
 
 
 

 𝐴 =

 
 
 
 
 
𝜆1 0 . 0 0
0 𝜆2 . 0 0
. . . . 0
. . . 𝜆𝑖 .
0 0 . 0 𝜆𝑛  

 
 
 
 

 

 
 
 
 
 
 
ψ1

ψ2

.
ψ𝑖

.
ψ𝑛  

 
 
 
 
 

 2.19 

Ψ𝐴 =  ΛΨ 2.20 

Vector 𝝍 is a left eigenvector (Equation 2.18) associated with the eigenvalue 𝝀 of the 

state matrix A. 

Consider Equation (2.9) with zero input (i.e.∆𝒖 = 0). All the state variables are 

linearly contributing to the rate of change of each state variable. Therefore, it is vital 

to isolate and decouple each parameter to identify the most significant variable. In 

order to decoupling the state variables, new state vector (z) is introduced such that, 

∆𝑥 =  Φz 2.21 

Using the relationships in Equation (2.9), (2.20) and (2.21) it can be proven that,  

𝑧  =  Λz 2.22 

Equation (2.22) is the model form of the original state equation (Equation 2.9) with 

zero input. Since 𝜦 is a diagonal matrix, Equation (2.22) represents set of uncoupled 

scalar differential equations. The variable z is defined as a mode or modal variable of 

the system. From the Equation (2.17) and (2.21) it can be proven that, 

𝑧 =  Ψ∆𝑥  2.23 

From Equation (2.21), right eigenvector gives the relative contribution of the each 

state variable in a particular mode (z). In Equation (2.23), left eigenvector identify 
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the combination of the state variables in a particular mode (z). By combining right 

eigenvectors and left eigenvectors, participation matrix is obtained to identify the 

relationship between the states and modes of the system more accurately [3] [5]. 

𝑃 = [𝑃1 𝑃2 …  𝑃𝑖 … .𝑃𝑛 ] 2.24 

 𝑃𝑖 =  

 
 
 
 
 
 
𝑝1𝑖

𝑝2𝑖

.
𝑝𝑘𝑖

.
𝑝𝑛𝑖  

 
 
 
 
 

 =  

 
 
 
 
 
 
𝜑1𝑖  𝜓𝑖1

𝜑2𝑖  𝜓𝑖2

.
𝜑𝑘𝑖  𝜓𝑖𝑘

.
𝜑𝑛𝑖  𝜓𝑛1 

 
 
 
 
 

 2.25 

The element 𝒑𝒌𝒊  in Equation (2.25) is the participation factor and it measures the 

relative participation (net) of the k
th

 state variable in the i
th
 mode in a particular 

system. 
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3 METHODOLOGY 

Methodology used in this research can be summarised as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Problem Identification 

Demand for the electricity in Sri Lanka has been increased rapidly during the past 

few years. Due to the supply limitations power system had to operate closer to its 

margins to cater the demand continuously. Therefore, it is vital to have a proper 

understanding of the system stability under the tight loading conditions. In such 

conditions, nonlinearities become prominent and should consider when defining the 

stability boundaries of the system. To address this problem, analysis based on 

nonlinear theories is suggested. Voltage stability of the network is studied and the 

influence of the system parameters are analysed using selected nonlinear 

methodology. 

3.2 Nonlinear Analysis and Method Selection 

Eigenvalue analysis based on linearized systems is a traditional and convenient 

method used to evaluate stability. However, when applying this method to evaluate 

the nonlinear system, the detailed aspect of the nonlinear behaviour cannot be 

obtained. Therefore, it is vital to use nonlinear methods to get a proper understanding 

of the system. Bifurcation method is selected after evaluating other nonlinear 

Problem Identification

Non Liner Analysis and Method Selection

Bifurcation Analysis

Developing the Mathamatical Model

Linearization and Eigenvalue Analysis

Numerical Analysis
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approaches such as dynamic phasor, reduced order modelling and scholastic 

modelling [18] [19] [20]. 

3.3 Bifurcation Analysis 

A continuous dynamic system can be well explained using a set of Ordinary 

Differential Equations (ODEs). These equations mostly contain parameters along 

with system variables. Small change to these parameters can cause sudden variations 

in the system behaviour. Bifurcation analysis deals with identifying these branching 

phenomena of the system qualitatively under the influence of critical parameter 

(bifurcation parameter). 

3.4 Developing the Mathematical Model 

A mathematical model is developed incorporating all the major elements of the 

system. To represent the synchronous generator more accurately six variable model 

is used along with the exciter model. This helps to identify the influence of the power 

plant to the network changes more accurately. System modelling is given in Chapter 

4. 

3.5 Linearization and Eigenvalue Analysis 

Set of ODEs linearized around the equilibrium point and obtained a system matrix. 

To evaluate the voltage stability of the network, reactive power of the load bus is 

selected as a variable parameter. The Analysis is done for both intact and 

contingency conditions to identify system behaviour under the different operating 

situations. Using the derived system matrix eigenvalues were calculated. Eigenvalue 

movement was then analysed with the change in the selected parameter and the 

stability was explained using the bifurcation theory. 

3.6 Numerical Analysis 

New functions were developed using MATLAB to solve the ODEs numerically and 

obtain load flow calculation (Appendix C). Bifurcation diagram is obtained and 

results from eigenvalue analysis were compared with bifurcation outcomes. 

Following steps were involved in the computation. 

 Calculate the Ybus matrix for the selected condition 

 Read the given input related to the system element  

 Perform load flow calculation and derive equilibrium condition 

 Solve the system numerically using derived equilibrium data 

 Evaluate for different perturbations 
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4 MODELLING THE SYSTEM 

4.1 Introduction 

As discussed earlier, the power system is a nonlinear, multivariable dynamic system 

comprise of different elements. Modelling the system to represent actual behaviour is 

vital to carry out proper analysis. Main components of the system can be divided into 

four sections and detailed discussions on modelling these elements are presented in 

the following sections.  

4.2 Synchronous Generator Model 

As discussed in Section 1.1, Lakvijaya power station has three, two pole, cylindrical 

rotor synchronous generators each rated at 353 MVA. The generator output voltage 

is 20 kV, which is then stepped up to 220 kV. It is driven by a steam turbine directly 

coupled through a single shaft. Sixth order mathematical model is used to model the 

generator, which represents the dynamic behaviour of the generator rotor, field 

winding and the damper windings. Damper windings consist with one winding along 

the d axis and two windings along the q axis. Parameters of Equations (4.1) to (4.6) 

were configured based on [5], and transient and sub transient characteristics are also 

considered.   

∆𝑤 𝑟  =  
1

2𝐻
[𝑃𝑚  –  𝑃𝑒 −  𝑘𝐷∆𝑤𝑟 ] 4.1 

𝛿 =  𝑤0∆𝑤𝑟  4.2 

𝜓 𝑓𝑑 =  
𝑤0𝑅𝑓𝑑
𝐿𝑎𝑑𝑢

𝐸𝑓𝑑 −  
𝑤0𝑅𝑓𝑑
𝐿𝑓𝑑

𝜓𝑓𝑑 +  
𝑤0𝑅𝑓𝑑
𝐿𝑓𝑑

[𝐿𝑎𝑑𝑠
′′ (−𝑖𝑑 +  

𝜓𝑓𝑑

𝐿𝑓𝑑
+   

𝜓1𝑑

𝐿1𝑑
)] 4.3 

𝜓 1𝑑 =  𝑤0[−
𝑅1𝑑

𝐿1𝑑
𝜓1𝑑  −  

𝑅1𝑑

𝐿1𝑑
𝐿𝑎𝑑𝑠
′′ (−𝑖𝑑 +  

𝜓𝑓𝑑

𝐿𝑓𝑑
+   

𝜓1𝑑

𝐿1𝑑
)] 4.4 

𝜓 1𝑞 =  𝑤0[−
𝑅1𝑞

𝐿1𝑞
𝜓1𝑞 +  

𝑅1𝑞

𝐿1𝑞
𝐿𝑎𝑞𝑠
′′ (−𝑖𝑞 +  

𝜓1𝑞

𝐿1𝑞
+   

𝜓2𝑞

𝐿2𝑞
)] 4.5 

𝜓 2𝑞 =  𝑤0[−
𝑅2𝑞

𝐿2𝑞
𝜓2𝑞 + 

𝑅2𝑞

𝐿2𝑞
𝐿𝑎𝑞𝑠
′′ (−𝑖𝑞 +  

𝜓1𝑞

𝐿1𝑞
+   

𝜓2𝑞

𝐿2𝑞
)] 4.6 

Where, 

∆𝑤𝑟  = Rotor speed deviation 

 𝛿 = Rotor angle 

𝜓𝑓𝑑  = Field winding flux 
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𝜓1𝑑  = Direct axis damper winding flux 

𝜓1𝑞 ,𝜓2𝑞  = Quadrature axis damper winding flux 

4.3 Exciter Model 

Thyristor controlled static exciter is used in power plant to generate required DC 

voltage to excite the synchronous generator. Excitation voltage and current of the 

exciter are 365 V and 2642 A respectively. A separate transformer, connected to the 

output terminal of the generator, is used to energize the exciter. IEEE AC4 excitation 

system model, as shown in Figure 4.1, was selected [21]. 

 

𝑉 1 =  
1

𝑇𝑒
[–𝑉1 +  𝑘1(𝑉𝑟𝑒𝑓  –  𝐸𝑡)] 4.7 

𝐸 𝑓𝑑  =  
1

𝑇𝑏
[–𝐸𝑓𝑑  +  𝑉1  1 −  

𝑇𝑎
𝑇𝑒
 +  

𝑘1𝑇𝑎
𝑇𝑒

(𝑉𝑟𝑒𝑓  –  𝐸𝑡)] 4.8 

Where, 

𝐸𝑓𝑑  = Field Voltage 

𝑉𝑟𝑒𝑓  = Reference Voltage 

𝐸𝑡  = Terminal Voltage 

4.4 Load Model 

The power system, in general, is a complex structure comprised of generators, 

transmission networks, distribution networks, and loads. Stable operation of a power 

system solely depends on the ability to match generation with loads on the system. 

When analysing the power system, distribution levels are generally not considered 

directly but replaced by equivalent loads referred as composite loads [3]. These 

Figure 4.1 : IEEE AC4 Exciter Model 
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composite loads can be classified into two categories: static and dynamic loads. 

Generally, a static representation is used in load flow studies [13]. However, for the 

small signal and transient studies, application of the dynamic load model is vital. 

Following dynamic load model is used in this study.  

𝑃 =  𝑃0 +  𝑃1 +  𝑘𝑝𝑤𝛿 +  𝑘𝑝𝑣(𝑉 + 𝑇𝑉)  4.9 

𝑄 =  𝑄0 +  𝑄1 + 𝑘𝑞𝑤𝛿 +  𝑘𝑞𝑣𝑉 + 𝑘𝑞𝑣2𝑉
2 4.10 

Where, 

𝑉 = Bus voltage 

𝛿 = Rotor angle 

𝑃0,𝑄0 = Static active and reactive component of the dynamic load 

𝑃1,𝑄1 = Active and reactive component of the static load 

𝑃,𝑄 = Active and reactive component of the composite load 

4.5 Network model 

The Lakvijaya power plant is connected to the national grid via New Anuradhapura 

(NA) and New Chilaw (NC) 220 kV double circuit lines having a length of 100 km 

and 74 km respectively. NA 220 kV bus is connected to the New Habarana (NH) via 

220 kV, 50 km long double circuit line. NH bus is connected to NC 220 kV bus 

through Veyanagoda substation forming a 220 kV ring network (Figure 4.2).  

 

Figure 4.2 : Network in Intact Condition 
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Since the Kothmale 220 kV bus is connected to the NH substation, it is taken as a 

swing bus for the power flow calculation. NA and NC buses were considered as load 

buses and connected to the dynamic loads respectively [22].  

4.6 System Configuration 

The generator of the system was modelled using the sixth order model as explained 

in Chapter 4. Detailed modelling of the generator (Equation A.1 to A.24) and 

dynamic data used are given in Appendix A.1. The detailed exciter modelling and 

parameter values are illustrated in Appendix A.2. Figure 4.2 presents the network 

model used in this study and details are given in Appendix A.3. For the analysis, bus 

4 is considered as the swing bus. Composite load model is used to represent the 

loading of the buses [13] [23]. Load of each bus was analysed and values for the 

gains were calculated using the 220 kV bus (both NA and NC) data in Appendix B.  
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5 RESULTS AND ANALYSIS 

Linearised model was used to obtain the system matrix of the system. Then 

eigenvalues were calculated and the movement of the critical eigenvalues were 

analysed. 

5.1 Test System in Intact Condition 

The test system in the Figure 4.2 consists of 12 state variables and system matrix was 

obtained from linearized equations in Appendix A.3 for the intact condition. The 

nominal operating point of the power system under consideration was calculated 

from power flow equations and stability was evaluated using eigenvalue analysis. 

Then, the reactive load at the bus 4 (Figure 4.2) increased to simulate the stressed 

operating condition. 

 

Figure 5.1 : Reactive power Vs Voltage 

 

First, the dynamic behaviour of the intact system is analysed varying the reactive 

power at the bus 4. When the reactive power increased, the voltage at bus 4 gradually 

decreases (or increases). After significant increment of reactive power, saddle node 

bifurcation happened and there is no possible operating point beyond this loading 

point. In between this saddle point and nominal loading value, there are two possible 

operating conditions (Figure 5.1). These two conditions were analysed using the 

eigenvalues to identify the stability. 
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Figure 5.2 shows the eigenvalues related to the two possible operating conditions at 

the reactive power of 1 pu. All the eigenvalues at 0.908 pu voltage, were at the left 

half plane of the real axis. Whereas some eigenvalues of the other solution, i.e. 0.059 

pu, were at the right half plane of the real axis. Therefore, only the 0.908 pu voltage 

level is the stable solution. When reactive loading at the bus increases further voltage 

begins to decrease till there is no equilibrium point. 

 

Figure 5.3 : Eigenvalue Movement in Intact Network  

Figure 5.2 : Eigen Values 
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Further, the eigenvalue movement was analysed by varying the reactive power at the 

load bus. The movement of the relevant eigenvalues as the loading is increased is 

shown in Figure 5.3. Only the stable voltage solution is considered to identify the 

eigenvalue movement when increasing the loading of the bus. All the eigenvalues till 

the saddle node point were in left half resulting stable operating region. Results 

indicate that under the intact condition of the system it is going to be stable for the 

reactive loading till the saddle node point.  

5.2 Test System in Contingency Condition 

Then the system is analysed for a contingency situation as shown in Figure 5.4. 

 

Figure 5.4 : One Line Outage – New Anuradhapura 

New Anuradhapura double circuit line outage was considered and all the other 

parameters were kept as in intact condition. Eigenvalue movements related to the 

stable solution was analysed with the increase in reactive power loading at bus 4.  

It was observed that all the eigenvalues move toward the right half plane when 

increasing the parameter. At the reactive loading of 4.9169 pu, a pair of eigenvalues 

crosses the real axis at (0.0 ± 3.5381𝑖 ) as shown in Figure 5.5 (eigenvalue having 

positive imaginary part is used from the pair of critical eigenvalue). Loading was 

further increased and at 5.12200 pu of reactive loading, critical eigenvalues pair 

again crosses the real axis at (0.0 ± 1.4445𝑖 ), and moves back to the left half plane. 
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Figure 5.5 : Critical Eigenvalue Movement in Contingency Condition 

Figure 5.6 shows the voltage profile when increasing the reactive load at bus 4 under 

the contingency situation. According to the stability criterion based on eigenvalues, 

system behaviour can be explained as follows: Before system reach point A, all 

twelve eigenvalues were in left half plane and system is well stable for small 

disturbances. With the loading pair of eigenvalue crosses the real axis at point A 

leading to voltage instability. 

 

Figure 5.6 : Reactive Power Vs Voltage 
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Therefore, between the point A and B, system experiences voltage instability and 

after point B, system becomes stable again till the system losses equilibrium at the 

saddle node. 

5.3 Bifurcation Analysis 

First, consider the intact condition. As explained earlier there are two equilibriums 

for the system. One is stable i.e. all the eigenvalues are in the left half plane while 

other equilibrium point is unstable i.e. one or more pair of eigenvalues are in the 

right half plane. When all the eigenvalues are in the stable region, the trajectory 

behaviour around the singular point will be a stable node. The unstable equilibrium 

point is having a saddle node trajectory (as discussed in chapter 2). When loading 

increases these two trajectories collide with each other and saddle node bifurcation 

will happen. With the saddle node bifurcation, the voltage magnitude of the load bus 

drops suddenly in a very short period of time resulting a voltage collapse. After this 

point system has no equilibrium condition. 

System behaviour changed drastically with the outage of NA line. In this condition, 

the saddle node point can be identified as in intact situation. Eigenvalue analysis 

shows that the system experience instability before the saddle node point. Let’s 

discuss this behaviour using bifurcation theories. 

In the nominal loading conditions, all the eigenvalues are in the stable region (left 

half plane). As discussed earlier, when loading increases real part of the pair of 

eigenvalues crosses the real axis.  At this point, the following conditions are 

satisfied: [17] [9] 

 At the point of crossing, all the state values satisfy the system equations. i.e. 

the point under consideration is an equilibrium point 

 𝐹 𝑥0 ,𝛼0 = 0 

 System matrix of the liberalised system has a simple pair of purely imaginary 

eigenvalues. (0.0 ± 3.5381𝑖  𝑎𝑛𝑑 0.0 ± 1.4445𝑖 ) 

𝜆1,2 =  ±𝑤𝑖,𝑤 > 0 

In this system eigenvalue at the crossing point is 0.0 ± 3.5381𝑖  

 The critical eigenvalue should cross the real axis with non zero speed 

𝑑(𝑅𝑒 𝜆 )

𝑑𝛼
≠ 0 

Therefore, at the point A and B conditions for the Hopf bifurcation are satisfied. As 

the loading increases from the nominal value, an unstable periodic orbit and stable 

equilibrium point join together at point A leaving an unstable equilibrium point. 

When increasing the reactive load, all the eigenvalues are in the stable region till the 

point A. That means the system is in equilibrium and stable at the point A. If the load 
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is increased further, the system moves to an asymptotically stable region where the 

boundary is defined by an unstable periodic orbit.  

At the point B, again the pair of eigenvalues crosses the real axis. As the loading 

increases, a stable periodic orbit and an unstable equilibrium point join together at 

point B, leaving a stable equilibrium point. Between the point A and B, some 

eigenvalues are in the right half plane. This means that there is no stable equilibrium 

point. However, from the bifurcation theories, there is a stable periodic orbit creating 

a uniformly asymptotically stable region. 

5.4 Results Validation 

The nonlinear system was then analysed using a numerical method with the help of 

MATLAB (R2015a) to validate the system behaviour. All the system equations (12 

nos) were solved for the different loading conditions to obtain initial values to be 

used in numerical analysis. A MATLAB function was developed to compute the 

initial conditions for all the system equation with the varying loading conditions. The 

bifurcation diagram was obtained for both supercritical Hopf and subcritical Hopf by 

analysing the system behaviour for a small disturbance under the bifurcation 

conditions.  

 

Figure 5.7 : Critical Eigenvalues at Subcritical Hopf  

Reactive loading at the bus 4 was selected as 4.95 pu to analyse the subcritical 

bifurcation. As shown in Figure 5.7, at this loading condition, real parts of the pair of 

complex eigenvalues are in right half plane (point A and A’ are 0.0172 ± 3.5088i). 

As discussed in the Section 2.10 the system should experience subcritical bifurcation. 

By solving the system equations using numerical methods equilibrium point is 

obtained. The equilibrium parameters for the state variable under consideration for 

this discussion at that loading condition were 𝑽𝟒 = 0.5668 pu and 𝜹 = 0.13652 pu. 

Then, the small voltage disturbance of 0.0001 pu was given to the system to observe 
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the behaviour. As shown in Figure 5.8 system undergoes some oscillations and 

settles after around 10 s at a stable position. Participation factor analysis [5] [24] was 

used to determine which state variables are contributing to the occurrence of 

bifurcation.  

 

Figure 5.8 : Subcritical Hopf – Stable System  

Participation factor analysis reveals that near the singular point, the state variables, 

rotor angle (𝜹) and rotor speed deviation (∆𝒘𝒓) has the strongest influence for the 

occurrence of bifurcation (Table 5.2). Figure 5.9 shows the bifurcation diagram of 

rotor angle versus voltage at bus 4. Point A represents the voltage disturbance given 

to the system. After some oscillations, system settled at point B, which is the original 

stable point. 

Now the system is analysed by giving disturbance of 0.01 pu for the voltage such 

that it will be overthrown to the outside of the unstable limit cycle. The equilibrium 

point is the same as in previous. As shown in Figure 5.10, with the disturbance, 

system starts to oscillate and the magnitude of the oscillation increases gradually 

leading to the system instability. The system behaviour analysed considering rotor 

angle and bus voltage as in Figure 5.11. The disturbance of 0.01 pu, forced the 

trajectory to shift outside the limit cycle (point A in Figure 5.11). Then the system 

experience an oscillation, which is having an increasing magnitude indefinitely 

(point B in Figure 5.11), and the system experienced instability leading to the voltage 

collapse of the bus.  

The strong influence from the rotor angle (𝜹) and rotor speed deviation (∆𝒘𝒓) to the 

occurrence of the Hopf bifurcation and subsequent instability in the system reveals 

that it can be associated to an angle instability (Table 5.2) [7].  
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Figure 5.10 : Subcritical Hopf – Unstable System 

Figure 5.9 : Rotor Angle Vs Voltage 
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Figure 5.11 : Subcritical Hopf – Unstable System 

Supercritical bifurcation was analysed considering a reactive load of 5.122 pu at bus 

4. The eigenvalues at this reactive loading were shown in Figure 5.12 (point A and 

A’ are 0.1347 ± 1.5458i). In supercritical Hopf, there is a stable limit cycle exists 

around the unstable equilibrium point.  As discussed in Chapter 2, at the supercritical 

Hopf, a stable limit cycle exists around the unstable equilibrium point. Equilibrium 

value for the voltage at this loading condition is 0.4808 pu. When the system 

undergoes a disturbance, the voltage starts to oscillate. Disturbance of 0.001 pu is 

given to the voltage at the bus and response is observed (Figure 5.13). With the 

disturbance, voltage oscillation was observed. The oscillation sustained over the time 

and the system is uniformly asymptotically stable. Using participation factor analysis 

it can be identified that the rotor angle (𝜹) and Rotor speed deviation (∆𝒘𝒓) has the 

strongest influence over the bifurcation at this system conditions. Figure 5.14 shows 

the variation of the bus voltage with the rotor angle for a voltage disturbance of 

0.001 pu. With this disturbance voltage shifted outside the limit cycle (point A in 

Figure 5.14). The magnitude of the oscillation gradually reduced and settled in a 

stable limit cycle (point B in Figure 5.14).  
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Figure 5.12 : Critical Eigenvalues at Supercritical Hopf 

As illustrate in Figure 5.15, with the small perturbation of 0.0005 pu, the voltage 

remains inside the limit cycle. In observing the voltage response shown in Figure 

5.16, the system experience an oscillation which is having an increasing magnitude 

(point A corresponding to Figure 5.15), and then settle in the stable limit cycle (point 

B corresponding to Figure 5.15).   

Figure 5.13 : Supercritical Hopf – Outside the Limit Cycle 
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Figure 5.14 : Rotor Angle Vs Voltage – Outside the Limit Cycle 

Figure 5.15 : Rotor Angle Vs Voltage – Inside the Limit Cycle 
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Figure 5.16 : Supercritical Hopf – Inside the Limit Cycle 

5.5 Participation Factor Analysis 

With reference to Figure 5.4, when one line (NA) is out in the system a pair of 

complex eigenvalues is crossing the real axis with the change in reactive loading 

resulting Hopf bifurcation. This pair of eigenvalues is identified as critical 

eigenvalues, which are associated with critical mode. Then the state participation 

factors were calculated corresponding to the critical eigenvalues (modes) to identify 

the state variables that are responsible for the oscillatory behaviour of the system. 

Participation factors calculated at subcritical and supercritical Hopf bifurcations are 

illustrated in Table 5.1 and Table 5.2 respectively. 

 

Table 5.1 : Subcritical Hopf – Largest Participation Factors  

State Variable Participation Factor 

Rotor angle 0.4615 

Rotor speed deviation 0.4584 

Voltage at bus 4 0.2297 

Voltage angle of bus 4 0.1766 
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Table 5.2 : Supercritical Hopf – Largest Participation Factors 

State Variable Participation Factor 

Rotor angle 0.4875 

Rotor speed deviation 0.4870 

Voltage at bus 4 0.0709 

Voltage angle of bus 4 0.0481 

 

 

Four state variables were identified, which had the largest influence for the 

bifurcation in both situations. As given in Table 5.1, Rotor angle (𝜹) is the most 

influencing state variable for subcritical Hopf bifurcation of the system followed 

closely by the Rotor speed deviation (∆𝒘𝒓) having participation factors of 0.4615 

and 0.4584 respectively. As depicted by Table 5.2, participation factor analysis for 

the supercritical Hopf shows that same state variables i.e. Rotor angle (𝜹) and Rotor 

speed deviation (∆𝒘𝒓) influence the bifurcation mostly. 
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6 CONCLUSIONS  

6.1 Conclusions 

When the system operates under the normal operating conditions it is possible to use 

linearized methods and analyse the behaviour correctly. However, this study shows 

that under the stressed operating conditions linearized analysis is not giving the 

proper behaviour of the system. The recent advancements of bifurcation theories 

have made it possible to analyse power systems more accurately and qualitatively 

compared to other available nonlinear analysis methods.  

In this research Hopf bifurcation analysis was carried out to study the system 

behaviour in a small power system having a large generator connected. Sri Lankan 

power system having 900 MW coal power plant (Lakvijaya) was considered as a 

case study. The study reveals the existence of stable and unstable limit cycle when 

the system experienced stressed loading conditions. Reactive power demand at the 

load bus was used as a parameter under consideration and identified the critical 

values that lead to dynamic voltage stability. This information can be incorporated in 

developing protection schemes in the transmission network. Further, participation 

factor analysis shows that rotor angle is the most influencing factor for the Hopf 

bifurcation in the system considered. This reveals the importance of Power System 

Stabilizer (PSS) being installed at the Lakvijaya power plant, and it is highly 

advisable to correctly tune the gain values of the PSS considering network 

contingencies. 

6.2 Future Directions 

In order to get a proper understanding of the power system considering the nonlinear 

behaviour under the contingency conditions, following areas still need to be 

addressed: 

1. Include control devices such as PSS, FACTS to the analysis. It is then 

possible to identify the correct placement of such devices. 

 

2. Extend the study incorporating other types of bifurcation phenomena such as 

zero Hopf and double parameter analysis. Further, to get a proper 

understanding of the system behaviour, it is essential to analyse complete 

power system of Sri Lanka using the proposed methods 

  

3. Develop indices to identify the bifurcation in the power system. This helps to 

detect and predict the stability problems related to power system more 

conveniently. 
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Appendix - A: System Modelling 

This appendix provides a detailed mathematical description of the system model used 

in this thesis. Furthermore, this contained data used in different models including 

synchronous generator, exciter, load model and the network. 

A.1 Synchronous Generator Model 

Test system is comprised of twelve state variables and generator modelled using six 

variables. 

∆𝑤 𝑟  =  
1

2𝐻
[𝑃𝑚  –  𝑃𝑒 −  𝑘𝐷∆𝑤𝑟 ] A.1 

𝛿 =  𝑤0∆𝑤𝑟  A.2 

𝜓 𝑓𝑑 =  
𝑤0𝑅𝑓𝑑
𝐿𝑎𝑑𝑢

𝐸𝑓𝑑 −  
𝑤0𝑅𝑓𝑑
𝐿𝑓𝑑

𝜓𝑓𝑑 +  
𝑤0𝑅𝑓𝑑
𝐿𝑓𝑑

[𝐿𝑎𝑑𝑠
′′ (−𝑖𝑑 +  

𝜓𝑓𝑑

𝐿𝑓𝑑
+   

𝜓1𝑑

𝐿1𝑑
)] A.3 

𝜓 1𝑑 =  𝑤0[−
𝑅1𝑑

𝐿1𝑑
𝜓1𝑑  −  

𝑅1𝑑

𝐿1𝑑
𝐿𝑎𝑑𝑠
′′ (−𝑖𝑑 +  

𝜓𝑓𝑑

𝐿𝑓𝑑
+   

𝜓1𝑑

𝐿1𝑑
)] A.4 

𝜓 1𝑞 =  𝑤0[−
𝑅1𝑞

𝐿1𝑞
𝜓1𝑞 +  

𝑅1𝑞

𝐿1𝑞
𝐿𝑎𝑞𝑠
′′ (−𝑖𝑞 +  

𝜓1𝑞

𝐿1𝑞
+   

𝜓2𝑞

𝐿2𝑞
)] A.5 

𝜓 2𝑞 =  𝑤0[−
𝑅2𝑞

𝐿2𝑞
𝜓2𝑞 + 

𝑅2𝑞

𝐿2𝑞
𝐿𝑎𝑞𝑠
′′ (−𝑖𝑞 +  

𝜓1𝑞

𝐿1𝑞
+   

𝜓2𝑞

𝐿2𝑞
)] A.6 

 

Where,  

𝐿𝑑 =  
𝑋𝑑
𝑤1

 A.7 

𝐿𝑞 =  
𝑋𝑞
𝑤1

 A.8 

𝐿′ 𝑑 =  
𝑋′

𝑑

𝑤1
 A.9 

𝐿′′ 𝑑 =  
𝑋′′

𝑑

𝑤1
 A.10 

𝐿′′ 𝑞 =  
𝑋′′

𝑞

𝑤1
 A.11 
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𝐿𝑙 =  
𝑋𝑙
𝑤1

 A.12 

𝐿𝑎𝑑 =  𝐿𝑑 −  𝐿𝑙  A.13 

𝐿𝑎𝑞 =  𝐿𝑞 −  𝐿𝑙  A.14 

𝐿𝑓𝑑 =  𝐿′ 𝑑 −  𝐿𝑙  ×  
𝐿𝑎𝑑

(𝐿𝑎𝑑 −   𝐿′ 𝑑 −  𝐿𝑙 ) 
 A.15 

𝐿1𝑑 =  𝐿𝑠𝑑 −  𝐿𝑙  ×  
𝐿𝑎𝑑  ×  𝐿𝑓𝑑

(𝐿𝑎𝑑  ×  𝐿𝑓𝑑  −   𝐿𝑠𝑑 −  𝐿𝑙  × (𝐿𝑎𝑑  −  𝐿𝑓𝑑 )) 
 A.16 

𝐿1𝑞 =  𝐿′ 𝑞 −  𝐿𝑙  ×  
𝐿𝑎𝑞

(𝐿𝑎𝑞 −   𝐿′ 𝑞 −  𝐿𝑙 ) 
 A.17 

𝐿2𝑞 =  𝐿𝑠𝑞 −  𝐿𝑙  ×  
𝐿𝑎𝑞  ×  𝐿1𝑞

(𝐿𝑎𝑞  ×  𝐿1𝑞  −   𝐿𝑠𝑞 −  𝐿𝑙  × (𝐿𝑎𝑞  −  𝐿1𝑞)) 
 A.18 

𝑅𝑓𝑑 =  
𝐿𝑎𝑑 +  𝐿𝑓𝑑  

𝑇 ′
𝑑0  × 314

 A.19 

𝑅1𝑑 =  
1

𝑇 ′′
𝑑0  × 314

 ×
𝐿1𝑑 +  (𝐿𝑓𝑑  ×  𝐿𝑎𝑑 )  

𝐿𝑓𝑑 +  𝐿𝑎𝑑
 A.20 

𝑅1𝑞 =  
𝐿𝑎𝑞 +  𝐿1𝑞  

𝑇 ′
𝑞0  × 314

 A.21 

𝑅2𝑞 =  
1

𝑇 ′′
𝑞0  × 314

 ×
𝐿2𝑞 +  (𝐿𝑎𝑞  ×  𝐿1𝑞)  

𝐿𝑎𝑞 +  𝐿1𝑞
 A.22 

𝐿′′ 𝑎𝑑𝑠 =  
1

1
𝐿𝑎𝑑

+
1
𝐿𝑓𝑑

+  
1
𝐿1𝑑

 
A.23 

𝐿′′ 𝑎𝑞𝑠 =  
1

1
𝐿𝑎𝑞

+
1
𝐿1𝑞

+  
1
𝐿2𝑞

 
A.24 

 

Generator parameters are as follows. 

𝑅𝑎 = 0.00228 𝑋𝑑 = 1.836 𝑋𝑞 = 1.790 𝑋𝑡𝑑 = 0.20 

𝑋𝑡𝑞 = 0.33 𝑋𝑠𝑑 = 0.155 𝑋𝑠𝑞 = 0.152 𝑋𝑙 = 0.124 

𝑇 ′
𝑑0 = 8 𝑇 ′′

𝑑0 = 0.03 𝑇 ′
𝑞0 = 0.3371 𝑇 ′′

𝑞0 = 0.0295 
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A.2 Exciter Model 

As discussed earlier, IEEE AC4 model is used for the exciter. The gain and the time 

constants used are as follows.  

𝐾1 = 200 𝑇𝑎 = 1 𝑇𝑏 = 10 𝑇𝑒 = 1 𝑉𝑟𝑒𝑓 = 1 

 

 

 

𝑉 1 =  
1

𝑇𝑒
[–𝑉1 +  𝑘1(𝑉𝑟𝑒𝑓  –  𝐸𝑡)] A.25 

𝐸 𝑓𝑑  =  
1

𝑇𝑏
[–𝐸𝑓𝑑  +  𝑉1  1 −  

𝑇𝑎
𝑇𝑒
 + 

𝑘1𝑇𝑎
𝑇𝑒

(𝑉𝑟𝑒𝑓  –  𝐸𝑡)] A.26 

 

Where, 

𝑖𝑑 =
1

1
𝐿𝑓1𝑑

−  
1

𝐿𝑓𝑓𝑑

 ×  
1

𝐿𝑎𝑑
 ×  

𝜓𝑓𝑑 −  𝐿𝑓1𝑑  ×  𝑖1𝑑
𝐿𝑓𝑓𝑑

−  
𝜓1𝑑 −  𝐿11𝑑  ×  𝑖1𝑑

𝐿𝑓1𝑑
  

A.27 

𝑖𝑞 =  
𝐿11𝑞  × 𝑖1𝑞 + 𝐿𝑎𝑞  ×  𝑖2𝑞 −   𝜓1𝑞   

𝐿𝑎𝑞
 A.28 

𝐸′′
𝑑 =  −𝑤𝑟  ×  𝐿′′ 𝑎𝑞𝑠  ×   

𝜓1𝑞

𝐿1𝑞
+  

𝜓2𝑞

𝐿2𝑞
  A.29 

𝐸′′
𝑞 =  𝑤𝑟  ×  𝐿′′ 𝑎𝑑𝑠  ×   

𝜓𝑓𝑑

𝐿𝑓𝑑
+  

𝜓1𝑑

𝐿1𝑑
  A.30 

𝑒𝑞 =  −𝑅𝑎  ×  𝑖𝑞 −  𝑋𝑠𝑑  ×   𝑖𝑑 +  𝐸′′
𝑞  A.31 

Figure A.1 : IEEE AC4 Exciter Model 
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𝑒𝑑 =  −𝑅𝑎  ×  𝑖𝑑 −  𝑋𝑠𝑞  ×   𝑖𝑞 +  𝐸′′
𝑑  A.32 

𝐸𝑡 =    𝑒𝑑
2 +  𝑒𝑞2  A.33 

 

𝐸′′
𝑞  and 𝐸′′

𝑞  are the d – q axis components of the voltage applied to sub transient 

reactance. 

A.3 Network Model 

As discussed in Chapter 2 network modelled using following positive sequence 

impedance values. 

𝑅 = 0.02 Ω/𝑘𝑚 𝐿 = 0.8679 × 10−3  H/𝑘𝑚 𝐶 = 13.41 × 10−9 F/𝑘𝑚 

𝑍𝑏𝑎𝑠𝑒 = 137.11 Ω   

 

Base impedance value is calculated considering base voltage and the base apparent 

power value. Ybus matrix is obtained for two scenarios i.e. for intact (Figure A.2) and 

one line outage (Figure A.2) condition. 

Figure A.2 : Network in Intact Condition 
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Consider Ybus matrix, 

 

Ybus =  

𝑌11 𝑌12 𝑌13 𝑌14

𝑌21 𝑌22 𝑌23 𝑌24

𝑌31 𝑌32 𝑌33 𝑌14

𝑌41 𝑌42 𝑌43 𝑌4

  

 

For the intact condition, 

𝑌11 = 1.7236 − 23.5237𝑖 𝑌12 = − 0.733 + 9.9983𝑖 

𝑌13 = 0 𝑌14 = − 0.9906 − 13.5112𝑖 

𝑌21 = − 0.733 + 9.9983𝑖 𝑌22 = 2.2146 − 30.0565𝑖 

𝑌23 = − 1.4816 + 20.0928𝑖 𝑌24 = 0 

𝑌31 = 0 𝑌32 = − 1.4816 + 20.0928𝑖 

𝑌33 = 1.8653 + 25.2604𝑖 𝑌34 = − 0.3837 + 5.2343𝑖 

𝑌41 = − 0.9906 − 13.5112𝑖 𝑌42 = 0 

𝑌43 = − 0.3837 + 5.2343𝑖 𝑌44 = 1.3743 − 18.6476𝑖 

 

For the contingency condition, 

𝑌11 = 0.9906 − 13.5485𝑖 𝑌12 = 0 

𝑌13 = 0 𝑌14 = − 0.9906 − 13.5112𝑖 

𝑌21 = 0 𝑌22 = 1.4816 − 20.0813𝑖 

𝑌23 = − 1.4816 + 20.0928𝑖 𝑌24 = 0 

𝑌31 = 0 𝑌32 = − 1.4816 + 20.0928𝑖 

𝑌33 = 1.8653 + 25.2604𝑖 𝑌34 = − 0.3837 + 5.2343𝑖 

𝑌41 = − 0.9906 − 13.5112𝑖 𝑌42 = 0 

𝑌43 = − 0.3837 + 5.2343𝑖 𝑌44 = 1.3743 − 18.6476𝑖 
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A.4 Power Flow and Load Model 

As discussed in Chapter 2, the dynamic load model used to model the loads. 

Calculated parameters were as follows. 

 

For No 2 Load bus, 

𝐾𝑝𝑣 = 0.3 𝐾𝑞𝑣1 = 17.8 𝐾𝑞𝑣2 = 11.44 𝐾𝑞𝑤 = −0.03 𝐾𝑝𝑤 = 0.4 

 

For No 4 Load bus, 

𝐾𝑝𝑣 = 0.3 𝐾𝑞𝑣1 = 4.8 𝐾𝑞𝑣2 = 4 𝐾𝑞𝑤 = −0.03 𝐾𝑝𝑤 = 0.4 

 

Dynamic load model, 

𝑃 =  𝑃0 +  𝑃1 +  𝑘𝑝𝑤𝛿 +  𝑘𝑝𝑣(𝑉 + 𝑇𝑉)  A.34 

𝑄 =  𝑄0 +  𝑄1 + 𝑘𝑞𝑤𝛿 +  𝑘𝑞𝑣1𝑉 + 𝑘𝑞𝑣2𝑉
2 A.35 

 

 

 

Figure A.3 : Network in Contingency Condition 
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Using the power flow equation real and reactive power supplied to the load can be 

calculated using, 

𝑃 =  −  𝑌𝑘𝑖  𝑉𝑖  𝑉𝑘  

𝑛

𝑖=1

𝑐𝑜𝑠 𝜃𝑘𝑖 +  𝛿𝑖 + 𝛿𝑘  A.36 

𝑄 =    𝑌𝑘𝑖  𝑉𝑖  𝑉𝑘  

𝑛

𝑖=1

𝑠𝑖𝑛 𝜃𝑘𝑖 +  𝛿𝑖 + 𝛿𝑘  A.37 

 

In addition to Equations (A.1) to (A.6), (A.25) and (A.26), following power flow 

equations were derived (A.38 to A45). These set of equations solved numerically 

using MATLAB to analyse the behaviour considering all the nonlinearities.  

𝛿 2 =  
1

𝑘𝑞𝑤2
 ×  𝑄𝑙2 −  𝑄02 −  𝑄12 −   𝑘𝑞𝑣12  ×  𝜓1𝑑 −   𝑘𝑞𝑣22  ×  𝑉2

2    A.38 

𝑉 2 =  
1

𝑘𝑞𝑣2 × 𝑇
 ×  𝑃𝑙2 −  𝑃02 −  𝑃12 −   𝑘𝑝𝑤2  ×  𝛿 2 −   𝑘𝑝𝑣2  ×  𝑉2   A.39 

𝛿 4 =  
1

𝑘𝑞𝑤4
 ×  𝑄𝑙4 −  𝑄04 −  𝑄14 −   𝑘𝑞𝑣14  ×  𝑉2 −   𝑘𝑞𝑣24  ×  𝑉2

2   A.40 

𝑉 4 =  
1

𝑘𝑞𝑣4 × 𝑇
 ×  𝑃𝑙4 −  𝑃04 −  𝑃14 −   𝑘𝑝𝑤4  ×  𝛿 4 −   𝑘𝑝𝑣4  ×  𝑉2   A.41 

𝑃2 =  −((𝐸𝑚𝑌21 cos 𝜃21 +  𝛿 −  𝛿2  +  𝐸0𝑌23 cos 𝜃23  − 𝛿2  )  ×  𝑉2

+  𝑌22 cos𝜃22𝑉2
2) 

 

A.42 

𝑄2 =  (𝐸𝑚𝑌21 sin 𝜃21 +  𝛿 −  𝛿2  +  𝐸0𝑌23 sin 𝜃23  − 𝛿2  )  ×  𝑉2

+  𝑌22 sin(𝜃22 )𝑉2
2
 

 

A.43 

𝑃4 =  −((𝐸𝑚𝑌41 cos 𝜃41 +  𝛿 −  𝛿4  +  𝐸0𝑌43 cos 𝜃43  − 𝛿4  )  × 𝑉4

+  𝑌44 cos𝜃44𝑉4
2) 

 

A.44 

𝑄4 =  (𝐸𝑚𝑌41 sin 𝜃41 +  𝛿 −  𝛿4  +  𝐸0𝑌43 sin 𝜃43  − 𝛿4  )  × 𝑉4

+  𝑌44 sin𝜃44𝑉4
2
 

 

A.45 
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Appendix - B: Load Bus Data 

Following 220 kV bus data from New Anuradhapura (NA) and New Chilaw (NC) 

substations were used to calculate corresponding gain values in dynamic load model. 

B.1 220 kV Load Bus – Weekend 

Time 
NA Receiving - Weekend NC Receiving - Weekend 

kV A MW Mvar kV A MW Mvar 

0:30 222 200 74 4 216 790 288 78 

1:00 223 200 74 10 218 762 282 70 

1:30 223 200 74 10 217 756 278 78 

2:00 223 200 74 10 218 748 276 70 

2:30 224 200 74 10 217 762 278 78 

3:00 224 200 74 10 218 734 274 66 

3:30 224 200 74 10 217 746 276 64 

4:00 224 200 74 10 219 724 272 62 

4:30 224 200 74 10 219 720 268 64 

5:00 224 150 50 10 219 714 266 64 

5:30 223 150 56 12 217 710 260 66 

6:00 222 200 74 2 217 716 260 70 

6:30 223 200 74 2 216 730 262 76 

7:00 223 150 74 10 218 690 254 64 

7:30 223 200 74 10 218 684 252 60 

8:00 223 200 74 10 218 722 266 64 

8:30 222 200 74 10 217 726 266 66 

9:00 221 200 74 0 217 732 268 68 

9:30 220 200 74 0 215 718 256 80 

10:00 224 200 74 0 215 704 250 84 

10:30 224 200 74 0 215 720 254 86 

11:00 224 200 74 0 215 722 254 86 

11:30 223 200 74 0 215 722 256 84 

12:00 223 200 74 6 215 730 258 86 

12:30 223 200 74 6 214 746 262 88 

13:00 225 200 74 4 215 750 266 86 

13:30 226 200 74 2 216 746 266 82 

14:00 225 220 74 0 215 754 270 82 

14:30 225 220 74 0 215 756 270 84 

15:00 225 200 74 0 216 732 262 80 

15:30 225 200 74 0 215 738 262 84 

16:00 225 200 74 0 215 738 262 82 

16:30 225 250 98 0 217 742 266 78 
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17:00 225 300 112 0 217 798 254 68 

17:30 226 380 144 0 218 788 252 64 

18:00 224 400 148 0 217 734 268 66 

18:30 225 400 148 0 210 794 272 100 

19:00 224 400 148 0 210 784 268 100 

19:30 224 400 148 0 211 794 272 100 

20:00 223 400 148 0 212 810 282 94 

20:30 223 400 148 0 212 810 284 90 

21:00 222 380 144 0 213 792 284 90 

21:30 223 300 112 0 213 770 272 84 

22:00 223 300 112 0 213 748 262 90 

22:30 222 250 98 0 215 756 268 82 

23:00 224 220 80 10 215 752 270 80 

23:30 224 220 80 10 216 752 272 76 

0:00 224 200 74 10 217 744 270 66 

 

B.2 220 kV Load Bus – Weekday 

Time 
NA Receiving - Weekday NC Receiving - Weekday 

kV A MW Mvar kV A MW Mvar 

0:30 224 280 100 20 215 971 324 99 

1:00 224 400 140 20 216 938 296 99 

1:30 224 400 140 20 217 820 292 146 

2:00 224 400 140 20 216 819 293 105 

2:30 224 400 140 20 215 861 300 118 

3:00 224 400 140 20 216 833 300 106 

3:30 224 400 140 20 215 852 308 102 

4:00 224 400 140 20 217 999 313 122 

4:30 224 400 140 20 216 931 329 115 

5:00 224 420 148 20 215 1031 372 125 

5:30 223 420 148 20 212 1076 385 149 

6:00 222 460 152 20 217 1086 384 166 

6:30 220 460 152 20 217 1083 385 152 

7:00 220 440 152 20 222 1046 398 128 

7:30 220 440 152 20 221 1094 395 153 

8:00 219 400 150 0 221 1140 426 116 

8:30 217 400 150 10 219 1090 407 138 

9:00 221 400 150 10 222 1151 422 170 

9:30 222 400 148 6 220 1138 401 185 

10:00 223 400 148 0 220 1166 413 196 

10:30 222 350 138 0 220 1213 427 184 
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11:00 222 350 138 0 219 1264 434 232 

11:30 220 380 144 0 219 1267 443 201 

12:00 220 400 148 0 214 1237 431 198 

12:30 221 400 148 0 219 1214 438 187 

13:00 221 400 148 0 219 1221 424 198 

13:30 222 400 148 0 221 1202 426 195 

14:00 221 400 148 0 219 1246 431 134 

14:30 221 400 148 0 219 1240 436 211 

15:00 221 350 138 0 220 1227 419 203 

15:30 221 400 148 0 219 1208 418 215 

16:00 220 400 148 0 220 1238 447 223 

16:30 221 400 148 0 221 1196 420 201 

17:00 222 400 148 0 221 1341 421 176 

17:30 223 500 184 20 223 1298 419 181 

18:00 221 550 204 8 219 1161 420 169 

18:30 215 600 224 10 214 1154 395 192 

19:00 216 600 224 10 215 1140 400 162 

19:30 216 620 224 10 216 1154 401 162 

20:00 217 600 224 8 217 1173 420 138 

20:30 218 600 224 10 216 1206 422 162 

21:00 219 580 220 10 217 1174 425 183 

21:30 219 580 220 8 217 1124 405 143 

22:00 220 550 204 10 217 1146 406 140 

22:30 220 400 148 4 214 1206 428 139 

23:00 221 380 144 4 214 1242 442 152 

23:30 224 250 90 4 215 1228 438 155 

0:00 225 220 80 10 219 806 296 84 
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Appendix - C: MATLAB Code 

MATLAB (R2015a) is used to model and analyse the behaviour of the system and 

several functions, with their source code, are listed below. 

C.1 Ybus Matrix 

Ybus matrix is obtained using the following MATLAB code with the network data. 

 

%Ybus matrix calculation for NA, NC, NH lines considering TF 

impedance 
%Zbase = 137.11 

  
Y100 = 0.7330 - 9.9983i;    %Line sections with distance 
Bc100 = 0.0231i; 
Y74 = 0.9906 - 13.5112i; 
Bc74 = 0.0427i; 
Y50 = 1.4816 - 20.0928i; 
Bc50 = 0.01155i; 
Y191 = 0.3837 - 5.2343i; 
Bc191 = 0.05516i; 
Ytx = - 0.08i;  

  
Y(1,1) = Y100 + Bc100 + Y74 + Bc74 +Ytx; 
Y(1,2) = - Y100; 
Y(1,3) = 0; 
Y(1,4) = -Y74;  

  
Y(2,1) = Y(1,2); 
Y(2,2) = Y100 + Bc100 + Y50 + Bc50; 
Y(2,3) = -Y50; 
Y(2,4) = 0; 

  
Y(3,1) = Y(1,3); 
Y(3,2) = Y(2,3); 
Y(3,3) = Y191 + Bc191 + Y50 + Bc50; 
Y(3,4) = -Y191; 

  

Y(4,1) = Y(1,4); 
Y(4,2) = Y(2,4); 
Y(4,3) = Y(3,4); 
Y(4,4) = Y191 + Bc191 + Y74 + Bc74; 

  
Ybus1 = vpa (Y , 10)        %Admittance in the complex form 
rho=abs(Ybus1);              
theta=angle(Ybus1);     
vpa (rho , 10) 
vpa (theta , 10) 
angle1 = theta * (180/pi); 
vpa (angle1 , 10) 
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C.2 Power Flow Calculation 

New function is defined to perform power flow calculation for the given data. 

Voltage variation in the bus under consideration is also analysed within the function. 

 

function [ dx ] = Bus4var_Fun_2_Q4Vary_FinalWithExciter( x, Q4 ) 

  
Q0 = 0.026; 
Q1 = 0.025; 
Q40 = 0.085; 

  
Kpv = 0.3; 
Kqv1 = 17.80; 
Kqv2 = 11.44; 
Kqw = -0.03; 
Kpw = 0.4; 

  
Kpv4 = 0.3; 
Kqv14 = 4.80; 
Kqv24 = 4.0; 
Kqw4 = -0.03; 
Kpw4 = 0.4; 

  
P0 = 0.6; 
P1 = 0; 
P40 = 0.6; 
P4 = 0; 
E0 =  2.5; 
Em = 1; 
Pm = 1; 
Kd = 0.05; 
M = 0.3; 
T = 8.5; 

  
% Network 
Y11 = 23.58676024; 
O11 = -1.49765624; 

 
Y12 = 10.02513301; 
O12 = 1.643977867; 

  
Y21 = Y12; 
O21 = O12; 

  
Y13 = 0; 
O13 = 0; 

  
Y22 = 30.13792693; 
O22 = -1.497247875; 

  
Y23 = 20.14735095; 
O23 = 1.644400973; 
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Y41 = 13.54746522; 
O41 = 1.643982332; 

  
Y14 = Y41; 
O14 = O41; 

  
Y43 = 5.248344709; 
O43 = 1.643970375; 

  
Y44 = 18.69821323; 
O44 = -1.497230989; 

  
% Main equations 
P = - ((Em * Y21 * cos(O21 + x(1) - x(3)) + Y23 * E0 * cos(O23 - 

x(3))) * x(4) + Y22 * cos(O22) * x(4)^2); 
Q =    (Em * Y21 * sin(O21 + x(1) - x(3)) + Y23 * E0 * sin(O23 - 

x(3))) * x(4) + (Y22 * sin(O22) * x(4)^2); 

  
PP = - ((Em * Y41 * cos(O41 + x(1) - x(5)) + Y43 * E0 * cos(O43 - 

x(5))) * x(6) + (Y44 * cos(O44) * x(6)^2)); 
QQ =    (Em * Y41 * sin(O41 + x(1) - x(5)) + Y43 * E0 * sin(O43 - 

x(5))) * x(6) + (Y44 * sin(O44) * x(6)^2); 

  
Pe =   (Em^2 * Y11 * cos(O11) + Y12 * Em * x(4) * cos(O12 + x(3) - 

x(1)) + Y14 * Em * x(6) * cos(O14 + x(5) - x(1))); 
Qe = -((Em^2 * Y11 * sin(O11) + Y12 * Em * x(4) * sin(O12 + x(3) - 

x(1)) + Y14 * Em * x(6) * sin(O14 + x(5) - x(1)))); 

  
dx(1) = x(2); 
dx(2) = (1/M) * (-Kd*x(2) + Pm - Pe) ; 

  
dx(3) = (1/Kqw) * (Q - Q0 - Q1 - (Kqv1 * x(4))  - (Kqv2 * x(4)^2)); 
dx(4) = (1/(Kpv * T)) *  (P - P0 - P1 - (Kpw * dx(3)) - (Kpv * 

x(4)));  

  
dx(5) = (1/Kqw4) * (QQ - Q40 - Q4 - (Kqv14 * x(6))  - (Kqv24 * 

x(6)^2)); 
dx(6) = (1/(Kpv4 * T)) * (PP - P40 - P4 - (Kpw4 * dx(5)) - (Kpv4 * 

x(6))); 

  

w0 = 314; 
f = 50; 
w = 2 * pi * f; 

  
% Gen parameters 
Ra = 0.00228; 
Xd = 1.836; 
Xq = 1.79; 
Xtd = 0.2; 
Xtq = 0.33; 
Xsd = 0.155; 
Xsq = 0.152; 
Xl = 0.124; 
Ttd0 = 8; 
Tsd0 = 0.03; 
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Ttq0 = 0.3371; 
Tsq0 = 0.0295; 

  
Ld = Xd/w; 
Lq = Xq/w; 
Ltd = Xtd/w; 
Ltq = Xtq/w; 
Lsd = Xsd/w; 
Lsq = Xsq/w; 
Ll = Xl/w; 

  
Lad = Ld - Ll; 
Laq = Lq - Ll; 

  
Lfd = (Ltd - Ll) * (Lad) / (Lad - (Ltd - Ll)); 
L1d = (Lsd - Ll) * (Lad * Lfd) / (Lad * Lfd - (Lsd - Ll) * (Lad + 

Lfd)); 
L1q = (Ltq - Ll) * (Laq) / (Laq - (Ltq - Ll)); 
L2q = (Lsq - Ll) * (Laq * L1q) / (Laq * L1q - (Lsq - Ll) * (Laq + 

L1q)); 

  
Rfd = (Lad + Lfd) / (Ttd0 * 314); 
R1d = (1/(Tsd0 * 314)) * (L1d + (Lfd * Lad) / (Lfd + Lad)); 
R1q = (Laq + L1q) / (Ttq0 *314); 
R2q = (1/(Tsq0 * 314)) * (L2q + (Laq * L1q) / (Laq + L1q)); 

  

L2ads = 1 / ((1/Lad) + (1/Lfd) + (1/L1d)); 
L2aqs = 1 / ((1/Laq) + (1/L1q) + (1/L2q)); 

  
L2ad = L2ads; 
L2aq = L2aqs; 

  
% Exciter parameters 
wr = 1; 
L11q = L1q + Laq; 
Lffd = Lfd + Lad; 
Lf1d = Lffd - Lfd; 
L11d = L1d + Lf1d; 

  
Ta = 1; 
Tb = 10; 
Te = 1; 
K1 = 200; 

  
id = (1/((1/Lf1d) - (1/Lffd))) * (1/Lad) * ( ((x(7) - Lf1d * i1d) / 

Lffd) - ((x(8) - L11d * i1d) / Lf1d)); 
iq = (L11q * i1q + Laq * i2q - x(9)) / Laq; 

  
% Generator other equations 
dx(7) = (((w0 * Rfd)/Lad) * x(12)) - ((w0 * Rfd)/Lfd) * x(7) + ((w0 

* Rfd)/Lfd) * (L2ads * (-id +(x(7)/Lfd) + (x(8)/L1d))); 
dx(8) = -w0 * ( (R1d/L1d) * x(7) + (R1d/L1d) * (L2ads * (-id 

+(x(7)/Lfd) + (x(8)/L1d)))); 
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dx(9) =   w0 * ( (-R1q/L1q) * x(9)  + (R1q/L1q) * (L2aqs * (-iq 

+(x(9)/L1q) + (x(10)/L2q)))); 
dx(10) =  w0 * ( (-R2q/L2q) * x(10) + (R2q/L2q) * (L2aqs * (-iq 

+(x(9)/L1q) + (x(10)/L2q)))); 

  
% Currents 
i1d = - dx(8)/R1d; 
i1q = - dx(9)/R1q; 
i2q = - dx(10)/R2q; 

  
E2d = - wr * L2aq * ((x(9)/L1q) + (x(10)/L2q)); 
E2q =   wr * L2ad * ((x(7)/Lfd) + (x(8)/L1d)); 

  
eq = -Ra * iq - Xsd * id + E2q; 
ed = -Ra * id - Xsq * iq + E2d; 

  
Et = (abs( sqrt ( eq^2 + ed^2 )))/20; 
Vref = 1; 

  
% Exciter equations 
dx(11) = (1/Te) * (-x(11) + K1 * (Vref - Et)); 
dx(12) = (1/Tb) * (Ta * dx(11) + x(11) - x(12)); 

  
end 

 

C.3 Eigenvalue Movements 

Following code is used to analyse the eigenvalue behaviour with respect to the 

different loading conditions. 

 
%Eigenvalue Movement  
syms Q4 v u w z r t g h b c e f     %Symbolic parameters 
%System data 
Q0 = 0.026;                          
Q1 = 0.025; 
Q40 = 0.085; 

  

Kpv = 0.3; 
Kqv1 = 17.80; 
Kqv2 = 11.44; 
Kqw = -0.03; 
Kpw = 0.4; 

  
Kpv4 = 0.3; 
Kqv14 = 4.80; 
Kqv24 = 4.0; 
Kqw4 = -0.03; 
Kpw4 = 0.4; 

  
P0 = 0.6; 
P1 = 0; 
P40 = 0.6; 
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P4 = 0; 
E0 =  2.5; 
Em = 1; 
Pm = 1; 
Kd = 0.05; 
M = 0.3; 
T = 8.5; 

  
Y11 = 23.58676024; 
O11 = -1.49765624; 

  
Y12 = 10.02513301; 
O12 = 1.643977867; 

  
Y21 = Y12; 
O21 = O12; 

  
Y13 = 0; 
O13 = 0; 

  
Y22 = 30.13792693; 
O22 = -1.497247875; 

  
Y23 = 20.14735095; 
O23 = 1.644400973; 

  

Y41 = 13.54746522; 
O41 = 1.643982332; 

  
Y14 = Y41; 
O14 = O41; 

  
Y43 = 5.248344709; 
O43 = 1.643970375; 

  
Y44 = 18.69821323; 
O44 = -1.497230989; 

  
% Main equations 
P = - ((Em * Y21 * cos(O21 + u - w) + Y23 * E0 * cos(O23 - w)) * z + 

(Y22 * cos(O22) * z^2)); 
Q =    (Em * Y21 * sin(O21 + u - w) + Y23 * E0 * sin(O23 - w)) * z + 

(Y22 * sin(O22) * z^2); 

  
PP = - ((Em * Y41 * cos(O41 + u - r) + Y43 * E0 * cos(O43 - r)) * t 

+ (Y44 * cos(O44) * t^2)); 
QQ =    (Em * Y41 * sin(O41 + u - r) + Y43 * E0 * sin(O43 - r)) * t 

+ (Y44 * sin(O44) * t^2); 

  
Pe =   (Em^2 * Y11 * cos(O11) + Y12 * Em * z * cos(O12 + w - u) + 

Y14 * Em * t * cos(O14 + r - u)); 
Qe = -((Em^2 * Y11 * sin(O11) + Y12 * Em * z * sin(O12 + w - u) + 

Y14 * Em * t * sin(O14 + r - u))); 

  
du = v; 
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dv = (1/M) * (-Kd*v + Pm - Pe) ; 

  
dw = (1/Kqw) * (Q - Q0 - Q1 - (Kqv1 * z)  - (Kqv2 * z^2)); 
dz = (1/(Kpv * T)) * (P - P0 - P1 - (Kpw * dw) - (Kpv * z));  

  
dr = (1/Kqw4) * (QQ - Q40 - Q4 - (Kqv14 * t)  - (Kqv24 * t^2)); 
dt = (1/(Kpv4 * T)) * (PP - P40 - P4 - (Kpw4 * dr) - (Kpv4 * t)); 

  
w0 = 314; 
freq = 50; 
w1 = 2 * pi * freq; 

  
% Gen parameters 
Ra = 0.00228; 
Xd = 1.836; 
Xq = 1.79; 
Xtd = 0.2; 
Xtq = 0.33; 
Xsd = 0.155; 
Xsq = 0.152; 
Xl = 0.124; 

  
Ttd0 = 8; 
Tsd0 = 0.03; 
Ttq0 = 0.3371; 
Tsq0 = 0.0295; 

  
Ld = Xd/w1; 
Lq = Xq/w1; 
Ltd = Xtd/w1; 
Ltq = Xtq/w1; 
Lsd = Xsd/w1; 
Lsq = Xsq/w1; 
Ll = Xl/w1; 

  
Lad = Ld - Ll; 
Laq = Lq - Ll; 

  
Lfd = (Ltd - Ll) * (Lad) / (Lad - (Ltd - Ll)); 
L1d = (Lsd - Ll) * (Lad * Lfd) / (Lad * Lfd - (Lsd - Ll) * (Lad + 

Lfd)); 
L1q = (Ltq - Ll) * (Laq) / (Laq - (Ltq - Ll)); 
L2q = (Lsq - Ll) * (Laq * L1q) / (Laq * L1q - (Lsq - Ll) * (Laq + 

L1q)); 

  
Rfd = (Lad + Lfd) / (Ttd0 * 314); 
R1d = (1/(Tsd0 * 314)) * (L1d + (Lfd * Lad) / (Lfd + Lad)); 
R1q = (Laq + L1q) / (Ttq0 *314); 
R2q = (1/(Tsq0 * 314)) * (L2q + (Laq * L1q) / (Laq + L1q)); 

  
L2ads = 1 / ((1/Lad) + (1/Lfd) + (1/L1d)); 
L2aqs = 1 / ((1/Laq) + (1/L1q) + (1/L2q)); 

  
L2ad = L2ads; 
L2aq = L2aqs; 



54 

 

  
% Exciter parameters 
wr = 314; 
L11q = L1q + Laq; 
Lffd = Lfd + Lad; 
Lf1d = Lffd - Lfd; 
L11d = L1d + Lf1d; 

  
Ta = 1; 
Tb = 10; 
Te = 0.5; 
K1 = 200; 

  
i1d = 0; 
i1q = 0; 
i2q = 0; 

  
id = (1/((1/Lf1d) - (1/Lffd))) * (1/Lad) * ( ((g - Lf1d * i1d) / 

Lffd) - ((h - L11d * i1d) / Lf1d)); 
iq = (L11q * i1q + Laq * i2q - b) / Laq; 

  
% Generator other equations 
dg = (((w0 * Rfd)/Lad) * f) - ((w0 * Rfd)/Lfd) * g + ((w0 * 

Rfd)/Lfd) * (L2ads * (-id +(g/Lfd) + (h/L1d))); 
dh = -w0 * ( (R1d/L1d)*g + (R1d/L1d) * (L2ads * (-id +(g/Lfd) + 

(h/L1d)))); 

  
db =  w0 * ( (-R1q/L1q)*b + (R1q/L1q) * (L2aqs * (-iq +(b/L1q) + 

(c/L2q)))); 
dc =  w0 * ( (-R2q/L2q)*c + (R2q/L2q) * (L2aqs * (-iq +(b/L1q) + 

(c/L2q)))); 

  
E2d = - wr * L2aq * ((b/L1q) + (c/L2q)); 
E2q =   wr * L2ad * ((g/Lfd) + (h/L1d)); 

  
eq = -Ra * iq - Xsd * id + E2q; 
ed = -Ra * id - Xsq * iq + E2d; 

  
Et = (abs( sqrt ( eq^2 + ed^2 ))); 
Vref = 1; 

  
% Exciter equations 
de = (1/Te) * (-e + K1 * (Vref - Et)); 
df = (1/Tb) * (Ta * de + e - f); 

  
fun = @Bus4var_Fun_2_Q4Vary_FinalWithExciter; 
clear m; 
i = 0; 

  
for Q4 = 1 %any given Q4 value 
    i =  i +1; 
    x0 = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1]; 
    options = optimset('MaxIter',10000,'MaxFunEvals',10000); 
    x = fsolve(@(x)fun(x,Q4), x0, options); 
    vpa (x , 5); 
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    m(i,:) = [ x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), 

x(10), x(11), x(12), Q4]; 
end 

  

[raws, columns] = size (m); 
eqns = [du dv dw dz dr dt dg dh db dc de df]; 
jac = jacobian ([eqns], [u , v , w , z , r , t, g, h, b, c, e, f]); 
clear jacob; 

  
for j = 1 : raws 
jacS = subs (jac, {u , v , w , z , r , t, g, h, b, c, e, f}, 

{m(j,1), m(j,2), m(j,3), m(j,4), m(j,5), m(j,6), m(j,7), m(j,8), 

m(j,9), m(j,10), m(j,11), m(j,12)}); 
eg = eig (jacS); 
k = vpa (eg , 4); 
jacob(j,:) = [ k(1,1), k(2,1), k(3,1), k(4,1), k(5,1), k(6,1), 

k(7,1), k(8,1), k(9,1), k(10,1), k(11,1), k(12,1) m(j,13)]; 
end 
vpa (jacob , 4) 

 


