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Abstract  

The performance of an Artificial Neural Network (ANN) strongly depends on its hidden 

layer architecture. The generated solution by an ANN does not guarantee that it has always 

been devised with the simplest neural network architecture suitable for modeling the 

particular problem. This results in computational complexity of training of an ANN, 

deployment, and usage of the trained network. Therefore, modeling the hidden layer 

architecture of an ANN remains as a research challenge. This thesis presents a theoretically-

based approach to prune hidden layers of trained artificial neural networks, ensuring better 

or the same performance of a simpler network as compared with the original network.  

 

The method described in the thesis is inspired by the finding from neuroscience that the 

human brain has a neural network with nearly 100 billion neurons, yet our activities are 

performed by a much simpler neural network with a much lesser number of neurons. 

Furthermore, in biological neural networks, the neurons which do not significantly 

contribute to the performance of the network will naturally be disregarded. According to 

neuroplasticity, biological neural networks can also solicit activations of neurons in the 

proximity of the active neural network to improve the performance of the network. On the 

same token, it is hypothesized that for a given complex-trained ANN, we can discover an 

ANN, which is much more simplified than the original given architecture.  

 

This research has discovered a theory to reduce certain number of hidden layers and to 

eliminate disregarding neurons from the remaining hidden layers of a given ANN 

architecture. The procedure begins with a complex neural network architecture trained with 

backpropagation algorithm and reach to the optimum solution by two phases. First, the 

number of hidden layers is determined by using a peak search algorithm discovered by this 

research. The newly discovered simpler network with lesser number of hidden layers and 

highest generalization power considered for pruning of its hidden neurons. The pruning of 

neurons in the hidden layers has been theorized by identifying the neurons, which give least 

contribution to the network performances. These neurons are identified by detecting the 

correlations regarding minimization of error in training.  Experiments have shown that the 

simplified network architecture generated by this approach exhibits same or better 

performance as compared with the original large network architecture. Generally, it reduces 

more than 80% of neurons while increasing the generalization by about 30%. As such, the 

proposed approach can be used to discover simple network architecture relevant to a given 

complex architecture of an ANN solution. Due to its architectural simplicity, the new 

architecture has been computationally efficient in training, usage and further training. 

 

Keywords: Artificial neural networks, backpropagation algorithm, delta value, hidden layer 

architecture, neuroplasticity 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Prolegomena   

The field of Artificial Neural Networks (ANNs) has become one of the most cited 

areas of Artificial Intelligence (AI). Because of their capability of modelling and 

processing parallel on nonlinear relationships of inputs and outputs ANNs can be 

used in many real-world problems, which could not be solved otherwise. The first 

ANN model was introduced in 1940s and grown through 1950s. Throughout last 50 

years with its significant developments, nowadays ANN has become the champion 

of Machine Learning. However, there are numerous challengers in designing and 

developing of ANNs and determining the most suitable architecture has been 

identified as one of the central issues. This thesis examines the current approaches 

on designing the ANN architectures and provides a novel approach to determine 

more efficient and simpler ANN architecture by pruning hidden layer neurons in a 

trained ANN.  

 

This chapter discusses the problem that addresses in this thesis with the background 

and motivation. Further, it provides aims and objectives followed by the other‘s 

works and their limitations. Next, provides a brief description of the approach to the 

solution by emphasizing the hypothesis.  At the end, the structure of organization of 

this thesis will be presented.   

 

1.2 Aims and Objectives  

The aim of this PhD thesis is to discover an approach to prune hidden layer neurons 

of a trained network to get a simplified network with same or better performance, 

compared the resultant network with the original trained network, enhance the 

generalization ability and improve the efficiency of the network.   

 

To achieve the above aims the following objectives have been recognized. 

1. Critical review of ANNs and their uses. 
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2. In depth study of current approaches to model hidden layer in ANN. 

3. Develop an approach to prune hidden layer architecture of ANNs. 

4. Evaluate of the novel approach.  

 

1.3 Background and Motivation 

The generalization power of an Artificial Neural Network (ANN) strongly depends 

on the number of hidden layers. In general, as there are enough data to capture the 

complexity of the given task, multi-layered architectures show better performance 

than shallow ones for many real valued applications [1], [2]. However, this solution 

of architecture may not be computationally optimized. In addition, networks with 

too large and too small number of hidden neurons show advantages as well as 

disadvantages. When the network is too large, it learns fast [3]. In addition large 

networks form complex decision regions as problem requires and show better fault 

tolerance in damage conditions [4]. However, when there are too many parameters, 

generalization ability declines as it fails to distinguish similar neurons. In contrast, 

networks with too few parameters show better generalization, nevertheless neurons 

in these networks do not learn data properly [5], [6].  

 

Artificial Neural Networks are mathematical and computational models for 

predicting and decision making, inspired by the functions of the biological central 

nervous system. They are very advanced modelling systems capable to solve many 

highly complex tasks. The human brain has amazing features that can memorize and 

learn from data [7]. Also, when a part of the central nervous system is damaged, 

some other neurons maximize their functions to compensate for the damaged ones. 

This process is known as fault tolerance. Likewise, ANNs are designed and 

developed with similar architecture as structure of the biological nervous system 

(Figure 1.1). In addition, as the human brain does, ANNs are able to remember the 

features of specific tasks and use them to predict on that task in the future. Because 

of these properties nowadays neural networks have been applied to many real world 

problems in various fields such as medicine, agriculture, finance, and engineering. 

Certainly, when there is a problem on prediction or classification, neural networks 
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are being used because ANNs have shown promising results in solving non-

algorithmic complex problems.  

 

Although there are many advantages of neural networks, the complexity of its error 

surface has become a significant problem. The complexity of the error surface 

occurs because of some barriers like local minima, flat spot plateaus, and saddle 

points. So that the training network has become more complex and also crucial in 

performance [8], [9]. In this context, modeling hidden layer architecture is very 

important to achieve a better performance for the given problem. Therefore, this 

research addresses the problem clearly and approach the hidden layer architecture 

by using a pruning method inspired by the concepts of neuroplasticity [10].  

 

 

 

Figure 1.1: Diagram representation of central nervous system 

 

1.4 The Problem in Brief  

Despite many advantages, there are major difficulties in applying ANNs in real-

world problems. One of the major issues in application of neural networks is 

determining the size of the most appropriate neural network architecture, which 

used in the particular problem, i.e. the size of the neural network architecture is a 

decisive factor.  

 

The number of training cycles (epochs) and the generalization power are the two 

main measures to determine the performance of the network. Generalization refers, 

how the network performs for any data which was not used in training process [11]. 

It has been observed that the complex models with too many hidden neurons show 

poor generalization as it could not distinguish very close parameters. When there are 

too few neurons, the network may not learn properly and yields inaccurate solutions 

[12]. On the other hand, generalization power can be improved by using more than 

one hidden layer. However, too large networks increase the complexity of the 

Input 

 
Stimulus Response Neural 

Net 

 

Output 
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architecture and there is a high probability to have local minima problem [5]. 

Moreover, networks with many hidden layers arise complex computations and it 

needs much training time. 

 

Therefore, the determining the optimum ANN architecture for modelling the given 

task is very important and still it is a research challenge as the available methods do 

not yield the optimized solution with the proper theoretical background.  

 

1.5 Current Approaches to Modelling Hidden Layer Architecture  

Generally, there are two fundamental approaches to determine the most appropriate 

hidden layer architecture, namely constructive and pruning algorithms. Constructive 

algorithms generate with a minimum number of neurons and iteratively increase 

neurons and connection weights of hidden layers to reach the most appropriate 

architecture [13],[14]. In contrast, Pruning algorithms start with an oversized 

network and iteratively eliminate unimportant neurons from hidden layers until the 

optimum solution occurs [15],[16]. 

  

There are many approaches based on these techniques. Setiono [17] has proposed a 

penalty term method to prune the network, where at the end of training, the terms 

with smallest values become zero. Also in magnitude based pruning (MBP) 

methods assume that smaller weights are irrelevant and eliminate them form the 

network structure [18].  Further, optimal brain damage (OBD) [16] and optimal 

brain surgeon  (OBS) [19] have proposed to determine the less salience neurons 

based on the second derivative of the cost function. In addition, many constructive 

algorithms had been proposed in numerous ways to obtain the optimal architecture 

[13], [20]. There are also hybrid methods which used both addition and deletion of 

hidden neurons [21], [22].  

 

However, both constructive and pruning methods have advantages as well as 

disadvantages. The constructive algorithms are computationally economic because 

they initialize with simple networks. Nevertheless, these solutions are more likely to 
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have the local minima problem as error surface of small networks are more 

complicated than error surface of large networks [23]. On the other hand, 

successively train of smaller network until the smallest one occurs is time 

consuming. In the pruning methods, normally large networks allow reasonable fast 

learning and while reduced, network performs better generalization. However, the 

pruning techniques are hypothesized, that the initially large sized network allows 

the network to learn with less accuracy for the initial conditions [24]. In addition 

training a large network is not computationally economic as it takes more training 

time. Also, inappropriate deletion of nodes and connections may cause to loose 

information. But authors of [12] have shown that the overall time taken to prune 

large network to a smaller one is relatively very favorable with that of training a 

small network with fewer number of neurons. Hence, it has observed that pruning 

techniques are widely used in improving the generalization.  

  

1.6 The Proposed Solution  

The approach to the solution is motivated by the finding from neuroscience that the 

human brain is a neural network with more than hundred billion neurons [25], yet 

our activities are performed by a simpler network with a much lesser number of 

neurons. Furthermore, in biological neural networks, the neurons that do not 

significantly contribute to the network performance will be naturally disregarded 

[26]. According to neuroplasticity, biological neural networks can also solicit 

activations of neurons in the proximity of the active neural network to improve the 

performance of the network [27]. By the same token, it is hypothesized that for a 

given complex-trained artificial neural network, it can discover a network, which is 

much more simplified than the original complex architecture but still performs same 

or better than the original one.  

 

Another inspiration fact that a single hidden layer architecture does not yield the 

best solution in every instance. This idea was stimulated by the functions of 

neocortex in the human brain. As shown in the Figure 1.2, the neocortex is the 

largest part of the outermost layer of the mammalian brain, which believes 
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responsible for intelligence such as perception, imagination, language, art, music, 

mathematics, and planning [28]. It is assumed that the neocortex area of the human 

brain has a columnar structure with six layers which contains billions of neurons 

[29]. Although artificial neural networks do not perform exactly similar way as the 

neocortex, this is a momentous factor to have some large number of hidden layers to 

neural network architecture.  

 

The approach describe in this thesis is based on the hypothesis that any large ANN 

could be pruned to a smaller sized network without lowering the performance. Thus, 

the procedure starts with a complex network with a large number of hidden layers 

and hidden neurons which was trained by backpropagation algorithm [30],[31].  

 

The procedure of achieving the optimum architecture has two phases. Firstly, it 

designs an algorithm to determine the number of hidden layers in network which 

shows the highest generalization. This is done by using the Peak-Search Algorithm 

(PSA) which will be described in Chapter 5. In the second phase, the newly 

discovered simpler network with the highest generalization power is considered for 

pruning of neurons in its hidden layers. The pruning of neurons in the hidden layers 

has been theorized by identifying the neurons that give least contribution to the error 

decay process. These neurons are identified by detecting correlation (     )  [32] 

between the sum of the delta values of the hidden layer h and the output error (E) of 

the training cycle, regarding minimization of error in training. While pruning 

disregarded neurons, synaptic weights attached to the removable neuron will be 

merged with weights of a neuron which is having similar weight vector. The new 

method obtained by using Peak Search algorithm and Delta Value is accronymed as 

the PSDV algorithm. 

 

Experiments showed that the simplified ANN architectures generated by new 

approach exhibit the same or better performance as the original large network 

architecture. As such, our approach can be used to discover simpler network 

architecture relevant to a given complex architecture of an ANN problem. Due to its 
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architectural simplicity, the new architecture has been computationally efficient in 

training, usage, and further training.   

 

The results proved by experimentally using some bench mark problems.  The 

experimental results show that the network obtained by newly introduced method 

performs better generalization with lesser number of hidden neurons compared to 

the original network. 

 

1.7 Resource requirements  

To reach the goals of the above approach, some software and hardware have been 

needed. MATLAB has been used in training the backpropagation algorithm. The 

proposed methodology needs an adequate hardware such as processor of 2.50 GHz 

and 4GB RAM. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The structure of the human brain 

 

1.8 Organization  

The rest of this thesis is arranged as follows. A detailed description of artificial 

neural networks will be discussed in chapter 2, which includes the different types of 

networks, training methodologies and evolution of ANNs. Chapter 3 presents brief 

but necessary overview of modelling techniques in artificial neural networks. 
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Basically, these approaches considered under two major titles pruning and 

constructive algorithms. Chapter 4 contains the concept of neuroplasticity and 

synaptic pruning. It briefly discusses how these concepts relate to the ANNs. The 

methodology is presented in chapter 5. It discusses the peak-search algorithm and 

pruning method applied in this thesis. The experiments and results appear in chapter 

6. The details of data sets and the results of all the benchmark problems present in 

this section. In recent years concept of deep learning networks has become a hot 

topic in machine learning and using the results for some deep learning networks will 

discuss in chapter 7.  Finally, the conclusion is given in chapter 8. It discusses in 

brief how the model performs for different data sets and limitations arise while 

training the data sets.  

 

1.9 Summary  

This chapter briefly discussed the background and motivation of the research 

problem by highlighting the importance of modelling of the hidden layer 

architecture. In addition adequate description of ANN was provided. Further, a brief 

description of pruning and constructive methodologies and their limitations were 

given. It clearly stated the aims and objective of this research and briefly explained 

the proposed solutions. Finally, it discussed the structure of the rest of this thesis. 

The next chapter discusses the fundamental concepts on artificial neural networks 

that used in our approach.  
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CHAPTER 2  

 

FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS 

2.1 Introduction  

The previous chapter gave an introduction to the context of thesis by stating the 

aims and objectives, the problem in brief and the method of achieving the solution 

of the hidden layer architecture in artificial neural networks. The Artificial neural 

networks are densely interconnected, parallel computational models for the human 

brain. Some of the most important features of ANNs are their adaption to the nature, 

ability of learn by experience and the fault tolerance. This chapter focuses on these 

basic aspects together with the key development stages of ANNs. In addition, 

various types of neural network structures and learning rules of ANNs are taken to 

the discussion.  

 

2.2 Preamble to the Artificial Neural Networks 

An Artificial Neural Network generally referred to as a neural network (NN) is an 

information processing system that inspired by the functions of the human central 

nervous system. It is a massively parallel and highly connected distributive 

processor, made up with artificially designed units called artificial neurons, which 

have capability to store the acquired knowledge from the environment and use it 

when necessary. The knowledge is saved in the adjustable interconnected weights 

called synaptic weights [33]. In other words, functions of neural networks are very 

similar to the behavior of human brain and they yield the corresponding output 

when the input is presented.  

 

The human brain, which is formed by elementary units called neurons, is highly 

complex, massively parallel and nonlinear information-processing system. The 

brain is capable to manage its own structure to perform certain tasks like pattern 

recognition and classification faster than any modern computer [34] . On the same 

line, artificial neural networks are created as mathematical and computational model 

to simulate the functions of biological nerve cells and their interconnection. The 
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most important feature of an artificial neural network is the adaptability to the 

environment by changing its structure by experience [35], [36]. 

 

Because of these characteristics, ANNs have become very useful and they have 

been applied to solve variety of problems in pattern recognition, optimizing and 

associative memory in many areas such as medicine, agriculture, physics and 

geology. Although some conventional approaches were applied to solve such 

problems, many of them were not successfully performed well for their input 

domains. However, almost all the applications could benefit from using ANNs as 

they show exciting alternative results [37], [38]. 

 

The artificial neural networks were introduced once the people realized that the 

functions of von Neumann machines are far different from the human brain [33]. 

Both human brain and computers have many similarities such as increase their 

memory, transmit the signals, use electrical signals to send messages, able to solve 

mathematical and logical problems, and need energy and much more [39]. 

However, they use different techniques in these functions. For example, brain uses 

chemicals to transmit the signals while computers use electricity. The brain acquires 

energy from nutrients, but computers need electricity to work. Moreover, the 

capability of the modern computer‘s on solving some complex mathematical based 

problems is much faster than that of humans. On the contrary, they are not able to 

perform in some perceptual instance such as face recognition. We, human can easily 

recognize the face of a friend even in crowd place or recognize him by his voice 

without seeing him. However, those fastest modern digital computers available 

today are not capable to do such because the architectural design of them is totally 

different from the topology of the human brain and these differences strongly affect 

the performance of the system. The significant differences of such functions are 

presented by jain et al. [38] as shown in the below Table 2.1.  
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Table 2.1: Comparison of Von Neumann computer and the human brain 

Function Von Neumann computer Human brain 

Processor Complex 

High speed 

One or few 

Simple 

Low speed 

A large number 

Memory Separate from a processor 

Localized 

Non-content addressable 

Integrated internal  

processor 

Distributed 

Content addressable 

Computing Centralized 

Sequential 

Stored programs 

Distributed 

Parallel 

Self-learning 

Reliability Very vulnerable Robust 

Expertise Numerical and symbolic 

manipulations 

Perceptual problems 

Operating environment Well defined 

Well constrained 

Poorly defined 

Unconstrained 

 

These differences highly affect on the performance of the function. Thus, realizing 

these differences made significant role in revealing mechanism of the neural 

information processing. As the result of that artificial neural networks were created 

by adopting such functions of the human nervous system. 

 

Artificial neural networks are massively parallel distributive structures which can 

use to solve parameters involving non-linear and noisy, complex data. In addition, 

they are powerful tools which mimic the learning process of the human brain in 

modelling, especially when the relationship between input and target is unknown. 

ANNs has ability to recognize the correlated patterns and after training, it can be 

used to predict the output for new input data. Another important characteristic of an 

ANN is its adaptivity to the nature. They have a built-in capability to adapt the 

surrounding environment by changing the synaptic weights. Also, neural networks 
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are fault tolerant. That is, if a group of neurons or their connecting links are 

damaged, the network has ability to recall the stored pattern to compensate for the 

damage ones and performs without degrading the quality. Therefore, nowadays 

ANNs have been recognized as very sophisticated modelling technique capable of 

model the highly complex nonlinear models [33]. So that they have been used to 

solve problems in classification and pattern recognition in a very wide range of 

domains.   

 

2.3 The History  

The basic concept and some background work on the field of neural networks 

happened in the late 19
th

 and early 20
th

 centuries with the fundamental works of 

Hermann Von Helmholtz, Ernst Mach and Ivon Pavlov in different areas such as 

physics, psychology and neurophysiology. This primary works are highlighted the 

theories of fields such as learning, vision, and conditioning, but have not 

emphasized a mathematical model of neuron operations [40]. The beginning of 

neurocomputing can be traced back to the research article published in 1943 [41] by 

American neurophysiologist Warren McCulloh and logician Walter Pitts. In this 

article, they had shown that how the brain could produce highly complex patterns 

by using many basic cells called neurons that are connected together. In addition, it 

emphasized that even a simple model of artificial neurons could, in principle, 

compute any arithmetic or logical function. The first model of ANN that McCulloh 

and Pitt was presented is shown in the following Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1:  Model of ANN proposed by McCulloh and Pitt 
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In 1949 Donald Hebb claimed in his book entitled ―The Organization of Behavior‖ 

[42] that classical psychological conditioning is presented because of the properties 

of an individual neuron. However, this idea was initially proposed by Ivan Pavlov 

(1849-1936) and Hebb developed it by proposing a specific learning rule for the 

synapses of neurons.  

 

The first practical application of the artificial neural network was introduced with 

the invention of perceptron rule by Frank Rosenblatt, Charles Whiteman and their 

colleagues [43] in late 1950s. This perceptron network was successfully used in 

pattern recognition. At the same time Bernard Widraw and Ted Hoff introduced a 

new learning algorithm, Widrow-Hoff learning rule [44] to train adaptive linear 

neural networks (ADALINE) which is still using. Both these networks struggled 

with their inherent limitations and they were not able to successfully modify the 

network to overcome those limitations. Thus, in the late 1960s, people believed that 

the ANN has reached to its dead end. Until 1980 interest of neural networks faltered 

due to several reasons, such as lack of new ideas and insufficiency of powerful 

computers to continue experiments. In 1980, with availability of newly developed 

personal computers, research on ANNs significantly increased and researchers came 

with several new concepts. The Backpropagation learning rule published by David 

Rumelhart [30]  is considered as one of the most important concepts of the rebirth of 

neural networks.  

 

With the invention of the backpropagation algorithm, the research interest on ANNs 

was dramatically increased. Over the last few decades, it has been successfully 

applied in a wide area including, medicine, engineering, geology, physics, finance, 

and biology.  

 

2.4 Structure of Artificial Neural Networks  

The two main components of a neural network are processing elements and 

connections. Processing elements are known as neurons or nodes. The link between 

any two neurons is called the synaptic weight connection. A weight parameter is 
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assigned to each connection and the weight of the connection from  th
 neuron to  th

 

neuron is denoted by    . Each neuron receives input signal    from the 

environment or an adjacent neuron, multiplied by the weight vector and sum up all 

such terms. Then passes the summation through an activation function   to outside 

or another neuron connected to it. The neurons that receive signals from the 

environment are known as input neurons and neurons send to signals outside are 

known as output neurons [45].  

 

In the model of McCulloh and Pitts each neuron computes the weighted sum of   

inputs      1      and corresponding synaptic weights   ; associates with 

each input and produce the output  . The output is 1 if the sum is greater than a 

certain threshold value  , otherwise 0.  

The mathematical expression of the output is  

 

                                           (∑      

 

   

)                                                              2 1  

 

where      1      are the weights, y is the output of the network and      

represents the unit step function. The positive weights correspond to excitatory 

synapses and negative weights represent inhibitory ones. For computational 

simplicity threshold value   is considered as another weight w associates to an input 

with value 1.  

 

In general, an artificial neural network can be represented as a weighted directed 

graph, where artificial neurons are nodes and synaptic weights are the directed 

edges. Each network necessarily contains a certain input neurons            and 

output neurons            , and it assumes that these neurons lie in layers. So that 

the basic structure of an ANN contains an input layer, an output layer as shown in 

the Figure 2.2 
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Based on the architecture, artificial neural networks can be divided into two types, 

such as  

 Feedforward networks 

 Recurrent networks  

 

2.4.1 Feedforward networks  

The directed graphs with no loops are feedforward networks. Neurons on these 

networks are organized into layers. They have static behavior. That is, rather than 

provide a sequence of outputs, feedforward networks give only one output at a time 

for a particular input. The main categories of feedforward architectures are single 

layer feedforward networks, multilayer feed forward networks and radial basis 

function nets. These networks are known to be ‗memoryless‘ as each input is 

independent of the previous positions. The simplest form of these networks has two 

layers, input layer and output layer. However, the most widely used types of 

feedforward networks are multilayer perceptron (MLP), which contains a certain 

number of hidden layers in addition to input and output layers.  

 

Generally, neurons in the input layer receive signals of information from the 

environment and the output layer is responsible to produce the output of the 

network. The number of neurons in the input and output layers are fixed and equal 

to the number of elements in the input and output vectors of the data set 

respectively. The section of hidden layers is the most crucial part of the network. 

This imitates the functions of the human brain. That is most of the internal 

processing are carried out by the hidden part of the network. The number of hidden 

layers and the number of neurons in each hidden layer is uncertain and the solution 

of the network strongly depends on the hidden layer architecture of a neural 

network.  

 

Single Layer Feedforward Networks 

The expansion of the research on feedforward layered networks began in late 1950s 

with the presenting of single layer feedforward networks on perceptron by 
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Rosenblatt [43] and ADALINE by Widrow [46]. Generally, a single layer feed 

forward architecture has only an input layer and an output layer as shown in the 

Figure 2.2. These networks are used in solving only linearly separable problems. 

This limitation led to researchers to improve the system and hence, multilayered 

feedforward networks were introduced.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Single layer feedforward network 

 

Multilayer Feedforward Networks 

The feedforward networks with multiple hidden layer units, where all are adaptive, 

are known as multilayer feedforward neural networks (Figure 2.3). Unlike single 

hidden layer networks, multilayer networks can be used in a wide range of 

applications such as pattern classification, face recognition, function approximation 

optimization and many more. These structures must contain at least one hidden 

layer. Hidden nodes of the network, which contains only one hidden layer receive 

signals from the input layer and pass the processed signal to the output layer. When 

there is more than one hidden layer, the signals received by the input layer, pass to 

the first hidden layer and each hidden neuron pass the processed signal to the 

neuron in adjacent hidden layer neurons. Finally, the neurons in the last hidden layer 

send the signals to the output layer. Having more hidden neurons, network enable to 
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extract more information rather than simple ones due to the extra set of synaptic 

weights and more connections [33].  In multilayer network, it is not necessary to 

connect each node with all the other nodes in the adjacent layer. However, the 

feedforward network with all the possible connection is called a fully connected 

network. But there are instances that some links may missing. Those networks are 

known as partially connected networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Multilayer feed forward network 

 

Radial Basis Function Neural Nets 

Radial basis function (RBF) neural nets are the two layer feed forward neural nets 

whose activations functions are radial basis functions such as Gaussian function 

(            )  [47]. As in MLP the output nodes apply the linear summation of 

functions (Figure 2.4). The networks train in two stages. First, adjust the weights 

form input layer to hidden layer, then adjust the weights from hidden layer to output 

layer [48]. 
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Figure 2.4: Radial basis function network 

 

2.4.2 Recurrent networks  

The recurrent networks contain feedback loops and hence, their procedure differs 

from the feedforward networks (Figure 2.5). The most common recurrent networks 

are competitive networks, Kohonen‘s Self Organizing Map (SOM) and Hopfield 

networks. Unlike feed forward networks, recurrent networks are dynamic systems. 

Once the output computed for an input neuron, it may feed back to the same neuron 

and hence, input neuron is altered. Thus, the network leads a new state [38].  

 

Figure 2.5: Recurrent network 
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The classification of neural networks accordance their architecture is described in 

the Figure 2.6. The different network architectures use different learning methods 

and sections 3.6 and 3.7 briefly discuss the learning process of neural networks.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Classification of Neural Networks by architecture 

 

2.5 Activation Functions 

In a neural network an activation function, also referred as a transfer function or a 

cost function plays a major role in transferring the signals. It controls the 

information propagation of each layer by using its nonlinear property. Different 

activation functions have different characteristics and thus, they work in different 

ways. In general, the same activation function is applied to all the neurons in a 

layer. In this section we discuss some widely used activation functions, namely hard 

limit function, linear function and sigmoid functions. 

 

2.5.1 Hard limit activation functions   

The activation of the type 

                                                   {
1          

          
                                                            2 2  
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is called a threshold function. This function is also known as hard limit transfer 

function, which is illustrated in the Figure 2.7. In NN, the total input of the  th
 

neuron    is given as  

                                                         ∑     

 

   

                                                          2 3  

where    and    , i = 1, 2 …n are input vectors and corresponding weights 

respectively.    is the bias vector. 

So that the output of the  th
 neuron is stimulated as  

                                                    {

1           

           
                                                           2 4   

 

Figure 2.7: Hard limit function 

2.5.2 Linear function  

In the linear function, the output of any particular neuron equals to its input. As 

shown in the Figure 2.8, the function is written as         

When the input of the neuron   is    , the output          . This function is used in 

the ADALINE neural networks.  

 

Figure 2.8: Linear function 
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2.5.3 Sigmoid functions 

A strictly increasing function, whose graph is S-shape is called a sigmoid function. 

The two sigmoid functions, logsigmoid and tansigmoid which depict in the Figure 

2.9 are the most commonly used cost functions, especially for the construction in 

hidden layers. The log sigmoid function is given as  

                                                            
1

1      
                                                         2 5  

where   is the slope of the curve. By changing the parameter  , curves with 

different slopes can be obtained. When   tends to infinity, sigmoid functions 

becomes hard limit function. However, for finite values of   sigmoid function is 

differentiable. But hard limit function is not.  

 

The tan sigmoid function, given by the equation 2 3 lies between -1 and +1.  

                                                      
      

      
                                                               2 6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Sigmoid functions 

 

 

+1 

0 

+
1 

-1 

0 

Log sigmoid function Tan sigmoid function 



22 

2.6 Neural Network Learning  

One of the basic common features of the human brain and artificial neural networks 

is their ability to learn. We human beings are able to learn from our surrounding 

environment by using different techniques. Sometimes we used to learn with a 

teacher and sometimes learn ourselves, without a teacher. So, it is with artificial 

neural networks. They can learn or train in similar ways and perform as humans 

achieve their goals. So that, in artificial neural network‘s framework learning is the 

updating the topology of the network by iteratively changing its neurons and 

synaptic connection to achieve its specific tasks successfully. One of the major 

advantages of artificial neural networks is unlike conventional expert systems, they 

use the underlying rules in the certain set of examples, instead of following a set of 

rules specified by human experts [38]. In the context of ANN, the learning with a 

teacher is viewed as supervised learning. The learning without a teacher has two 

subdivisions known as unsupervised training and reinforcement learning.  

 

2.6.1 Supervised learning  

Supervised learning also referred as ‗learning with a teacher‘ is inspired by the 

concept that the teacher has the knowledge on environment. This knowledge is 

represented by input-output data set {                 }. Where        are 

inputs and        are corresponding target outputs. When inputs apply to the 

network, it computes the output and measure the error signal. Error signal refers the 

difference between actual and target output. Then it adjusts the synaptic weights and 

biases to minimize the error signal (Figure 2.10).  

 

2.6.2 Reinforcement learning 

The reinforcement learning is like supervised learning. However, here algorithm 

gives a scalar or a grade instead the correct output for each input. There is no 

teacher or exact output at each step of learning and the main goal of this learning 

procedure is to minimize the expectation of the cumulative cost of action on the 
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steps of iterations. These applications are not much more common as supervised 

learning.  

 

 

 

Figure 2.10: Block diagram for supervised learning 

 

2.6.3 Unsupervised learning 

As shown in the Figure 2.11 below, in unsupervised learning, there is no teacher or 

a critic to observe the learning process. Hence, in unsupervised learning algorithms, 

instead of providing specific task to learn, it introduces a task independent measure 

to be learned and the network is self-organized by adjusting the synaptic weights 

and biases to achieve those measures. By applying this procedure sequentially one 

layer at time, it is able to extend to train large networks with many hidden layers. 

For a particular task, once the network has become tuned to the statistical 

regularities, it is able to form internal representation which encodes features of the 

input in a more explicit or simple form [49].  

 

Unsupervised learning algorithms are used in competitive-learning rule, where the 

nodes compete with each other give the chance to  respond to a subset of the input 

data [50]. In its simplest form network works according to the winner-takes-all 

strategy. That is neuron with the greatest input wins and turn it on while rest of all 

the other neuron turn off [33].  



24 

 

Figure 2.11: Block diagram for unsupervised learning 

 

2.7 Learning Algorithms  

The machine learning concept was initially presented by Nilson [51] in 1965. The 

learning process of artificial neural networks is very similar to that in biological 

neural system. Some neurons can be trained only by using local signals, while some 

may require knowledge of output neurons. As discussed in previous section, some 

neurons may need a teacher to learn and some are able to self-learning without a 

teacher. We can notice that all these learning are done accordance to a set of 

systematic rules. Here we discuss the some of the basic learning rules such as    

 Hebbian learning 

 Error correction learning 

 Boltzmann learning 

 Competitive learning  

 

2.7.1 Hebbian learning 

Hebbian Learning algorithm, referred as Hebb’s postulate of learning is the oldest 

learning algorithm which was proposed by the neurophysiologist Donald O. Hebb 

[42] in 1949. This was initially introduced as a possible mechanism for synaptic 

modification for the brain cells and since then, it was used to train artificial neural 

networks. Hebb‘s book stated the following postulate (pg. 62). 

 “When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change 
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takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased.” 

 

This change in Hebb‘s learning was proposed for associative learning. Hebb‘s 

postulate expand and rephrase in to two-part rule as follows [33]. 

1. If two neurons on either side of a synapse (connection) are activated 

simultaneously (i.e., synchronously), then the strength of that synapse is 

selectively increased. 

 

2. If two neurons on either side of a synapse are activated 

asynchronously, then that synapse is selectively weakened or 

eliminated. 

These synapses are called Hebbian synapses. Mathematically Hebbian learning 

can be expressed as follows.  

 

Let the signals of two neurons   and   be    and    respectively, and connection 

weight from neuron   to neuron   be    . Then    and    are called pre-synaptic 

and post-synaptic respectively. Thus the weight update of     can be written as a 

function of both pre-synaptic and post-synaptic signals. That is  

                                                    (           )                                          2 7  

Function   has many forms all such with the Hebb‘s postulate. So that the 

simplest form of above equation  2 7  can be written as  

                                                                                                             2 8  

where   is a positive constant known as learning rate. The most important feature 

of this relation is weight update depends only on the output signals of two 

neurons. This rule is defined for unsupervised learning and it does not require the 

information of desired output.  
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2.7.2 Error correction learning rules 

In supervised learning, the network is trained for input/output patterns 

{                 }, where          are inputs and         are desired outputs. 

The main objective of the learning is to minimize the error between actual output 

and the desired output. Actual output    is the output generated by the network for 

the input   . The error signal of the output neuron   is defined as  

          

The fundamental concept of error correction rules is to gradually reduce    by 

upgrading the connection weights. The first practical error correction learning rule 

is the perceptron learning rule. 

 

2.7.2.1 Perceptron Learning Rule  

The perceptron was the first algorithmically illustrated network and hence, it takes 

very special place in neural network learning. The algorithm was introduced by 

Rosenblatt [43] in the late 1950s. The features of this network is similar to the 

network introduced by McCulloh and Pitts [41]. In the model of McCulloh and 

Pitts, the output is determined by comparing the weighted sum of the input signals 

to a threshold value. If the sum is greater than the certain threshold value output is 

1, otherwise the output is zero (0). The key feature introduced in perceptron network 

is the learning rule in pattern recognition. The learning was simple and automatic. 

Also, it can learn for random weights and biases. The learning occurs only when 

network gives an error ( Figure 2.12). Rosenblatt proved in his literature that this 

learning rule always converge to the correct weights. This is known as the 

―perceptron convergence theorem”.  
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Figure 2.12: Perceptron Algorithm 

 

The perceptron model, which is shown in the below Figure 2.13 contains only a 

single neuron and limited only for pattern classification problems. The node 

computes the sum of the linear combination of all inputs and corresponding synaptic 

weights and bias. The resulting sum applied to the hard limiter. If this resulting sum 

is positive or zero network gives  1, otherwise the output is  1.  

 

As shown in the Figure 2.13 inputs to the single node are represented by 

             and corresponding synaptic weights are            . The 

externally applied bias is denoted by  . The net input for the single neuron is  

                                                     ∑    

 

   

                                                                2 9  

Then output   is given as 

                                       

                                  {

 1           

 1            

                                                                     2 1   

𝑤 𝑛  1  𝑤 𝑛   𝜂 × 𝑒 𝑛 × 𝑥 𝑛  

𝑏 𝑛  1  𝑏 𝑛   𝜂 × 𝑒 𝑛  

Variable and Parameters 

𝑥 𝑛 : Input vector 

𝑤 𝑛 : Weight vector 

𝑏 𝑛 : Bias 

𝑦 𝑛 : Actual output 

𝑑 𝑛 : Desired output 

𝜂: learning rate parameter, ( a number between 0 and 1) 

Initialization  

𝑤   ; 
𝑏   ; 

Do the following until stopping condition is satisfied 

 Compute 𝑦 𝑛  the output for each input 𝑥 𝑛  

error (𝑒 𝑛  = 𝑑 𝑛  𝑦 𝑛  
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In two class classification problem, classes are separated by the decision boundary 

given by the linear equation 

                                                                                                                                      2 11  

If    1 in the above equation  2 1  , perceptron assign input to one particular 

class and if      1 to the other class.  

 

Figure 2.13: The perceptron learning rule 

 

However, the perceptron learning algorithm has inherent limitations, which were 

highlighted in the book written by Marvin Minsky and Saymour Papert [52]. They 

argue that the perceptron network fails in applying certain elementary functions to 

understand more complex networks.  

 

Until 1980s there was no significant development of ANNs to overcome this 

problem. With the presented of backpropagation algorithm, ANN became very 

popular and a dramatically increase of research of ANN can be seen. Nevertheless, 

the perceptron learning algorithm is considered as a very important algorithm as 

understanding of perceptron network helps to provides good basic knowledge to 

learning process of ANNs. 

2.7.2.2  Backpropagation Learning 

The backpropagation algorithm, depicts in the Figure 2.14, is the most widely used 

learning algorithm in artificial neural networks. Although, it was firstly introduced 
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in 1970, the importance of the algorithm was fully appreciated with the paper [30] 

published by David Rumelhart, Geoffrey Hinton and Ronal Williams in 1986 [53]. 

The intend of the backpropagation algorithm is to minimize the error of the network 

is given by the cost function  

                                                        ∑(     )
 
 

 

   

                                                     2 12  

where    and    are actual and desired outputs of the neuron   of the output layer.   

is the number of neurons in the output layer. The algorithm expresses     ⁄   of the 

cost function with respect to any weight w and this expression tells that how quickly 

cost changes with respect to the weights and the bias. Backpropagation is a fast 

learning algorithm. Not only that, but also it tells in detail that how the changes of 

the bias affects in the overall behavior of the network during the training. 

 

The procedure initializes with choosing random weights. After choosing weights, 

network computes the cycle error by using the error function shown in equation 2 7  

The algorithm contains four major steps as follows [54], 

1. Feedforward computation 

2. Backpropagation to the output layer 

3. Backpropagation to the hidden layers 

4. Weights update 

 

The algorithm stops when the error decreased to the required level.  

 

Feedforward Computation  

The input vector [           ]
 
 presents to the network. Weights are initialized 

and evaluated derivatives of the activation functions are also fed at each neuron. 

The input of the  th
 neuron of the output layer at the  th

 iteration is  

                                        ∑   

  

   

                                                              2 13  
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  is the number of hidden layers and     is the connection weight between i
th

 neuron 

of  th
 hidden layer and  th

 neuron of the output layer. Number of neurons in  th
 

hidden layer is    . When the activation function of the output layer is   , the output 

of neuron   at  th
 iteration is  

                                                   (       )                                                           2 14  

Then the error of  th
 neuron of output layer at  th

 iteration is  

                                                                                                                      2 15  

Where       is the expected value of the  th
 neuron at  th

 iteration. 

Then the instantaneous total error of the whole network is defined as  

     
1

2
∑(           )
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                                                           2 16  

Where   is the total number of neurons in the output layer.  

 

According to steepest descent algorithm [55], [56] the change of weight vector is 

proportional to 

  

    
 

i.e.  

   
  

    
 

                                                        
  

    
                                                   2 17  

where   is the learning rate. As the change of weight spaces, reduces the error it 

holds the minus sign.  

By applying the chain rule 
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                            2 18  
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By differentiating equation  2 16  with respect to    

                                                                  
  

   
                                                                2 19  

Differentiate equation  2 14  with respect to   . Then we get  

                                                               
   

   
  1                                                             2 2   

Then by differentiating equation  2 14  with respect to      

                                                     
   

 (    )
   

 (    )                                                    2 21  

and by differentiating equation  2 13  with respect to     

                                                         
 (    )

    
                                                          2 22  

Then equation  2 18  implies that  

                                               
  

    
     1   

 (    )                                            2 23  

From equations  2 17  and  2 23   

                                              
 (    )                                                              2 24  

Now define      as follows 

                                                              
 (    )                                                          2 25  

 

Backpropagation to the output layer 

When   is an output layer neuron, it is straight forward and easy to compute. In this 

case the change of synaptic weights calculates according to equation  2 27  below 

by applying the delta value derived by equation  2 25 . 

 

Backpropagation to the hidden layers 

When   is a neuron in hidden layer  , a desired value is not assigned to this neuron. 

Then the error signal is computed recursively and backward by using the error 

signals of all the neurons in layer    1   that connected to neuron  j directly.  

Then, as described in [30] and [33] delta value   
     for hidden neurons j of layer h 

can be given as  
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 (    
    )∑  

   

  

   

      
                                 2 26  

where    is the number of hidden neurons in the  th
 layer and   

    is the delta 

value of  th
 neuron of (  1)

th
 layer. 

 

Weights update 

After computing delta values, synaptic weights update in the negative gradient 

direction as shown in the equation  2 17   The new weight of     is expressed as  

                                     1                                                                 2 27  

Weights are updated only after the computation of backpropagation error in all the 

neurons. Otherwise, corrections intertwined with the backpropagation of the error 

and weights updated do not correspond to the negative gradient direction [54]. 

 

 

Figure 2.14: Backpropagation learning algorithm 
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2.7.3 Boltzmann learning 

The Boltzmann learning was invented by Hinton et al. [57] in 1985. Neural 

networks, which use Boltzmann learning, are known as Boltzmann machines. They 

are symmetric recurrent networks, which make stochastic decisions whether to be 

on or off ( 1 for ‗on‘ and  1 for ‗off‘).  Symmetric refers that the synaptic weight 

of neurons   to neuron   equals to the synaptic weight of neuron   to neuron     That 

is        . The neurons of Boltzmann machine are portioned into two functional 

groups; visible and hidden as shown in the Figure 2.15.  

 

The visible units make the interface between network and the environment. During 

the training all the visible units are clamped for specific states by the environment. 

Also, in testing any subset of visible units may be clamped. But the hidden units 

behave in opposite way. If they exist, they never clamp and always activate freely 

[58].  

 

The objective of Boltzmann learning is to produce a neural network that accurately 

models input patterns according to the Boltzmann learning. In the Boltzmann 

learning the correction of the weight     from  th 
neuron to  th

 neuron is given as  

                                                                 ( ̅      )                                              2 28  

where   is the learning rate.  ̅    and      are the corrections between the states of 

neurons i and j when the network operates the clamped mode and non-clamped 

mode respectively. These values are computed by Monte Carlo experiments [59], 

which is known as a very slow process. 
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Figure 2.15: Boltzmann Machine 

 

Boltzmann learning is very similar to error correction learning procedure. Instead of 

computing error between desired and actual outputs, Boltzmann machines consider 

the difference of error of the correlation between the outputs of two neurons under 

clamped and free running mode [38].  

 

2.7.4 Competitive learning 

In the competitive learning output units compete with each other for activation. At 

the end, neuron with the greatest total input wins the competition and turns on while 

all the other neurons turned off. So that at any instance only one output neuron is 

activated. This is called the ‗winner takes all’ strategy.  

 

Competitive learning clusters input data. By using the correlation of data, it 

automatically groups the similar patterns and represents them by a single neuron. 

Each output unit       1      connects to all the input units    including    itself 

and connection weight between    and     is    .  According to the learning rule the 

neuron    with the largest input wins the competition, when                  [38].  

 

2.8 Summary 

This chapter briefly discussed the fundamental concepts of artificial neural 

networks. Feedforward networks are the most commonly used NNs. Due to its 
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inherent properties such as learn by experience and fault tolerance ANNs have been 

used to solve many real-world problems. The networks can train in supervised or 

unsupervised manner and backpropagation learning algorithm has widely used to 

train the multilayer feedforward networks. The next chapter will focus on the 

current approaches in modelling the hidden layer architecture and their strengths 

and limitations.  
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CHAPTER 3  

 

CHALLENGES IN DESIGNING OF NEURAL NETWORKS  

3.1 Introduction   

The previous chapter discussed the fundamentals of artificial neural networks. 

Further it pointed out how ANNs learn with different types of learning rules. The 

current approaches related to our research are reviewed in this chapter. Firstly, it 

briefly discusses about the problem on designing the optimal architecture. Next, 

focus on the various approaches in modelling the hidden layer architecture in ANNs 

with their adopted technologies, strengths and weakness of each method. Finally, a 

summary will be given on the available researches, which helped to enhance our 

research work on this context.  

 

3.2 The Problem of Designing the Optimal Architecture in ANN 

The determining the hidden layer architecture is crucial in ANNs as some 

inappropriate architectures increase the training time, indicate poor generalization 

and cause non-convergence [60], [61]. It is known that, networks with higher 

number of hidden layers give more generalized solution. However, this architecture 

may not be very economical. Optimal neural network architecture reduces the 

computational complexity whilst improving the generalization ability. Therefore, 

before neural network employs its structure must be known. Determining the 

minimal network architecture is known as a difficult task and hence, often it comes 

down as a trial an error work [62]. To address this problem, researchers have 

applied different types of neural networks structures such as feedforward neural 

networks, recurrent neural networks and radial basis function etc., for various types 

of applications.  

 

Because of its flexibility, good representational capabilities, and availability of large 

number of training algorithms, the feedforward neural networks are the most 

common and widely used network architectures [63]. It is known that feedforward 
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networks with large number of hidden neurons are able to learn fast by avoiding 

local minima. Also massively parallel networks form more complex decision 

regions [4] and they exhibit certain degrees of faulty tolerance under damage 

conditions [64], [65]. Nevertheless, when there are too many hidden neurons, 

hidden layers, and connections data may over-fit and show poor generalization. In 

addition, if the network is too large, it bears more nodes, more hidden layers and 

connections than required thus, it yields the unnecessary computational cost and 

arithmetic computations. In contrast, when the network is too small, it saves 

expensive hardware implementation time, but may not be able to learn the 

input/output relationships properly. Hence, design the optimal architecture i.e., the 

architecture which is large enough to learn maximum data and small enough to 

perform good generalization, is very important and remains as a research challenge. 

There are a certain number of approaches to overcome this problem. In general, 

hidden layer architecture of neural networks is determined by various pruning, 

constructive, pruning-constructive and some evolutionary techniques. 

 

A one of the most common methods to approach the minimal architecture is by 

pruning unimportant hidden neurons  [12]. This process is starting with a network 

larger than needed and trim down to the optimal solution [15], [19], [62],. The 

second approach is reaching to optimal solution by a constructive algorithm, where 

optimal architecture obtains by adding neurons and connection weights to a minimal 

network until the acceptable approximation accuracy is achieved [13], [14], [66]. 

There are number of hybrid methods of pruning and constructive algorithms to 

achieve the hidden layer architecture [67], [68]. These algorithms decide the 

neurons to be added and then gradually remove unnecessary neurons from the 

network. In addition, some evolutionary techniques have been used in optimizing 

the hidden layer architecture [69],[70].   

 

3.3 Pruning Algorithms  

Most of the pruning methods approach the solution by a brute-force algorithm, 

which systematically searches all the possibilities for the solution and checking 
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whether all the answers satisfy the required error conditions. When the output error 

is too large, either weights are updated or remove the corresponding neurons from 

the system.  While the signal is forwarded through each layer, it takes      time, 

where   is the number of weights. For   training patterns, the total time taken to 

pass the signal is       . Thus, this process is very slow and time consuming as 

many neurons have to be trained [15], [71].  

 

Most of the available pruning algorithms belong to two broad classes, sensitivity 

methods and penalty term methods. The first class estimates the sensitivity of the 

error function of the removable neurons where, sensitivity factor is defined as the 

derivative of the output error with respect to the connection weight [16], [62]. Thus, 

the nodes with least effect are identified as removable nodes and remove them from 

the network. The penalty term methods add terms to objective function (Activation 

function) that tends network to an efficient solution. The adding term proportional 

to the sum of all the weight magnitude [15]. Apart of those, magnitude-based 

pruning (MBP) [18], [72] evolutionary pruning methods [12] have been used to 

eliminate irrelevant neurons. MBP is the deletion of the connection weights with 

less saliency. It assumes that deletion of weights with less salience will cause only 

minor effect on the performance of the entire result. In most of the methods, 

backpropagation algorithm is used to train the network and the end of the training 

for reasonable error, the connection weights with the smallest magnitude are 

removed and the resultant network is trained until it tends to the desired error.  

 

3.3.1 Sensitivity calculation method  

Mozer and Simolensky [73] proposed a method to automatically trim least relevance 

units and  construct a skeleton version of the network. The relevance    of unit i is 

measured based on the error ( ) of the linear function  

 

                                         ∑∑|       |

  

                                                               3 1  
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where   is an index over patterns   over output units.      and     are target and 

actual outputs respectively, and    defined as  

 

                                                                                                                    3 2  

 

Where   is the error of the network on the training set.  Before calculating this, it 

introduces activity of unit j, by using additional strength of     , which is considered 

as gating of activity of the unit  

                                                (∑   

 

    )                                                            3 3  

Where     is the connection strength from i to j and    s the sigmoid squashing 

function.  When    is zero, the unit   has no influence on the rest of the network. If 

  =1, unit i is a conventional unit. Thus, the relevance of the unit   is rewritten as  

 

                                                          
                                                                 3 4  

 

This is approximated by the derivative  

                                                ̂   
  

   
                                                                            3 5  

This derivative can be obtained by error propagation [74] procedure which is very 

similar to backpropagation method. When  ̂  comes down to a certain treshold 

value, the unit can be deleted. In this study authors claim that     ⁄  fluctuates 

strongly in time, thus exponentially decaying time average of the derivative, to 

minimize the fluctuations the following formula.  

 

                                      ̂    1    8 ̂      2
     

   
                                               3 6  

 

End of the pruning it observed that the pruned system also performs in the same 

efficiency even though there are less parameters. However, learning process of this 

network is considerably slow and hence, hard to apply for large sized networks.  
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The optimal brain damage (OBD) [16] and the optimal brain surgeon (OBS) [19] 

are the most popular sensitivity based pruning algorithms. To determine the 

unimportant neurons OBD measures ‗the saliency‘ of neurons by using the second 

derivative of the error with respect to the connection weights. When the objective 

function   is approximated by Tailor‘s series and the weight   is perturbed, change 

in the objective function is given by  

 

             ∑  

 

    
1

2
∑   

 

   
  

1

2
∑   

   

         ‖  ‖               3 7  

 

where   ‘s are the components of gradient of  . That is  

                                                         
  

   
                                                                         3 8  

   ‘s are the components of the weight correction    and    ‘s are the elements of 

the Hessian matrix   [75].  

                                                       
   

      
                                                                   3 9  

The main objective of the algorithm is to find parameters whose removal will cause 

to minimize the error  . When the network is large Hessian matrix becomes 

enormous. Hence, authors assume that the matrix is diagonal and so that the cross 

terms are ignored. Therefore, the third term of equation 3 1 is eliminated. Also, 

pruning is done on a well-trained network in order to obtain minimum  . Hence, the 

first term of the equation is zero.  This leads to  

                                               
1

2
∑   

 

   
                                                               3 1   

Then define salience as  

                                              
     

 

2
                                                                              3 11  

and remove low salience parameters from the network. 

 

Authors in [76] presents a quantitative results on the performance of OBD and 

highlighted that certainly OBD increases the learning performance and improves the 
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generalization ability of the network. However, in practice Hessian matrix is not 

diagonal for all the instances. However, by proposing ―Optimal Brain Surgeon‖ 

(OBD) Hassabi et al. [19], [77] argue that the Hessian matrix is strongly non 

diagonal for all the instances and hence, it may eliminate incorrect weights. 

Although, OBD and OBS derived by the same theoretical approach, based on the 

second order derivatives, OBS is more complex than OBD as it does not make any 

assumption on Hessian matrix [78]. Authors argue that OBS is significantly better 

than other magnitude-based pruning algorithms. However, this approach is quite 

slow and requires much memory and yields much complex computations especially 

when it deals with the inverse of the Hessian matrix.  

 

G. Castellano et al. [12] proposed a method to iteratively prune hidden neurons from 

a feed-forward neural network. The proposed method solves a linear system in the 

least square sense using pre-conditioned conjugate gradient procedure. Authors 

claim that the algorithm formulates the pruning problem in terms of defining a 

system of linear equations in a very efficient conjugate gradient least square 

procedure and removes weights by preserving overall network behavior.  

 

They claim that this algorithm shows number of new features as follows.   

 It does not make use of any working parameters as some other algorithms 

describe in the literatures [72] , [79] and [80] . Hence, it does not require the 

tuning phase.  

 It does not require any training phase after pruning as in ‗Optimal Brain 

Surgeon‘ and it requires far less computations. 

 Algorithm can be applied to any arbitrary topology and eliminates hidden 

neurons as well as weight connections. 

This algorithm has similarities with some other algorithms such as the method 

proposed by Sietsma and Dow [72] to remove redundant hidden neurons and adjust 

remaining weights. Nevertheless, authors reach to the goal by solving a linear 

system without considering the redundancy of individual neurons. In addition, 



42 

network designer enables to monitor the behavior of network pruning and hence, its 

own stopping criteria can be defined.  

 

However, the proposed method has been applied for very small architectures with 

one hidden layer. The maximum number of hidden neurons is less than 5.  Hence, 

there is a possibility to change these results for topologies with large number of 

hidden neurons. On the other hand, when the network is large, matrix on the system 

of linear equations may have deficiency rank and hence, infinite number of solution 

may occur [8].   

 

Apart of the above approaches, Lauret et al. [81] proposed a technique to prune a 

single hidden layer network based on extended Fourier amplitude sensitivity test 

[82] (EFAST). Although, this method shows some acceptable performance in to 

smaller sized networks, there are limitations to extend the criteria for multilayered 

architectures. Zeng and Yeung [83] presents a pruning method with help of 

quantified sensitivity measure. The method removes neurons with least relevance 

from hidden layers of multilayered perceptron. The concept is based on that the less 

relevance neuron‘s contribution to the network is negligible and thus, removal of 

least relevance neuron does not degrade the performance. This method discusses 

only neuron pruning and there is no theory to determine the number of hidden 

layers.  

 

Sabo and Yu [62] presents an algorithm called  hybrid sensitivity analysis with re-

pruning (HSAR) by combining the advantages of local sensitivity analysis, local 

variance sensitivity analysis [84] and cross validation punning method [85]. The 

sensitivity is estimated by 

                                           ∑[        ]
     

 

 (    
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                                       3 12  

where   is the total number of iterations needed to minimize the objective function 

and   is the learning rate.       is the weight correction of     .     
 
  and     

  are the 

final value and the  th
 iteration of weight     . Then it Computes the value of local 
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parameter variance nullity (LPVN) and prunes the neurons with parameter whose 

LPVN is less than a certain a threshold value. The pruned network is retrained and 

its performance is evaluated. If the pruned network shows better performance, 

continue process for a smaller network until there is no parameter to prune. If there 

is no any improvement, continue pruning process with the old network.  

 

The main drawback of this approach is that the network processes with only weight 

connection pruning. The neuron pruning is not considered. However, if all the 

connections are possible to prune, neuron will be removed automatically. But 

practically, this needs many iterations and hence, this solution is not very feasible. 

 

Suzuki et al. [86] discussed on synthesizing filters using a multilayer neural 

networks. This approach reduces both neurons and hidden layers based on the 

network error. After removing neurons, network retrain to repair the damage 

occurred while reducing. Fnaiech et al [87] have been approached to hidden layer 

architecture in feedforward neural networks based on that the feedforward neural 

networks could be represented by Volterra series [88], [89] such as a input/output 

model.  It approaches the minimal architecture in 3 steps. Firstly, create a nonlinear 

activation function of hidden neurons as Taylor‘s expansion, then express the 

network output as a NARX (nonlinear auto regressive with exogenous input) model 

and finally, use the existing algorithm for nonlinear order selection. This literature 

selects the most relevant signal of the NARX and uses backpropagation algorithm to 

prune the hidden nodes.  

 

In [90] authors had been approached to hidden layer architecture in Madeline [91] 

by using a sensitivity-based algorithm. Adeline (adaptive linear neuron) is a single 

layer artificial neural network (Figure 3.1) whose activation function is hard limit 

function which, gives two output values +1 and -1. Madeline consists of many 

Adaline‘s arranged in a multilayer net. The difference between standard neural 

networks and Adaline is in the standard neural networks weighted sum is passed to 

the activation function and the weights are adjusted by using function‘s output. In 
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the Adaline the weights in the learning phase are adjusted according to the weighted 

sum of the inputs  [92].  

 

According to the definition, sensitivity is to analyze the dependency relationship 

between output variation of the network and its parameter disturbance. Although, 

many existing approaches on sensitivity based pruning algorithms consider weight 

disturbance, authors in [90] discuss the sensitivity computation with architecture 

variation. In this method, firstly train the network by using Sensitivity-Based 

Adaptive Learning Rules (SBALR) [93] and prune Adaline by using the formula 

until it reaches to target architecture. 

 

This approach proves that for some instance, multilayer architectures perform with 

better generalization and it can reduce to target network by pruning Adeline. 

However, it has not discussed the argument of deciding the target architecture and 

evidence to accept it as the most appropriate solution.  

 

Augasta et al. [64] presented a pruning method called Neural Network Pruning by 

Significance (N2PS) by combining the advantages of both Variance Nullity Pruning 

(VNP) [94] and the Xing-Hu method on construction multilayer perceptron using 

information theory [95]. Although it performs well in single hidden layer networks, 

the method has not discussed implementation on multilayered structures.  

 

 

Figure 3.1: Adaptive linear neuron 
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Xu and Ho [96] have proposed an algorithm called subset-based training and 

pruning on the node dependent and Jacobean rank deficiency. At each iteration, it 

identifies the dependent nodes by applying column permutation to the output nodes. 

Then makes weights on output nodes to zero and only independent nodes train by 

Levenberg–Marquardt (LM) algorithm [97]. End of the training, a unit-based 

optimal brain surgeon pruning method applies to remove the insensitive hidden 

neurons and reduce the size of the network. There are several advantages of this 

method such as due to subset-based training and pruning method, only a subset of 

independent hidden nodes is trained. This is time saving and saves computational 

cost on training excess data. Secondly, an extra term is not added to the cost 

function and hence, there is no lengthy tuning phase. In addition, re-training is no 

need after pruning. At the end, authors claim that their proposal could be applied to 

multilayer perceptron. However, it does not clearly explain the way of determining 

the correct number of hidden layers in the optimum architecture.  

3.3.2 Penalty methods  

The Penalty methods reach the solution by adding a penalty term to the cost 

function to minimize the weights. So that, small weights ultimately become zero. 

Therefore, weights are removed from the network when they reach to a certain 

threshold.  

 

Yves Chauvin [98] introduces a cost function   

                         ∑∑(       )
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where   is a positive monotonic function. Sums take over output units   and set of 

hidden units  . Number of patterns considered is    the first term of this cost 

function is a standard error function in backpropagation algorithm. The second term 

is called the energy function, which measures the average energy spends by the set 

of hidden neurons. The parameters     and     are used to balance two terms.  The 

minimum of the above function obtains when desired and actual outputs 

(                         are same and when energy of hidden units is zero.  
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In [99], ji et al.  present a method by adding two terms to backpropagation learning 

rule. The first term removes all possible nodes form the network while maintaining 

the acceptable level of error on the output layer. The other term creates to minimize 

the weights as much as possible. The process starts by training a feedforward 

network having one input unit, a single layer of   hidden sigmoidal units, which is 

larger than the necessary and one linear output. The   data of training set are given 

by {           1    }  where the desired output of    is   . The output of the 

network is given by  

                                          ∑  

 

   

                                                           3 14  

Where    and    are the input and output weights of the  th
 hidden unit respectively.  

   is the corresponding threshold value.                     ,  

              and        1 1     ⁄  . 

Then the standard error function given by Rumelhart et al. [30] can be written as  

                                               ∑[            ]                                      3 15 

 

   

 

 

A hidden unit defined as significant if it connects to both input and output units with 

weights greater than one and quantity of the significance is given as  
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where  

                                                      
  

1    
                                                               3 17  

Then error        obtains by adding a term to         as follows: 

                                                                                                          3 18  

where   and   are corresponding learning rates and  
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After applying gradient decent learning rule, weights and threshold values are 

updated as  
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Here 

   
   

       
2  

 1    
   

 

Therefore, 
     

  
   

⁄  becomes zero for large |  |  and hence, dominant weights 

will stable. Somehow, conflict between two gradiant terms of the above equation 

may disturb the stability and hence, suggested to add the last term after the network 

has learned well. Then,    is modified as  
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where      is defined as a characteristic standard error. Then the second 

modification of weights and threshold value are given by the following equations 

that reduce the larger weights from the network. 
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It takes the term    as 

                                            |    
          

         |                               3 25  

 

Once the performance reaches to an acceptable level, nodes whose weights are 

smaller than certain level will remove from the network and hence, the network 

becomes simpler. Nevertheless, it has noted that modified error function increases 
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the training time. Moreover, the method is built for single hidden layer networks 

and needs some modifications to extend for multilayers neural networks.  

 

Rudy Setiono [17] has presented a penalty function  

 

                 ∑ (∑
    

 

1      
 

 

   

 ∑
    

 

1      
 

 

   

)

 

   

   ∑ (∑   
 

 

   

 ∑   
 

 

   

)

 

   

          3 26  

 

by combining the works in [100] and [101].  Where    and    are small weight 

decay constants.   is the number of output units.   is the number of hidden units in 

the network and   represents the number of inputs.     is the weight from  th
 input 

to  th
 hidden unit and     is the weight from  th

 hidden unit to  th
 output neuron. 

Author of this paper claims that first part of the function controls having 

unnecessary connections while the second term prevents on getting large amount for 

these weights. However, there is no guarantee that this function is not removing 

weights which are significant. The eliminating such weights might cause for local 

minima on the error surface.  

 

All the above methods have significantly contributed to develop the techniques in 

modelling of hidden layer architecture of ANNs. However, each method has its own 

advantages and drawbacks. Some techniques remove even important nodes while 

they remove the irrelevant ones. For example, MBP methods eliminate some 

relevant neurons as they remove all the neurons with small magnitudes. Another 

major barrier of many methods is their low efficiency. In case of OBD and OBS, 

although they remove cluster of neurons at once, they are not computationally 

economic when the networks are large.  The sensitive analysis methods are based on 

the assumption that both the inputs of the network and output of hidden neurons are 

no mutually independent. So that they are not guaranteed to remove all redundant 

processing elements [65].  
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3.4 Constructive Methods  

A Constructive neural network starts with a minimal network architecture and 

dynamically increases the network by adding hidden layers, hidden neurons and 

connection weights while training until the satisfactory solution. Constructive 

learning algorithms alter the network architectures as learning proceeds, producing a 

network with the proper size [102]. These algorithms extend the searching for 

solution to whole possible structure. Firstly, they search for a simple solution and 

extend it for near minimal architecture which exactly suits for the given task. Once 

it successful, the algorithm can extend to estimate the solutions for more complex 

practical problems. Different constructive algorithms can be used to manage 

learning measures such as training time, network size and accuracy [103].    

 

The main advantage of constructive algorithms is they are easy to initialize. But in 

pruning methods it is not known initially how large network should be taken. In 

addition, constructive algorithms are more computationally economical as they train 

small networks and the suitable network is chosen during the training [104]. 

Another advantage of constructive algorithm is, since constructive algorithms give  

smallest possible network it reduced the training time to find optimum network 

which gives the best generalization [105]. There are many constructive neural 

networks and some of them are listed below.  

 

3.4.1 Cascade correlation algorithm 

The most well-known and widely used constructive algorithm is Cascade-

correlation algorithm which published by Scott Fahlman and Christina Lebiere [13] 

in 1990. Cascade correlation is designed by combining two key ideas, namely 

‗cascade architecture‘ and ‗learning algorithm‘.  Cascade architecture is referred 

that, adding hidden neurons one at a time to the network and they do not change 

once they have been added. Learning algorithm creates and installs new hidden 

units and for each hidden unit it tries to maximize the magnitude of the correlation 

between the output of the hidden neuron and residual error signal.   
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The method starts with a minimal network and automatically trains and adds new 

hidden units one by one and builds a multi-layer structure. Once a new node is 

added to the network, it becomes a permanent feature-detector by freezing the input 

weights and then its output weights are able to create a more complex feature 

detector. The main objective of this algorithm is to attempt to solve several 

problems and limitations on the backpropagation learning algorithm as they 

observed that the way of the training network by a backpropagation algorithm is 

slow. The authors claim that two major problems cause of the slowness of the 

backpropagation algorithm, namely ‗step size problem‘ and the ‗moving target 

problem‘.  

 

 

Figure 3.2: Structure of the cascade algorithm 

 

In backpropagation algorithm, the first partial derivative     ⁄  in each weight 

computes to minimize the error at every step. So that choosing infinitesimal step 

size may cause to local minima and too large step size will not converge to a good 

solution. To determine the reasonable step size, sufficient information such as 

curvature of the step function, the vicinity of the current point must be known. But 

these are not available in the standard backpropagation algorithm. As the second 

weakness of the backpropagation, the authors show that each neuron in the network 



51 

is trying to change its feature in every iteration. This process is highly complicated 

as the hidden units in the given layer cannot communicate on another directly. So 

that it must allow only a few of the weights in the network to evolve at once while 

keeping others constant. However, the cascade correlation algorithm decides to have 

an extreme version of this technique such as, only one unit changes its features at 

any given time. The model of the network of the cascade-correlation algorithm is 

very similar to the pyramid structure which describes below. The main difference is 

instead of output layer cascade architecture adds new nodes to hidden layers as 

shown in the above Figure 3.2 [106].  

 

 

3.4.2 Dynamic node creation algorithm  

The dynamic node creation (DNC) algorithm [14] is supposed to be the first 

constructive algorithm for designing single layer feedforward networks dynamically 

and there after many other constructive algorithms such as [107],[108] and [109] 

were derived of the technique of this algorithm. Here a single hidden unit is added 

to the same hidden layer, one at a time and whole network trains after adding each 

unit. This method is simple and convergent for a small sized architecture. However, 

some computational limitations arise when the network is large.  

 

3.4.3 Tiling algorithm 

The tiling algorithm is proposed by Mark Mézard and Jean-Pierre Nadal [110], 

which constructs a layered network where neurons are added like tiles when they 

are needed.  Each layer has two types of units as shown in the Figure 3.3; the first 

type has major role is called the master unit and all the other units in the layer are 

ancillary units. The certain master neuron classifies more patterns than the master 

neuron of the previous layer and the process continues until the master unit of a 

certain level is classifying all the training examples. Otherwise, add ancillary units, 

which are known as tiles, until the layer becomes faithful.  Then use the pocket 

algorithm with ratchet [111] to train new ancillary units and a new layer [106].  
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Figure 3.3: Tilling Algorithm 

 

3.4.4 Tower algorithm 

The tower algorithm, which firstly presented by Stephen Gallent [111] builds a 

tower of threshold logic units by making single-cell learning.  As shown in the 

following Figure 3.4, the bottom most neuron receives signals from original inputs 

and the neuron immediately below it. Each neuron is trained separately by using the 

pocket algorithm with ratchet and after trained, the connection weights of the 

particular neurons are fixed. Then  this output and the neurons in the input layer 

become inputs to the next neuron in the tower and process continues until the 

desired classification accuracy is obtained  [106].  

 

Figure 3.4: Tower Algorithm 
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3.4.5 Pyramid algorithm 

The pyramid algorithm also created by Stephen Gallent [111] and it is very similar 

to the above tower algorithm. The difference of this algorithm is the new neuron is 

connected to all the previously trained neurons as depicts in the Figure 3.5.  The 

pyramid algorithm generates single cell model by using the pocket algorithm and 

train it by pocket algorithm with ratchet. If the network shows better performance 

freeze the weights of newly added neuron and add another neuron to the structure. 

  

Apart the above, Friedman [112] has proposed a constructive technique projection 

pursuit regression (PPR), which is similar to DNC. Also [113],[114],[115], [116] 

and [117] are presented constructive methods inspired by PPR. Unlike DNC, these 

algorithms add more complication functional form hidden units and instead of 

retraining whole network, train only the newly added hidden units. Rivals and 

Personnaz [118] discussed a model selection procedure based on the least square 

estimation and statistical tests to determine the optimal number of neurons in one 

hidden layer networks. The complete procedure has two phases. The first phase 

based on bottom-up strategy, increase the number of neurons and extend up to its 

Jacobean matrix is sufficiently well conditioned. The second phase use top-down 

strategy with statistical Fisher test to refine the selection.  

 

Generally, in constructive algorithms, initial network is simple. Thus, they are 

computationally economical and they can train faster than large networks. However, 

iteratively train few neurons, until the optimal solution is obtained is time 

consuming. Not only that, but also as initially there are small number of neurons, 

they are more sensitive to initial conditions and other training parameters [119]. So 

that, there is high probability to trap with local minima.  
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Figure 3.5: Pyramid Algorithm 

 

3.5 Evolutionary Methods 

Liu et al. [1] proposed a method to approach the minimal hidden neurons based on 

the estimation of the signal-to–noise-ratio figure (SNRF). In this study they suggest 

that as SNRF can quantitatively measure the useful information in data that not 

learned, without validation set, over-fitting problem automatically detected. By 

using bench-mark data sets it shows that this method reduces the over-fitting 

problem in the network.  

 

By creating network with two hidden layers Asthana et al. [120] proposed a method 

to recognize multi-script number on postcard. In this research they could achieve 

more than 95% accuracy. Authors claim that the best accuracy can be obtained by 

using the same number of neurons in both layers. Their work was tested in five 

different popular Indian scripts namely Hindi, Urdu, Tamil, English and Telugu and 

obtained 96% accuracy under ideal condition. Karsolia [121] shows that the 

accuracy of the performance improves when the number of layers increases up to 3 

and claims that by increasing the number of layers training time and complexity 

increase many folds. Also, in his work, he has shown that by adding more hidden 

neurons unnecessarily network leads to an over-fitting problem.   

 

In these problems, evaluations have been done only with few data sets, which is not 

sufficient to come with strong decisions. Author in [121], presented all the results 
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based on that three layer networks are the most suitable topologies without any 

theoretical background.  

 

3.6 Summary 

The main objective of this chapter was to discuss the past to present developments 

of the design of the artificial neural networks. There are number of approaches to 

overcome the problem on the modelling of hidden layers in ANNs. Most of them 

belong to either category of pruning, constructive or evolutionary method. 

 

Various research models in each method were analyzed by explaining their 

mechanism, strengths and drawbacks. Most of the existing approaches have been 

used various techniques and achieved momentous solutions. However, there are 

several limitations on existing approaches. Some of them cause to huge complex 

computations. Several methods are time consuming and not based on a proper 

theoretical basis. Hence, none of the method achieves the solution of the problem of 

hidden layers in ANNs with good theoretical basis. Therefore, the problem on 

modelling the hidden layer architecture still remains as a research challenge. The 

next chapter will be discussed the theoretical background of modelling the hidden 

layer architecture.  

 

 

  



56 

 

CHAPTER 4  

 

A THEORETICAL BASIS FOR MODELING HIDDEN LAYERS  

4.1 Introduction  

The previous chapter discussed the current technologies of modelling the hidden 

layer architecture of ANNs by highlighting their strengths and limitations. The 

artificial neural networks are built to resemble the functional behavior of the human 

brain. Of course, it is impossible to model all the functions of the human brain with 

ANNs, due to its complexity and activities, some parts of the brain are still 

mysterious. So, this research has been adopted few of the functions of the human 

brain to model the hidden layer architecture and this chapter will discuss its 

theoretical basis. Firstly it introduces the context of neuroplasticity. Then briefly 

discuss on the functional behavior of human brain followed by the different types of 

neuroplasticity and its various effects.  Finally, it gives a concise mapping of the 

human brain and the artificial neural networks.  

 

4.2 The History of the Neuroplasticity  

One of the most important and fascinating properties of the human brain is its 

ability to adapt to the surrounding environment by changing its neural structure. 

Until recently, scientists and the philosophers in the field of neuroscience worked 

with the notion that the human brain is immutable and hard wired. It was postulated 

that no new neurons are born and functions of the brain structures are fixed [122]. 

The recent studies show that, these assumptions are no longer correct and brain 

functions change throughout one‘s life [123]. It is one of the important capabilities 

of the human brain to organize its structure and functions itself in order to provide 

an output for various inputs received from its surrounding environment [124]. This 

change of brain neurons and its pathways to adapt to the surrounding environment is 

called the neuroplasticity [125] and also referred as the brain plasticity [126], [127].   

 

The word neuroplasticity is originated by two words ‗neuron‘ and ‗plastic‘. A 

neuron stands for the nerve cell, which is formed by an axon and dendrites. Two 
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neurons are combined by a small space known as synapses (Figure 4.1). The term 

plasticity refers the native property of nervous system that alters the structure of 

neurons and synapses to maximize the brain functions and to adapt the changes of 

environment. In other words plasticity means the development of the system to react 

or adjust to both internal and external environmental situations under certain 

conditions [128].  Hence, neuroplasticity stands for the ability of the brain to change 

by altering its neurons and pathways to adjust to the surrounding environment.  

 

The basic concept of neuroplasticity arose in the 19
th

 century. But it was not 

emerged in the field and highly neglected by the scientists because  the concept of 

‗one function one location‘ was dominated in the field of neuroscience [129]. At 

that time, it was assumed that the brain is static. It believed that if a part of brain 

devoted for some function was damaged, then it cannot be recovered.  However, 

with the interest of neuroscientists, this concept emerged in the society. In 1887  

Spanish pathologist and neuroscientist Santiago Ramon Cajol proposed that the 

plasticity occurs in the nervous system and he published his important article, focus 

on the nervous system of lower animals, “Estructura de los Centros Nerviosos de 

las Aves”, (Structure of the Nervous Centers in Birds)  based on the practical 

analysis and claim that a nerve  

 

 

Figure 4.1: Structure of a biological nerve cell 
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cell is an absolutely autonomous physiological canton and dendrites and axons are 

end freely [130]. William James was the first to suggest theory of neuroplasticity in 

1890, by his book ‗Principles of Phycology‘ [131]. In this book he has mentioned 

about the training cerebral hemisphere and used both physical and psychic factors to 

justify his idea. 

 

For the first time, the term neuroplasticity was used by polish neuroscientist Jerzy 

Konorski [132] at the middle of  20
th

 century. At this stage it was assumed that the 

lower brain and neocortical areas are fixed after childhood and when people learn, 

neuronal changes occur only in the hippocampus in the adult‘s brain [133]. 

However, new findings show that all the parts of brain are plastic and claim that a 

large number of neurons are being added daily to the primate prefrontal and 

temporal lobes. 

 

4.3 Types of Neuroplasticity  

The neuroplasticity theory says that thinking, learning, meditating and some of the 

physical exercises such as dancing and playing musical instruments change the 

brain‘s physical structure and the functional abilities. These activities cause the 

plasticity of the human brain and which occurs in different ways. The main three 

types of neuroplasticity are activity dependent plasticity, competitive plasticity, and 

positive and negative plasticity. 

 

4.3.1 Activity - dependent plasticity 

The brain‘s ability of adapting to the environment yields to human specialized in 

special target by continuous training and involving different activities. For example, 

a child without born-talent in music is able to train to play a musical instrument by 

regular training. A person, who suffers with a voice problem as a result of a 

neurological disorder, will be able to talk by doing speech therapy exercises. In 

other words, by training the lost functions of the nervous system can be retrieved. 

This ability of the brain is known as activity-dependent plasticity. This concept 
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begins with American neuroscientist Paul Bach Y. Rita in late 1960s [134]. He 

designed several models and conducted experiments to show evidence to prove the 

hypotheses that the brain is capable of changing by different activities by including 

a vision substitution system for blind people.  

 

Activity-dependent plasticity plays a significant role in learning and ability of 

understanding new things. It is responsible for helping to adapt an individual‘s 

brain, according to the relative amount of usage and functioning.  

 

4.3.2 Competitive plasticity 

The plasticity of the brain is able to change its function constantly. Each part of the 

brain has some specialized function. These functions change constantly when they 

activate to achieve human needs. This is called competitive plasticity. 

Neuroscientists‘ old saying ―use it or lose it‖ is more suitable to describe the brain‘s 

functions than it is of any other part of the body.  In other words, the human brain is 

the way that because humans need to be able to process certain information, various 

areas of the brain are specially adapted to processing different types of information. 

But at the same time any area of the brain is capable of processing almost any type 

of information. The idea, that we use only a small part of the brain, is simply wrong. 

Any part of the brain that is not being used, will tend to be taken over for the 

processing of other information. For example, blind people have a better sense of 

other parts like ears, fingertips, etc. People who have lost their arms are able to 

manage many of their works with legs which normally other cannot. Because, the 

neurons of the other parts tend to take and maximize their functions of inputs of the 

disable parts. This has been explained by famous Canadian psychiatrists and 

psychoanalyst Norman Doidge as follows [135].  

 

“The competitive nature of plasticity affects us all. There is an endless war of 

nerves going on inside each of our brains. If we stop exercising our mental skills, 

we do not just forget them: the brain map space for those skills is turned over to the 

other skills we practice instead. If you ever ask yourself, 'How often must I practice 
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French, or guitar, or math to keep on top of it?' You are asking a question 

about competitive plasticity. You are asking how frequently you must practice one 

activity to make sure its brain map space is not lost to another.” 

 

4.3.3 Positive and negative plasticity 

There are many factors affect on the alternations in the brain, such as behavior, 

environment, learning and mental and physical health conditions including injuries. 

Like all other changes, the brain‘s structural and functional changes also work in 

positive and negative ways on human beings. For example, if the individual‘s brain 

functions and neural pathways and neurochemistry associated with experiencing in 

pessimistic thoughts are strengthened then his neural pathways and neurochemistry 

associated with optimistic thoughts are weakened. And the other side of this also 

happens. Same goes to anxious versus relaxation, anger versus peacefulness and 

depression versus happiness etc.  

 

Positive neuroplasticity is the physiological ability of the brain to form and strength 

dendritic connections, produce temporal changes, release neuromodulators and 

increase cognitive reserve. Neuromodulators is the physiological process, which a 

given neuron uses one or more neurotransmitters to regulate diverse populations 

of neurons. Various physical activities, learning, social interactions and cognitive 

remediation are some factors for positive plasticity.   

 

In contrast, negative plasticity refers to the same physiological ability of the brain to 

atrophy and weaken dendritic connections produce detrimental morphological 

connection and decrease cognitive reserve. Negative plasticity may occur as the 

result of poor health conditions, lack of sleep, bad food habits, depression and some 

feeling like anxiety.   
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4.4 Structure of the Biological Neuron 

A biological neuron has very specialized structure, as shown in the Figure 4.2, 

which includes dendrites and axons. As many other cells it contains a cell body. 

Two neurons connect to each other by synapses. More details on the neuronal 

structure are discussed below. 

 

Cell Body  

Neural cell body, also known as ‗soma‘ is the spherical end of a neuron that 

contains the nucleus. Cell body connects to the dendrites and axon. All the protein 

for dendrites, axon and synaptic terminals are made in the cell body.    

 

Axon 

The lengthy fiber that transmits signals from cell body to terminals of the other 

neurons, muscles and glands, is known as the axon. In some sensory neurons, such 

as those for touch and warmth, axons transmit electrical impulse from the periphery 

to the cell body. The length of axon varies from 0.1 millimeter to 1 meter, and 

lengthy axons transmit the signal faster. Axons are covered by a fatty substance 

called myelin, which protects the axon and help to transmit the speed the 

transmission.  

 

Dendrites  

The dendrites are the treelike extension at beginning of neurons that play a key role 

in transmitting signals. Dendrites receive chemical signals from the axon of other 

cells and convert to electrical impulse and passes to the cell body or soma. 

Generally, dendrites are short, highly branched and covered with synapses.  

 

Synapses  

Each neuron ends with terminal buttons and the gap between terminal buttons are 

known as a synapse. Neural transmitters pass the electrical and chemical signals 

through the synapses as depicts in the Figure 4.2 below. Neurotransmitters are 

located in the vesicles in the terminal buttons. When an electrical signal reaches to 
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the terminal gap, it converts the electrical impulse to a chemical signal and passes 

through the synapse to other nerve cells  [136], [137] .  

 

Figure 4.2: Structure of a neurons and a synapse 

 

Synapses are the basic functional and structural units locate in between two neurons 

to transmit the signals. A neuron that transmits the electrical signal towards the 

synapse is called the pre-synaptic neuron and the neuron that conduct electrical 

signal away from the synapse is the post-synaptic neuron. Probably a neuron may 

have more than thousands of synaptic junctions and some neurons associate with the 

brain contains more than 100,000 synaptic contacts. The most common synapses in 

the human brain are chemical synapses. A chemical synapse converts a pre-synaptic 

electrical signal in to chemical signal and then to a post-synaptic electrical signal 

[138].   

 

4.5 Neuronal Structure of the Human Brain  

Neurons are the most important specialized cells in the nervous system that 

transmits the signals throughout the body. They are known as information-

processing units in the brain, which responsible for receiving and transmitting 

information. Neurons act in different ways in sensing external and internal stimuli, 
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in transmitting the information and controlling the muscle actions. In the human 

brain, there are three main kinds of neurons. 

 

1. Sensory neurons: These neurons are combined with receptors and convert 

external stimuli in to internal chemical impulse.  

 

2. Motor Neurons: Motor neurons control the functions of muscles. They are 

responsible for all the activity such as movements, speech, etc.  

 

 

3. Interneurons: In between sensory and motor neurons, interneurons are 

introduced. Interneurons are found in small scale in the central nervous 

system because they can find only the brain and the spinal cord but not in 

the peripheral system.  

At birth, the infant brain consists of more than 80 billion of neurons and each 

neuron has about 7,500 connections. These neurons and synaptic connections grow 

rapidly until 2 years of age. Generally, the synaptic connections of the 2-year-old 

infant are double as that of an adult brain. While he grows the weaker neurons and 

synapses removed from the brain while strengthening the remaining.   

 

4.6 The Anatomy of the Human Brain 

The biological nervous system composed with central nervous system (CNS) and 

peripheral nervous system (PNS). The CNS consists of the brain and the spinal cord. 

The PNS consists of nerves and ganglia outside the brain and the spinal code.   

 

The brain is the most amazing and complex organ in the human body. It is generally 

viewed as a black box that receives input signals from the environment and emits 

the corresponding response. As shown in the Figure 4.3, the brain consists of three 

regions called, cerebrum, cerebellum and brainstem. The most substantial part 

among them is the cerebrum, which is split longitudinally into two large 

hemispheres; the left hemisphere and the right hemisphere. The cerebrum has both 
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gray and white matter. The gray matter, which is the outermost layer of the 

cerebrum, is called the cerebral cortex. The cerebral is divided into four lobes; 

frontal, parietal, temporal and occipital. The neocortex is the largest part of the 

cerebral cortex and many functions such as intelligence, memory, creativity, 

emotions, touch, vision, hearing and speech, etc. are controlled by the neocortex. 

The functions of neocortex will be discussed in the next section. 

 

 

Figure 4.3: Structure of the brain 

 

Under the cerebrum, cerebellum is located and it controls the movement of muscles, 

posture and balance of the human body. The brain stem connects cerebrum and 

cerebellum to the spinal cord. The three major parts of the brainstem are midbrain, 

pons and medulla. Many automatic events such as breathing, digesting, heart rate, 

waking and sleeping cycle are functioned by the brain stem. Usually, brain neurons 

are five to six times of magnitudes slower than the silicon logic gates. The reaction 

of silicon chips to an event is measured in nanoseconds while the reaction of brain 

neuron is measured in milliseconds. However, the brain gets its amazing features as 

it is made with massively interconnected neurons. It is shown that a typical brain 

consists of ten billion neurons and sixty trillion of synaptic connections [139]. 

Hence, the brain has become an enormously efficient structure and the energetic 
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efficiency of the brain is measured as 10
-16

 joules per operation per second and that 

is much greater than that of a modern computer. 

 

In the brain anatomical organization can be found in both small scales and large 

scale. There different functions take place at lower levels and higher level. Figure 

4.4 shows the hierarchy of those levels given in Haykin [33]  and references therein. 

 

Figure 4.4: The structural organization of levels in the brain 

 

In this structure, molecules are in the bottom level and synapses are depends on the 

actions of molecular ions. Neural microcircuits are in the next level. Neural 

Microcircuit refers the assembly of synapses organized into pattern of connectivity 

between neurons within the region. They get many different forms depending on the 

cellular and synaptic designs of microcircuits [140]. The size of microcircuit is 

measured in micrometers      and their speed is measured in milliseconds.   

 

In the next level of complexity we have dendrite trees and neurons. The dendritic 

subunits are formed by grouping the neural microunits with in the dendritic trees of 
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each neuron. The size of the whole neuron with several dendritic subunits is 

approximately 100    [33].  

 

At the next level, there are local circuits which are formed by neurons with similar 

or different properties. Generally, size of a local circuit is about 1mm. Next we have 

interregional circuits, which made up of columns, pathways and topography maps. 

Interregional circuits involve in several regions located in all the sensory system of 

the brain. Topographic maps act as an information transfer from thalamic way 

stations to different areas of the brain [141].  Finally, at the top level of complexity 

we find the central nervous system.  

 

Figure 4.5: The hierarchy of the brain 

 

4.7 Functions of the Neocortex  

The neocortex, also referred as the isocortex is the largest part of the cerebral cortex 

(Figure 4.5). In the human brain, this is the part that involves in higher order brain 

functions such as cognition, rational thinking, planning and sensory perception etc. 

It is the outermost part of the cerebral hemisphere with thickness of 2-4 mm. The 

neocortex consists the ‗grey matter‘ of the brain or neuronal cell bodies and 

unmyelinated fibers surrounding the ‗deeper white matter‘   in the cerebrum [142].  
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It is interesting to observe that the layered structure of the neocortex. Generally, 

neocortex of the mammal‘s brain consists 6 layers and each layer has its own 

function different from others as depicts in the Figure 4.6.  

 

Layer I, the outermost layer which contains only few inhibitory cells is called the 

molecular layer. Basically, this layer contains dendrites and axons of neurons from 

deeper layers. These axons and dendrites spread horizontally in this layer. In this 

layer, the intra-columnar axon are supposed to connect to the pyramidal cells [143].  

 

Layer II contains both pyramidal cells and inhibitory cells. As this is one of the 

most outer layers, it is called the external granular cell layer. This layer contains 

dendrites whose cell bodies are in layers V and VI and the main function of these 

cells is receiving the input signals from other layers. 

 

In layer III majority of the cells are pyramidal cell. However, it contains all most all 

the other variety of cells which can find in the other areas of neocortex. Since the 

majority of the cells of this layer are pyramidal, this layer is called the external 

pyramidal cell layer. This layer cells are responsible to receive signals from other 

cortical regions and transmit them to other cortical columns. 

 

Layer IV, also known as internal granule layer, is composed with granule cells and 

this layer is located in the deeper in the neocortex. This layer contains some 

inhibitory cells and small excitatory cells known as spiny stellate cells. Layer IV is 

the main layer that receives signals coming from thalamus. The granule cells receive 

sensory input and transmit them to adjacent neocortex column.   

 

Layer V composed with larger pyramidal cells and it contains only few inhibitory 

cells. Some pyramidal cells of this layer have long axons which transmit signals to 

basal ganglia, brain stem, and spinal cord [142]. The basal ganglia refer the group of 

subcortical neurons which are strongly interconnected with several areas of the 
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brain including cerebral cortex, thalamus, and brainstem. Basal ganglia are located 

at the base of forehead. Cells in layer V mainly involve in motor movements.  

 

Layer VI is called the multiform layer as it contains many different cells in white 

matter. The structure of this function is not homogeneous. This layer also contains 

some inhibitory cells called Martinotti cells. Martinotti cells have long axonal 

outputs which project signal across all the layers of neocortex. Most of the cells in 

this layer are large pyramidal cells which project their axons to the thalamus. Other 

than layer IV, layer VI is the next main target of inputs of thalamus to the 

neocortex. Thus, the main function of layer VI neurons are receive and integrate the 

signal from brain stem and transmit them to the thalamus [144].  

 

The six-layered structure of the neocortex is unique to the mammalian brain 

structure. Other than mammalians only fish and reptiles have neocortex and they 

have only three layered structure.  
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Figure 4.6: The layered structure of the neocortex 

 

4.8 Classification of Effect of Neuroplasticity 

The neuroplasticity is the general term to describe the changes of the brain. For 

further analysis, it is distinguished into two broad categories; structural 

neuroplasticity and functional neuroplasticity.   

 

4.8.1 Structural changes in Human brain  

The development of the human brain begins in the embryonic state and continue 

throughout the lifespan [145]. However, most of the dynamic changes of the brain 

occur in the early childhood, and it assumes that the brain reaches to 80% its weight 

during the first two years. The functional and  structural changes in the human brain 

can be occurred due to the various types of behavior of neurons such as 
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neurogenesis, neural migration, neural cell death, synaptogenesis and synaptic 

pruning [146], [147].  

 

4.8.1.1  Neurogenesis 

Neurogenesis is the creating new neurons from the neural stem. There are number 

of behavioral and environmental factors affecting in neurogenesis and it caused to 

change of synapses and neural pathways. Usually, neurogenesis takes place in two 

regions of the brain called the sub ventricular zone (SVZ) and the hippocampus.  

 

The hippocampus (Figure 4.7), where neurogenesis occurs throughout the life span 

of the brain plays a major role in learning thinking, and problem solving. Reducing 

this part has been found to have some neuro-degenerative diseases such as 

Parkinson‘s and cognitive disorders like depression, amnesia and dementia. The 

newly born cells in the SVZ form a lining of the lateral ventricles. The neurogenesis 

takes place in hippocampus forms the ‗denate gyrus‘ which is the part of the 

hippocampus responsible for memories of events [148], [149]. The neurogenesis 

happens from the embryonic period to adulthood and it largely occurs in the 

developing brain. The recent studies show that there are evidences in neurogenesis 

happen in the adult brain, but it is limited to some parts of the brain. Joseph Altman 

[150] shows in his studies that adult neurogenesis takes place only in the 

hippocampus  

 

 

Figure 4.7: Hippocampus area of the brain  

 



71 

4.8.1.2  Neural Migration  

The position of neurons in the central nerve system plays a key role in determining 

their functions. Most of the neurons in the human brain are not born in the same 

place as they are finally located. Neurons are generated by one part of the brain and 

sometimes travel long distances along complicated routes to reach their target 

locations. Especially, neurons in the peripheral nervous system come to their final 

location after having a long journey from the embryonic position. However, neurons 

in the central nervous system limit their movement to the neural tube. This process 

of moving neurons from its birth place to another location is called the neural 

migration. Due to neural migration, different classes of neurons locate together and 

hence, they can interact appropriately [151]. Although  majority of neuronal 

migration takes place in all stages of embryonic development, few neurons continue 

the process until adulthood [152], [153].  

 

The two major modes of neural migration are radial migration and tangential 

migration. The neurons have radial migration, originate in the ventricular zone of 

the pallium (cortex) and form ‗glutamatergic pyramidal neurons‘. The tangentially 

migrating neurons that originate in the ventricular subpallium form GABA (   

aminobutyric acid). 

 

4.8.1.3  Neural Cell Death 

At the developing period of the brain, about one and half time of the neurons that in 

the adult brain are created. The process of destroying such excess of neurons is 

known as neural cell death. Neuroscientists have been identified three different 

ways of neural cell death. Firstly, it occurs during the nerves system developing 

period. That is, during the embryonic and early postnatal period. A large percentage 

of neurons, approximately 50% in each region of nervous system die in this stage. 

The timing of the process may vary from region to region. But this process is 

normal and known as ‗apoptosis.‘ The second way of neural cell death happens as 

the result of various neurodegenerative disorders like Alzheimer‘s disease. In this 

stage significant number of cells die, but the process continues several years. Hence, 
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the daily death rate of neurons is infinitesimal. Finally, cell death appears after 

hypoxia that accompanies strokes. In this case large number of neurons dies within 

short period and hence, it leads to very abnormal behavior in central nervous system 

[20]. 

 

4.8.2 Synaptic plasticity 

Synaptic plasticity is the ability of changing activities of the synapses over time 

with the effect of the synaptic transmission. That is, enhances or depresses the 

synaptic transmission by activity [154]. Synaptic plasticity plays a key role in the 

early developing period. Generally, there are two types of synaptic plasticity called 

intrinsic and extrinsic. Intrinsic refers the changes of the strength of synapses due to 

its own activities while extrinsic is the changes of activities due the activity of 

others behavior. The changes of synapses may occur as short term or long term. The 

short-term process lasts from milliseconds to minutes. The long term synaptic 

plasticity, which is known as long term potentiation (LTP) or long-term depression 

(LTD), lasting hours or days. Synaptic plasticity can occur in two ways: creating 

new synapses (synaptogenesis) and removing existing synapses (synaptic pruning), 

which are described below.  

 

4.8.2.1  Synaptogenesis and Synaptic Pruning 

The elimination of unnecessary synapses from the central nervous system is known 

as synaptic pruning. Although this process lasts through the life span, majority of 

the synapses eliminate from the human brain between the child birth and the 

puberty. At the birth, human brain consists of more than 80 billion of neurons. 

During the first two years after child‘s birth, size of the brain grows significantly. In 

this period there is no much neurogenesis take place. The growth of the brain occurs 

as the result of creation of new synapses and myelination of nervous fiber. 

Myelination refers the forming white substance surrounding the axon. Creation of 

new synapses is called the synaptogenesis.  
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At the child‘s birth, a neuron consists of approximately 2,500 connections. In two 

years it becomes about 15,000 and this is far more than the functionality needed. 

When synaptogenesis reaches to a peak level it starts to prune weak and 

unnecessary synapses from the central nervous system as describe in the Figure 4.8  

[155]. Pruning occurs due to environmental factors and learning. While infant is 

learning, weak synapses are eliminating by strengthening the functions of remaining 

ones. Pruning process lasts until the death of healthy persons, but significantly 

occurs until the adolescence. At the end of this process brain contains about 50% 

synapses that were in a two-year-old child.  

 

4.8.3 Functional neuroplasticity 

The changes happen in the brain due to learning and memory is called the functional 

neuroplasticity. The Magnetic Resonance Imaging (MRI) based structural imaging 

techniques evidence that learning and memory yields both short term and long-term 

changes in synapses. While learning and memory, as a result of structural 

adjustments and intracellular biomechanical process, permanent changes appear in 

synaptic relationships between neurons [133].  

 

Figure 4.8:  Changes of synapses 
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4.9 Positive and Negative Outcomes of Neuroplasticity 

Now it is clear that the brain continues its changes throughout one‘s lifespan. These 

changes can happen in both positive and negative directions to respond to intrinsic 

and extrinsic influences [156]. The majority of the remodeling of the human brain 

takes place from infant level to adolescence. But this process continues until death. 

In previous sections we discussed how neuroplasticity occurred, types of different 

plasticity of brain and the factors which promote this plasticity.  

 

The structure and the functions of the brain depend on several parameters like 

activity, education, environment, food habits, etc. So that, the remodeling of brain 

shows both positive and negative outcomes that depend on the above factors. 

 

4.9.1 Positive outcomes of neuroplasticity   

Positive neuroplasticity improves the brain and body health. Also, it enhances the 

capacity of the creativity and the memory. It has been shown that by improving 

synaptic plasticity, new skills can be developed. Physical exercises and meditation 

cause for better cognition and maximize the functions of the aging brain [157]. 

When a child has some disorder in a particular function such as hearing, the brain 

removes those neuron and axons which does not serve him and replaced the new 

neurons which are able to develop new skills. This gives a child a second chance to 

develop his skills. 

 

In addition, more efficient communication between sensory and motor pathways, 

slowing down pathological processes, promoting recovery of sensory losses and 

improved motor control are some positive outcomes of the neuroplasticity.   

 

4.9.2 Negative outcomes of neuroplasticity 

Researchers show that, in the infancy level the size and the weight of the brain 

increase very rapidly and the significant factor for this incensement is the growth of 

synapses (synaptogenesis) between neurons (gray matter) and myelination of nerve 
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fibers (white matter) [158]. This process continues until adolescence and after 

adolescence, synaptic pruning begins. Synaptic pruning can be described as a 

learning mechanism and it is largely happened due to the environmental influences 

[159]. The neurologists explain that in the human brain memories are formed at 

structures that are known by dendritic spines which communicate other brain cells 

through synapses. This process continues until the end of someone‘s life. 

Nevertheless, about half of the brain connection removes after puberty.   

 

However, synaptic pruning always does not yield only positive outcomes. The loss 

of extra neurons and pathways may cause difficulties in recovering from a brain 

injury. Eliminating excess neurons limit the ability to develop new pathways to 

bypass the damaged neurons. Moreover, under-pruning of synapses slows down the 

functions of the human brain. For instance, it believes that children and adolescents 

get mental disorder such as autism due to having excess synapses in the brain. 

Because synapses are the end point of neurons and neurons connect and 

communicate with each other through synapses, excessive synapses may maximize 

the effects of theses brain functions. Thus, having synapses more than necessary can 

cause some symptoms such as oversensitivity to noise and social experiences. In 

addition, it may cause to the mental disorder known as ‗epileptic seizures‘ due the 

more electrical signals being transmitted through neurons [160]. Guomet Tang, a 

professor in neurology shows how neurons appear autistic brain and a normal brain 

in the following Figure 4.9.  

 

Schizophrenia is another severe disorder that affects to person‘s social behavior, 

thinking ability and feelings. Neurologists show that this happens due to mal-

synaptic pruning. The schizophrenia occurs in the late adolescence or early 

adulthood [161]. Electron microscopy (EM) studies indicate that healthy brain of a 

human shows cortical synaptic density reaches a maximum at 2 – 4 years of age 

[162]  and then starts to reduce excess neuronal synapses and this mainly happens 

during the adolescence. However, some studies show that synaptic elimination 

continues [163] throughout the third decay of the life before stabilization of the 
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synaptic density in adult brain. So that, the neurologists strongly believe that growth 

of abnormal synaptic pruning towards severe mental disorders at the early adulthood 

[164] [165].   

 

In addition, the other mental disorders such as decline in brain function, altered 

motor control, impaired performance of activities of daily living and amplified 

perception of pain are some effects of the inappropriate synaptic pruning.  

 

  

Figure 4.9: Neurons of autistic (left) and normal brains (right) 

 

4.10 Artificial Neural Networks and Human Brain 

Human brain, which is having the phenomenal power, is the most complex organ in 

the human body. The extraordinary power of human brain is far beyond than that of 

any supercomputer today. The mechanism of the human brain is absolutely different 

from the conventional ‗Von Neumann‘ architectural computer. A Von Neumann 

computer works step by step sequentially through an algorithm [23].  

 

The brain is a massively parallel and highly complex information-processing 

structure. Among a big crowd in a town we can recognize a friend, or identified a 

voice in a noisy station. Is there any machine to model such complex behavior? The 

artificial neural networks are developed to mimic the some such fascinating features 

of the human brain.  
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In the human brain, dendrites, which project from the cell body receive signals and 

pass them to the cell body of another neuron. When accumulated signals in cell 

body reach to a certain threshold limit, the neuron fires and electrical impulses are 

passed through the axon. At the end, each axon is branched into number of synaptic 

knobs, also known as axon terminals. With synapses it connects to other 

neighboring neurons and the signal passes to those adjacent neurons through the 

synapses. Some synapses get positive outcomes from dendrites and they influence 

neurons to fire while some get negative outcomes and they weaken the signals. 

Approximately, a single neuron connects to 10
5
 synapses and it believes that the 

human brain contains about 10
16

 synaptic connections.  

 

Artificial neural networks are created to model this functional behavior of the 

human brain by directly transferring the concept of neurons. The neurons or basic 

elements are represented by nodes or artificially designed neurons. The axons are 

corresponded to the connections between neurons. Dendrites are represented by 

activation functions. The synaptic weights of artificial neural networks represent the 

synapses of central nervous system.  The concept of training of artificial neural 

networks came from the psychologist Donald O. Hebbs famous theory ―When an 

axon of cell A is near enough to excite cell B or repeatedly or persistently takes part 

in firing it, some growth process or metabolic change takes place in one or both 

cells such that A’s efficiency, as one of the cells firing B, is increased‖ [22].  

 

However, it is still a challenge to model human brain artificially. The Biological 

neurons and neuronal activities are far more complex than artificially created 

neurons. Generally, neurons in human brain do not simply sum the weighted inputs 

and the dendritic mechanisms in biological systems are much more elaborate. Also, 

real neurons do not stay on until the inputs change and the outputs may encode 

information using complex pulse arrangements. 
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4.11 Summary  

This chapter briefly discussed the theoretical basis towards the modelling of hidden 

layers in ANNs. The ANNs are created by copying the functional behavior of the 

human brain. The human brain is an immensely parallel and highly complex 

information-processing dynamic structure. Changes of the human brain occur 

due the neuroplasticity and synaptic plasticity. These changes take place mainly in 

the embryonic period and early childhood but extend throughout the life-

span. There are positive and negative outcomes of such changes, 

especially improper synaptic pruning can cause to some severe mental disorders like 

autism and Schizophrenia. In the next chapter we will discuss the hypothesis and 

theories that we applied in modeling the hidden layer architecture. 
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CHAPTER 5  

 

A NOVEL APPROACH TO MODELLING HIDDEN LAYERS 

5.1 Introduction  

The previous chapter discussed the theoretical basis of achieving the hidden layer 

architectures in ANN. The chapter 3 was discussed the different approaches on 

modeling the hidden layer architectures. It showed that the determining the hidden 

layer architecture in artificial networks is a great challenge. Even though there are 

several approaches, these methods have various shortcomings. Hence, still the 

modelling of hidden layers in ANNs remains as an unsolved problem. This chapter 

discusses the approach on modelling the hidden layers by applying a Peak Search 

algorithm and Delta Value of hidden layers (PSDV approach) by highlighting the 

hypothesis. Additionally, it includes inputs, outputs and the various steps of the 

approach.  

 

5.2 The Hypothesis  

This research postulates that ‗any given large ANN can be reduced to a smaller-

sized ANN by trimming hidden layers and neurons in hidden layers such that the 

resultant network shows same or better performance‘. 

 

This approach is inspired by the fact that ‗the nature is always overestimated.‘ 

Naturally, nature consists more than sufficient elements.  For instance, animals have 

two eyes, two ears, etc. Not only that, by also they bear billions of neurons and 

trillions of connections on their brain. However, if they lose part of these, still their 

lives would be survived, because when some neurons are damaged, others maximize 

the functions to compensate for the damaged neurons. In the same line it assumes 

that a large artificial neural network can make smaller by eliminating neurons and 

connection which are not very important.   
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5.3 Inputs  

The input of the process will be a large network (network with   hidden layers and 

  hidden neurons) trained by the backpropagation algorithm. That is this input 

network consists of   hidden neurons distributed among   hidden layers. The 

hidden layer   contains    hidden neurons, where   1 2      

Then 

                                                                                                       5 1  

The distribution of neurons among the hidden layers has done in 3 different ways as 

follows.  

 ‗Equal‘ hidden neurons: 

Each layer has same number of neurons. That is 

             
         

 ‗Ascending‘ hidden neurons  

Hidden neurons in each layer arrange in the ascending order. 

            
         

 ‗Arbitrary‘ hidden neurons 

Each layer contains an arbitrarily chosen number and there is no any 

special pattern among             
       

 

At the first stage, process initializes with this input and determines the number of 

hidden layers of the highest generalized network.  Then the resultant network uses 

as the input for the second phase. In this stage, it identifies neurons which do not 

contribute in error decay process and eliminate them from the network.  

 

5.4 Outputs  

In the first stage the output is the number of hidden layers in the network which 

gives the highest generalization. The resultant network has fewer number of hidden 

layers and hidden neurons comparing with the original one. But still it may have 

some unnecessary neurons. So that the second phase removes all unnecessary 

neurons. Thus, the final output of the process is a fully connected network with 
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      hidden layers whose total number of neurons is             , where 

           1 2     

 

5.5 Process of the New Method  

There are two phases in the process. At the first phase network cut down all the 

excess hidden layers to obtain the minimal number of hidden layers which gives the 

best generalization. In the second phase it eliminates all the weak neurons that do 

not contribute to minimize the output error. The whole process is described below.  

 

5.5.1 The Peak Search Algorithm  

The process of modeling the hidden layers starts with a large network, trained by 

backpropagation algorithm. Nonetheless, if there is no such trained network for the 

given data set, it is able to create and train a network with arbitrary large number of 

hidden layers     and hidden neurons    . No matter how poor generalization it 

shows. 

The generalization of the network with h hidden layers is defined as  

              
                                             

                                             
× 1                      5 2  

By the experiments done previously, It was observed that by adding layers, 

generalization power can be improved up to a certain level and then decreases or 

retain at the maximum level [32] as shown in the following Figure 5.1, where H is 

the number of hidden layers in the initial network.  

 

 

 

 

 

 

 

 

Figure 5.1: Change of the generalization with the number of hidden layers 

No. of Hidden 
Layers 

 

G
en

er
al

iz
at

io
n

n
  

No. of Hidden 
Layers 

 

G
en

er
al

iz
at

io
n

  

1 H 1 H 



82 

However, this graph is always not expected to obtain the peak at the middle of the 

given range. There is a possibility to have the optimum solution for a single hidden 

layer network or the initially considered architecture with a large number of hidden 

layers (say H) as shown in the Figure 5.2(a) and Figure 5.2(b) respectively. 

 

The initial network contains   number of hidden layers and   total number of 

hidden neurons. The generalization of initial network    is known. The proposed 

algorithm searches the number of hidden layers (say  ) in the architecture which 

shows the best generalization. On the other words the main objective of this 

algorithm is to determine an integer  j such that    [1  ] and 

      {          } 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Change of generalization with hidden layers 

 

 

The concept was influenced by the algorithms on binary search (bi-search) [166] 

and peak search [167]. However, bi-search algorithms are used to approach target 
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peak level by considering the local maxima or by comparing the maximum value in 
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The proposed method in this research, reaches to the target by comparing the 

generalization of the middle value with the generalization of two end points of the 

interval. According to the inequality holds, lower or upper part of the interval 

eliminates and repeats the procedure until it reaches to the target value.  

 

The algorithm is based on the assumption that while adding hidden layers to the 

network,  generalization of any data set is increased up to a peak level and then it 

remains at that level or decreases. The main objective of this algorithm is to 

determine an integer value j between 1 and  , where   is the number of hidden 

layers in the network which gives this peak value of generalization.  That is, the 

algorithm searches    such that     [1  ] and        {          }.  

 

Initially, consider the interval with left end    1 and right end      If the single 

hidden layer network, which is the simplest architecture, shows generalization 

100%, then it is considered as the required network. i.e if    1  , the solution for 

the given problem is the network with one hidden layer and    hidden neurons. 

Otherwise, compute the generalization of middle value    of the interval [   ],   . 

As the number of hidden layers is a positive integer and always we prefer to obtain 

the minimal architecture,   is chosen as   

                                                                  [
   

2
]                                                        5 3  

where [ ] denotes the integer part of  . 

 

Then the process continues by comparing    with the values of generalization of 

two end points     and    . 

 

The possibilities of having inequalities among       and    are as follows. 

Case I:               

 This can happen either              or            . In both the 

instances peak lies in between L and m as depicts in the Figure 5.3. Then it 
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removes the interval     ]. So that the new right end of the interval is  . 

Hence, replace   by   and continue the process. 

 

 

 

Figure 5.3: Graphs for              

 

Case II:              

This is opposite of the case I. Hence, peak lies in the interval [   ] and then 

interval [     will be removed. As shown in the Figure 5.4, this case 

happens when             and            .  Here, replace   by   

and continue the process.  

 

 

 

 

Figure 5.4: Graphs for               

𝒈𝑳   𝒈𝒎   𝒈𝑹 𝒈𝑳   𝒈𝒎   𝒈𝑹 

𝒈𝑳   𝒈𝒎  𝒈𝑹 𝒈𝑳   𝒈𝒎   𝒈𝑹 
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Case III:              

This is the worst scenario. This case could be occurred at four instances. 

Such as 

         ,             ,               and              . 

In all these cases, the peak can find anywhere in the interval [   ]. Then to 

find the peak value we compute     and    as follows and continue the 

process.  

 

   [
   

2
]              [

   

2
] 

Then one of the following 6 cases can be occurred. 

(i) When       
        

   .  

i.e.    
     {      

       
   } . In this case peak lies in the 

left and right intervals of    . i.e in the interval [    ] or [    ] as 

illustrated in the following Figure 5.5. So that the peak value can be 

found in anywhere in the interval [   ]  i. e. peak is in the interval 

which contains   . Therefore, the interval     ] can be removed 

and   is replaced by  . Now    becomes the middle point of the 

new interval and it agrees the condition of Case III:            . 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Graphs when    
 is the maximum 
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(ii) When       
        

   .  

i.e.    
     {      

       
   }. As shown in the following 

Figure 5.6, this is the opposite of the above (i).  Hence, the peak lies 

any interval which contains   . By removing the interval [     and 

by replacing   by   and the middle point    by    and it can 

convert to the Case III.  

 

 

 

 

 

 

 

 

 

Figure 5.6: Graphs when    
 is the maximum 

 

(iii)  When       
        

    

i.e        {      
       

   }. Similar to above (i) and (ii) In 

this case peak lies in an interval including  . i.e in the interval 

[    ]   or [    ] (Figure 5.7). Hence, peak lies anywhere in  

[     ]. Then replace   by    and   by   .  

 

 

 

 

 

 

 

 

Figure 5.7: Graphs when    is the maximum 
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(iv) When       
        

    

i.e.    
        {      

       
   }. As discussed in the 

previous cases, here peak lies in any interval contains   and  . i.e 

in the one of the intervals [    ] [    ] or [    ]. In otherwords 

peak lies in anywhere in the interval [    ]. Hence, remove the 

interval      ] and continue the procedure by replacing   by   . 

 

(v) When       
        

    

i.e.    
        {      

       
   }. This is opposite of the 

above (iv). In this case peak lies in the interval [    ]. Hence, 

remove [      and continue by replace L by   . 

 

(vi) When       
        

    

In this case it is not possible to determine the peak. Hence, it needs 

to check the generalization of middle point of each of the interval 

[    ] [    ] [    ] and [    ].  

 

The process stops when      1 or       are consecutive numbers. Then the 

number of hidden layers in the architecture is   

                                                        {       {     }}                                             5 4  

or  

                                                   {       {        }}                                          5 5  

 

 

The following Figure 5.8 is a flow diagram to describe the procedure of obtaining 

the number of hidden layers in the most appropriate network and Figure 5.9 

describes the peak search algorithm.  
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Figure 5.8: Flow diagram for peak search algorithm 
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Figure 5.9: The peak search algorithm 

 

𝑚  [
𝐿 𝑅

2
] 

𝑚1  [
𝐿 𝑚

2
]                    𝑚2  [

𝑚 𝑅

2
] 

𝑔𝑗     {𝑔𝐿 𝑔𝑚 𝑔𝑅} 

The Peak Search Algorithm 

Consider initial network with 𝐻 hidden layers and {𝑛  𝑛    𝑛𝐻} hidden neurons 

Start 

Input : 𝐻 𝑔𝐻  

Output : j such that 𝑔𝑗  𝑔𝑢  𝑢  [1 𝐻] 

Step 1 

Compute 𝑔  

If 𝑔  1, then 𝑗  1 {The required architecture has only one hidden layer} 

 Else 𝐿  1 𝑅  𝐻 

Step 2 

 

While 𝑅  𝐿  1, compute the middle value 𝑚 of 𝐿 and 𝑅  

Step 3 

Train the network with 𝑚 hidden layer and  {𝑛  𝑛    𝑛𝑚} hidden neurons 

Compute 𝑔𝑚 

If 𝑔𝐿  𝑔𝑚  𝑔𝑅, replace R by m and repeat Step 2 {Peak lies in the interval [L, m]} 

 Else if 𝑔𝐿  𝑔𝑚  𝑔𝑅 , replace L by and repeat Step 2{Peak lies in the interval [m, R]} 

  Else (𝑔𝐿  𝑔𝑚  𝑔𝑅) compute middle values of [𝐿 𝑚] and [𝑚 𝑅] 

Replace L by 𝑚1 and R by 𝑚2  and repeat the Step 2 

Step 4 

Repeat Step 2 and Step 3 until 𝐿 𝑚     𝑅 are consecutive numbers  

End  

 The number of layer with maximum generalization is j where  
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5.5.2 Performance of the algorithm 

The proposed algorithm is design to search number   corresponds to the maximum 

generalization     based on the concept that while increasing the number of hidden 

layers of an ANN, generalization is increasing and reaches to a peak level and then 

decreasing to a lower level. To analyses the performance of the algorithm, it needs 

to compute the number of iterations that takes to reach the target.  

 

 

The process starts with the middle element [
 1    

2⁄ ] of the array [1 2    ], 

where [ ] denotes the integer part of the number  . The procedure is represented by 

a binary comparison tree shown in the Figure 5.10. The lower half of the array 

represents the left part of middle element and upper part represents the right side 

and extends the tree in similar fashion. Iteration continues selecting the middle 

elements of the range where maximum generalization occurred. The process 

terminates when there is no integer between two values which provide the highest 

generalization. The worst case arises when tree contains maximum branches. The 

number of iterations of the worst case is    1, which happens only if all the 

networks with layers 1     show the same performance.  

 

 

Figure 5.10: Binary comparison tree 
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5.5.3 Upper limit for the hidden Layers 

To avoid getting huge values for output error, normalized weights are chosen for 

synaptic weights. So that we can assume the input of any neuron in the output layer 

lie in the interval [ 1 1] . Normally, the activation function chosen output layer is 

the linear function       . Therefore, by the equation 2 23, the delta value of any 

output neuron equals to the error between target output and actual output. In 

addition, the Figure 5.11 shows that by applying the log sigmoid function, output of 

each neuron converges to a value in between 0 and 1. If the activation function is 

tan sigmoid, then this value lies between -1 and +1. The following Figure 5.12 

illustrates that the derivative of log sigmoid is always less than 0.25 and that of tan 

sigmoid is less than 1. 

 

Now consider the delta values of hidden layers given by the equation 2 26  

  
       

 (    
    )∑  

   

  

   

      
       

Then, dividing the equation by   
    , the ratio of   

  to   
    can be obtain as  

            
  

 

  
   

      
 (    

    )∑
  

   

  
   

  

   

      
                                     5 6  

The experimental results show that delta values in a one particular layer is almost 

same [32]. 

Therefore, 

                      
  

    

  
      

 (    
    )∑   

      

  

   

                                          5 7  

But as weights are normalized  

                                                      ∑   
      

  

   

 1                                                           5 8  

Hence, the ratio of the delta value of any particular neuron in layer h to layer h + 1 

approximately equals to the derivative of the activation function.  That is  

                                                 
  

    

  
      

 (    
    )                                                     5 9  
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Since, maximum values of derivatives of log sigmoid and tan sigmoid functions are 

0.25 and 1.  

 

Therefore,  

  
    

  
      1 

    

 

Figure 5.11: Sigmoid functions 

 

 

 

 
Figure 5.12: Sketch of the derivatives of sigmoid functions 



93 

Thus, delta values of each layer is less than that of the previous layer. Hence, when 

there are many layers, delta values of initial layers become infinitesimal. So that, the 

correction of synaptic weights are negligible and hence, there is no update of 

connection weights in the very first layers. Therefore, when network consists of 

large number of hidden layers, always it shows the same performance as weights are 

not updating. So that when an integer   is some large value, all the network 

architectues contain k or more than k hidden layers shows the same generalization.   

 

In addition, suppose that there is a large number of hidden layers, which repeatedly 

applies the same sigmoid function (log sigmoid or tan sigmoid).   

 

Now consider the two sequences 

                     and            (  )    1 2   

Then  

      
   

       66      

and 

      
   

            

The Figure 5.13 shows how the sequence    converges to its limit for four different 

initial values 0.0, 2.7, 0.5 and 1.0. Generally, the sequence                    

1 2    reaches its limit 0.66 by 7 or 8 iterations and            (  )   takes more 

time. Therefore, when the activation function is log sigmoid, ANN architecture with 

8 or more layers supposed to give the same output and thus, the performance of any 

large network is same as the network with 8 layers.  

 

So that, this process can start with a trained network with any number of hidden 

layers. However, when there are only raw data, the process can start by creating a 

network with H(>8)  hidden layers,           hidden neurons.  
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Figure 5.13:     for different initial values   

 

5.5.4 Determining number of hidden neurons 

The traditional method of training a feed-forward artificial neural network is 

backpropagation algorithm which can be used successfully in many real world 

problems. However, as many other training algorithms, it shows some weaknesses 

such as the problem of local minima.  When it reaches to local minima, network is 

unable to learn and hence, it is a serious barrier for successful training of a network 

to obtain the desired task.   

 

This research approaches to the minimal architecture by modifying the 

backpropagation algorithm. The previous section 5.5.1 discussed how to determine 

the number of hidden layers by starting with an over-sized network. However, still 

the network may contain some unnecessary neurons. At this stage the network is 

just like the human brain which is pruned inappropriately. Thus, it recognizes the 

unimportant neurons while training the network and remove them as synaptic 

pruning occurs in the human brain. That is in this stage it identifies the neuron 

which do not contribute to the error decay process and eliminate them from the 
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network. So that, a new algorithm is proposed to remove unnecessary neurons from 

the network and fine tune by merging the possible weights to achieve the desired 

task.  

 

The backpropagation algorithm is the most well-known and widespreaded algorithm 

among many numerous algorithms that have been proposed to train artificial neural 

networks. The basic idea behind the train a network by backpropagation algorithm 

is to obtain weight matrices in order to minimize the error of  th
 training cycle 

    , which is given by the following equation. 

  

                                                    
1

2
∑(           )

 
                                       5 1  

 

   

 

where    and    are the target and actual outputs of the  th
 neuron of the output layer. 

  is the number of neurons in the output layer. 

 

For   number of input/output training patterns error becomes  

                                         
1

2 
∑∑(             )
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The proposed algorithm prunes neurons as much as possible from the hidden layers 

of over-sized network while maintaining the same error rate as initially given 

network. Pruning is done by using the delta values of hidden layers. If the network 

contains   hidden layers, the delta value of the  th
 neuron of the hidden layer   (the 

last hidden layer) is given by 

                                                
       ∑  

 

                                                      5 12  

where   
   is the pre-defined activation function of the  th

 hidden layer.     is the 

connection weight of the neurons   of the last hidden layer and neuron   of the 

output layer.    is the delta value of k
th

 neuron in the output layer, which is defined 

by 

                                              
                                                                      5 13  



96 

where,   
  is the activation function defined for output layer.    and    are the 

desired and actual outputs respectively. 

 

This value is used to update the connection weights as follows. 

                                   
    1     

        
                                                 5 14  

where   is the learning rate.  

 

Then the error     1  of the training cycle    1  is calculated by using updated 

weights obtained from the equation  5 14 . The intension of this algorithm is to 

update weights to reduce the output error at the each training cycle. However, the 

above equation implies that, zero delta value means there is no update of the 

particular weight. It implies that the hidden neurons with zero delta values do not 

contribute to decrease the error. So that the hidden neurons with zero delta values 

are identified as less salience neurons and eliminate them from the ANN 

architecture does not affect to the performance of the network. 

 

Empirical results show that very often, there is a correlation between summation of 

delta values of hidden layers and the output error which can be positive or negative 

[168]. Thus, we use this correlation to identify the removable neurons. Let this 

correlation denote by      , where, 

                                                        (∑    

  

   

)                                                5 15  

Therefore, to obtain a more precise network, the correlation defined in the above 

equation is used. If the correlation is positive, sum of the delta can be reduced by 

removing neurons with positive delta values. But according the equation  5 14  

neurons with zero delta values are recognized as unimportant neurons. Therefore, 

when       is positive, the minimal architecture obtained by removing neurons with 

positive infinitesimal delta values. On the other hand, when the correlation is 

negative, neurons with negative delta values, which are very close to zero, will be 

removed to obtain the desired architecture. 
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The pruning has the same meaning of synaptic pruning in neuroscience. It facilitates 

changes the neural configuration by removing weak neurons and synapses while 

strengthening the remaining. In synaptic pruning while pruning the weak neurons 

from the nervous system it merges the similar neurons to strengthen their functions. 

In same manner to enhance the accuracy of the network, removing weights are 

merged with the similar weights.   

 

5.5.5 Merge the similar neurons 

The whole process of pruning neurons is inspired by the concepts of neuroplasticity 

and synaptic pruning. While pruning unnecessary neurons from the human brain, it 

increases the functions of the remaining ones. In similar, this process maximizes the 

weights of synaptic connection while removing the unimportant neurons. Although, 

the particular neuron does not contribute to reduce the output error, the contribution 

of the input and output weights attached to that neuron are not negligible. However, 

while removing the desired neuron, all its input and output connections also 

removed from the network. Thus, the weights of the removing connections will be 

merged with the similar weights to obtain more efficient network. The ‗similar 

weights‘ are the weight vectors with the same orientation.  

 

Let  th
 neuron of hidden layer   be identified as a removable neuron. Suppose 

   (   ) × 
 and   (   ) × 

 are the input and output vectors of layer   

respectively.  

Let        [

   

   

 
   

]       and      [             ]. 

Where                 are the row vectors of the input weight matrix and 

               are column vectors of the output matrix of the layer  . When 

removing  th
 neuron, the row vector     [             ] and the column vector 

    [             ]
  will be removed. While removing, they merge with 

similar vectors as described below.  
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When two input vectors     and     are similar, then 

                                                            〈
   

‖   ‖
 

   

‖   ‖
〉  1                                             5 16  

where       denotes the scalar product of two vectors   and  . 

 

Thus, if neuron j  in layer   is identified as the removable neuron, and     and  

    are the similar vectors to     and     respectively, then      merges with     

and     merges with    .  

 

5.5.6 The new algorithm 

The process starts with the ANN structure obtained by the PSA. Still it may contain 

some unimportant neurons.  Let the number of hidden layer be h and the total 

number of hidden neurons is  . Let the number of different input/output vectors in 

training set be p. Assume the number of hidden neurons in layer   is   . 

 

Step 1  

Initialize random normalized weights. 

Train the network once by backpropagation algorithm. 

Step 2: 

Compute the correlation between summation of delta values of each hidden 

layer and output layer. 

          (∑    

  

   

) 

Identify the removable nodes according to the value of       and remove 

them from the network.  

Step 3: 

Merge the weights with similar weight vectors  

Step 4: 

Train the network for fine tuning until the desired output.  
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The state diagram of removing unimportant neurons from the architecture is 

depicted in the Figure 5.14. Once the process satisfies the stopping criterion, that is 

when the error defined by the equation 2 11 becomes less than the given value, the 

network stops training.   

 

 

Figure 5.14: Illustration of removing unimportant neurons 
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5.6 Summary  

This chapter focused on the methodology on the designing the optimal solution of 

problem of hidden layer architecture in artificial neural networks. The process of 

modelling the hidden layer architecture is based on the hypothesis that any large 

network will be able to reduce a small sized one by trimming its layers and neurons 

by managing the same or better performance of the original network. The solution 

of optimal architecture consists of two main stages. First it determines the number 

of layers by cutting down the inappropriate layers from a large-sized network. Then 

eliminates the unnecessary neurons which do not contribute to error decay process. 

The procedure was inspired by the facts of neuroplasticity and synaptic pruning. In 

the next chapter the all the experiments carried to justify the hypothesis and 

evaluation method will be discussed.  
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CHAPTER 6  

 

EXPERIMENTAL DESIGN AND RESULTS  

6.1 Introduction  

The previous chapter discussed the methodology of novel approach on designing the 

hidden layer architecture in ANNs. The evaluation which describes the mechanism 

of using this methodology is the most important section in the research. So that this 

chapter presents the experiments carried on the project to evaluate the modeling of 

the hidden layer architecture. Firstly, it shows that the performance of the network 

can be improved by increasing the number of hidden layers. Then describes how to 

achieve the optimal solution by using the novel approach.  

 

6.2 Experimental Design  

Most of the existing methods are based on the assumption that a single hidden layer 

ANN is sufficient to solve many real world problems. However, initially this project 

shows that the multilayer perceptron of ANN performs better than the single hidden 

layer networks.  

 

Next it reaches to the optimal solution. This process is done by the hypothesis that a 

smaller sized network can be obtained by a given a large sized network by trimming 

down its hidden layer architecture where the resultant network performs same or 

better than the original one.  

 

The following sections describe the experimental setup, test cases and testing 

strategies made on this design.  

 

6.2.1 Experimental setup  

In order to test the above, some benchmark problems from different domains were 

considered. All the benchmark problems were chosen from UCI machine learning 

repository [169]. UCI machine learning repository maintains more than 400 data 
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sets. Among those it was chosen data sets which have used by other researchers for 

the purpose of comparison of the results. In addition it was chosen data sets with 

large and small number of instances, attributes and classes (outputs). Thus, 

altogether it was considered 34 data sets belong to 19 different domains. 

    

Each set is divided in to two classes for training and testing purposes. In order to 

examine the different features, 5 benchmark problems namely Cancer, Card, 

Diabetes, Flare and Knowledge were chosen and 4 different network configuration 

of each data set were taken in to account. For example 4 different network 

architectures of Cancer problem namely Cancer I, Cancer II, Cancer III and Cancer 

IV were designed. The first 3 sets consist of 75%, 50% and 25% data samples in the 

training set and the last set consists only 20 samples. The details of all the data sets 

are depicted in the following Table 6.1. 

 

The performance of an artificial neural network depends on several parameters such 

as hidden layer architecture, learning rate, and the activation function, etc. Since, 

this research concerns the hidden layer architecture of the network, all the other 

parameters except number of hidden layers and the number of hidden neurons, made 

constants throughout the training and testing process. The backpropagation 

algorithm used to train each network. The logsigmoid function used as the 

activation function for hidden layers and linear function used for the output layer. 

When it was necessary, attribute values were recalled to be a real number between -

1 and +1. For each case, learning rate of backpropagation algorithm was fixed as 

0.1. Initially, all the weights were chosen randomly and normalized. The stopping 

criteria was decided as the error given by the equation  2 14   is 10
-4

 or pre-decided 

maximum number of iterations.  

 

To test the above
 

hypothesis, input was a large network trained by the 

backpropagation algorithm. These were collected by different users who involve in 

the research on the field of ANN.   
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Table 6.1: Information of Data Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Data Set 
No. of 

Inputs 

No.of 

outputs 

No. of 

instance 

Training 

patterns 

Testing 

patterns 
1 Banknote 4 2 1372 1029 343 

2 Cancer I 9 2 699 525 174 

3 Cancer II 9 2 699 350 349 

4 Cancer III 9 2 699 175 524 

5 Cancer IV 9 2 699 24 689 

6 Card I 51 2 690 518 172 

7 Card II 51 2 690 345 345 

8 Card III 51 2 690 172 518 

9 Card IV 51 2 690 12 678 

10 Cardio 23 3 2126 1594 532 

11 Climate 14 2 540 405 135 

12 Diabetes I 8 2 768 576 192 

13 Diabetes II 8 2 768 384 192 

14 Diabetes III 8 2 768 192 576 

15 Diabetes IV 8 2 768 50 716 

16 Flare I 25 3 1066 800 266 

17 Flare II 25 3 1066 533 533 

18 Flare III 25 3 1066 266 800 

19 Flare IV 25 3 1066 50 1016 

20 Glass 9 7 214 160 54 

21 Heberman 3 2 306 230 76 

22 Iris 4 3 150 112 38 

23 Knowledge I 4 4 403 302 101 

24 Knowledge II 4 4 403 201 202 

25 Knowledge III 4 4 403 100 303 

26 Knowledge IV 4 4 403 20 383 

27 Monk‘s 1 6 2 556 124 432 

28 Monk‘s 2 6 2 602 170 432 

29 Monk‘s 3 6 2 554 122 432 

30 Seeds 7 3 210 158 52 

31 Statlog 13 2 270 202 68 

32 Thyroid 5 3 215 161 54 

33 Tissue 9 2 106 80 26 

34 Yeast 8 9 1484 1113 371 
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6.2.2 Test cases 

In this chapter, first it will show that deep networks perform better than shallow 

ones. In order to show this it has chosen above mentioned 5 bench mark problems 

Cancer, Card, Diabetes, Flare and Knowledge. In addition, as mentioned in above, 

different configuration of each of the sets was considered to test the behavior of the 

network for different sizes of training sets. The descriptions of all 5 data sets are 

given here while the others have described in the Appendix A.  

 

6.2.2.1 Breast Cancer Wisconsin data set (Cancer)  

The data set was introduced by  Dr. William H. Wolberg of the University of 

Wisconsin Hospital, Madison to diagnose the breast cancer and classify that a tumor 

as either benign or malignant level [170],[171],[172]. The decision is made based on 

the information gathered by microscopic examination of 9 features.  

 

The data set contains 699 continuous examples, where 65.5% are in benign stage 

[173]. To examine the performance of the proposed method different 4 types of data 

sets, namely Cancer I, Cancer II, Cancer III and Cancer IV were considered with 

distinct testing and training sets. The first group contains 75% of data in the training 

set while other 25% used for testing purpose. The 2
nd

 set considered with 50% data 

in training and the 3
rd

 set contains 25% as training data. Finally, a very small group 

of data (20 sets) trained and tested the performance.  

 

 6.2.2.2 Credit card approval data set (Card)  

A database to predict the approval or rejection of credit card of an applicant is 

presented here. Each example represents the details supplied by a real applicant and 

output shows whether the corresponding organization granted a credit card to the 

client or not. The decision makes based on 51 inputs with continuous values and 

690 examples. Out of 690 applicants 44.5% show positive output [174]. Four 

different networks architectures Card I, Card II, Card III and Card IV were designed 

from this data base as shown in the following Table 6.3. 
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6.2.2.3 Pima Indians diabetes data set (Diabetes) 

This data was originally created by the National Institute of Diabetes and Digestive 

and Kidney Diseases to binary classification on whether a patient has diabetes. 

There are records of 768 patients and out of 500 ( 65.1%) shown positive for 

diabetes. All the patients here are females of above 21 years old of Pima Indian 

heritage.  Four different networks, namely Diabetes I, II, III and IV carry 75%, 

50%, 25%, and 2% samples respectively created for testing [175].  

 

6.2.2.4 Solar flare data set (Flare) 

This database has been created to predict the solar flare which will occur in next 24 

hours by using the information on past 24 hour period. In the set there are 1389 

attributes and results are classified in three different classes, common flare, 

moderate flare and severe flare [173].  

 

There are 10 attributes in the input set. First 3 inputs are given as the alphabetical 

characters whilst rest are integers. Before the training process, alphabetic characters 

converted to integers.  

 

6.2.2.5 User knowledge modeling data set (Knowledge) 

The dataset is about the users' learning activities and knowledge levels on subjects 

of DC Electrical Machines. Information of 403 users with 5 attributes including the 

study time and exam performance considered for analysis. According to the 

information, uses knowledge was classified into four classes, very low, low, middle 

and high [176].  

 

6.2.3 Testing strategies  

Each of the above case was tested for their different configurations. As discussed in 

chapter 5 generalization remains unchanged for layers greater than l, where 

generally l is greater than 8. Hence, the maximum number of layers   set as a 

number greater than 8 and less than 20. Normally, the network with   hidden layers 
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consists of N hidden neurons. Where  N is approximately same as its training 

patterns, but it can differ according to the user. The number of hidden layers in the 

layer   is denoted by   . Hidden neurons chose in 3 different ways; 

 ‗Equal‘ hidden neurons: 

Number of hidden neurons in each layer is same. That is   

                     

 ‗Ascending‘ hidden neurons  

Hidden neurons in each layer arrange in the ascending order. 

                     

 ‗Arbitrary‘ hidden neurons 

Each layer contains an arbitrary chosen number and there is no any 

special pattern among                . 

Generally, in each case  

                       

Initially, it was tested how the generalization changes while number of layers is 

increasing. In order to test this, the above mentioned 5 bench mark problems trained 

for different number of hidden layers varying from 1 to  .  

 

Next, the performance of novel algorithm was tested by using all the 34 data sets. In 

the first step it determines the most appropriate number of hidden layers in the 

network by using the peak search algorithm (PSA). Then eliminate irrelevant 

neurons by considering the correlation coefficient of summation of delta values of 

each hidden layer and the output error. 

 

6.3 Experimental Results  

6.3.1 The variation of network performance with the number of layers.  

The below Table 6.2 shows the total number of samples in the training set ( ) and 

how the generalization changes with the number of hidden layers in each of the 

Cancer problem. These results show that after reaching its maximum value, the 

generalization decreases to a certain level and retain there while hidden layers add 
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to the network. Cancer I, II and III show their best generalization at 4 hidden layers 

and then decreases until 6-9 layers. After this level although hidden layers are added 

generalization is remained as constant. The Figure 6.1 shows the how the 

performance of Cancer I changes while increasing the hidden layers. It is clear that 

while adding hidden layers to the network generalization increases to a peak value 

and then decreases to a certain level. The Figure 6.2 compares the performance of 

all the Cancer problems. It indicates that when the training set is large, network 

shows better performance. For example, Cancer I problem has 525 samples in the 

training set. Initially, consider network with 20 hidden layers.  As it was explained 

in the section 6.2.3 the total number of hidden neurons chosen as a number close to 

525. When these neurons divided equally among 20 layers, each layer consists of  

*     ⁄ +     hidden neurons. This set shows the maximum generalization 

99.4%. Further Cancer II and Cancer III perform in the same way and obtain their 

maximum generalization 98.6% and 95.0% respectively. However, Cancer IV 

problem has only 20 neurons in the training set and each layer contains only one 

hidden neuron. The performance of this set is very weak and the maximum 

generalization it shows is 66.7%.  

 

Table 6.2: Changing performance with hidden layers in Cancer problems 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 12 20 

Cancer I 525 97.7 97.7 98.9 99.4 99.4 96.0 94.3 95.4 62.6 62.6 62.6 62.6 

Cancer II 350 97.1 97.4 97.7 98.6 97.7 97.7 65.6 65.6 65.6 65.6 65.6 65.6 

Cancer III 175 94.7 94.7 94.7 95.0 94.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 

Cancer IV 20 63.5 66.7 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 
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Figure 6.1: Changing performance with hidden layers in Cancer I problem 

 

 

 

 

 

Figure 6.2: Generalization comparison of Cancer problems 
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Card and diabetes problems also show the similar pattern (Table 6.3 and Table 6.4). 

In the card problem there are 51 attributes and comparatively Cancer sets 

generalization of these configurations is weak. The best performance that Card 

problems show is 88.1% when there are 75% of samples in the training set and 6 

hidden layers in the network. Card I and II increase the generalization while adding 

hidden layers to the network and reach to a similar peak value at 6 hidden layer 

network and then decline. Card III gets its maximum generalization 84.8% for 5 

hidden layered networks. Further in Card IV, when there are 20 samples in the 

training set, it shows very poor performance. Although it reaches to the peak value 

65.7% with 3 layer network, this is much lesser than the peak values of the other 

configurations (Figure 6.3). The diabetes problems show their highest performance 

in Diabetes I with 6 hidden layers. The Figure 6.4 depicts that when there are more 

data in training set, it also shows better generalization. 

 

 

Table 6.3: Changing performance with hidden layers in Card problems 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Card I 518 81.4 81.4 84.9 86.6 86.6 88.1 53.4 53.4 53.4 53.4 53.4 53.4 

Card II 345 75.1 76.5 84.6 84.6 85.8 87.2 55.1 55.1 55.1 55.1 55.1 55.1 

Card III 172 68.7 75.7 79.1 84.4 84.8 54.8 55.1 54.8 54.8 54.8 54.8 54.8 

Card IV 20 59.4 62.2 65.7 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 

 

 

Table 6.4: Changing performance with hidden layers in Diabetes problems 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Diabetes I 576 78.6 79.7 82.8 82.8 81.8 81.8 63.5 63.5 63.5 63.5 63.5 63.5 

Diabetes II 384 76.0 76.0 77.3 77.9 80.5 79.9 63.3 63.3 63.3 63.3 63.3 63.3 

Diabetes III 192 71.7 78.3 78.3 78.3 63.7 63.7 63.7 63.7 63.7 63.7 63.7 63.7 

Diabetes IV 50 71.1 77.5 77.5 65.2 65.2 65.2 65.2 65.2 65.2 65.2 65.2 65.2 
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Figure 6.3: Generalization comparison of Card problems 

 

 

 

 

 

 

 

Figure 6.4: Generalization comparison of Diabetes problems 
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The Flare problems also interpret that the higher number of hidden layers gives 

improved generalization than shallow networks (Table 6.5). However, in these 

problems once it reaches to the peak value generalization retain there even for more 

layers. For example Flare I – III reach to their maximum generalization at 7 layers. 

The Flare IV reaches to this level at 6 hidden layers. However, as depicts in the 

Figure 6.5, after reaching their highest values, generalization do not declines and it 

retains the same value for higher number of layers.  

 

Table 6.5: Changing performance with hidden layers in Flare problems 

Data Set   
No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Flare I 800 71.1 74.4 78.2 82.0 80.1 80.1 89.4 89.4 89.4 89.4 89.4 89.4 

Flare II 533 81.8 79.2 80.1 83.0 83.5 87.4 92.7 92.7 92.7 92.7 92.7 92.7 

Flare III 266 82.5 79.1 83.2 82.8 88.9 82.8 92.1 92.1 92.1 92.1 92.1 92.1 

Flare IV 50 68.4 83.1 80.2 81.6 80.7 91.1 91.1 91.1 91.1 91.1 91.1 91.1 

 

 

 

 

Figure 6.5: Generalization comparison of Flare problems 

 

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11

G
en

er
al

iz
at

io
n

 

No. of Hidden Layers 

Flare Problem 

Flare I

Flare II

Flare III

Flare IV



112 

Apart the above, efficiency of the network can be described by the time cost of the 

training and this reflects by the number of iterations. Especially when it is difficult 

to determine the performance by the generalization, training time could be 

considered. For example, in the Knowledge I problem all the configurations show 

100% performance for testing sets. Thus, in this case the time cost will be used to 

determine the best architecture. The Figure 6.6 points up the number of epochs 

taken to train the different sizes of networks. According to this result 3 layer 

network shows the best performance as it could train by only 400 iterations while 

others needs more than thousand of that.  

Figure 6.6: No. of epochs take to train Knowledge I Problem 

 

The Knowledge I problem shows 100% for all the configurations with 303 data 

samples (75% samples from the whole set). However, while reducing the size of the 

training set generalization for single hidden layer networks decline, nevertheless 

they reach rapidly to their maximum generalization 100% and retain that for higher 

number of hidden layer architectures (Figure 6.7). 

 

As in other benchmark problems, generalization power is not a good measure for 

Knowledge problems as they show almost 100% performances for each 

configuration. Thus, the training time and number of epochs could be taken into 

account to determine the best architecture. By comparing the training time, it is 

observed that the single hidden layer network in Knowledge I problem takes 131.13 

seconds to train the network while 3 layer network trains within 123.43 seconds. 
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Both of these configurations give 100% performance but 3 layer network is 

considered to be the best architecture as it is more economic.   

 

 

Figure 6.7: Generalization comparison of Knowledge  problems 

 

All the above data sets show that generalization improves while increasing the 

number of hidden layers. On the other words, single hidden layer network is not a 

good solution for those problems. Further, data sets of the same domain show 

different peak values for different sizes of training sample. Most probably, training 

sets with large data sets show better performance. 

 

In the next section we discuss the experiments done in determining the number of 

layers by using the peak search algorithm. In order to find this, all the 34 data sets 

given in the Table 6.1 were used. 

 

6.3.2 Determining the number of hidden layers 

The process of determining the number of hidden layers in the most appropriate 

solution for the given problem was started with a network, trained by the 

backpropagation algorithm for an arbitrary large number of hidden layers   (say). 

The Table 6.6 shows the number of hidden layers, generalization and the way of 

choosing hidden neuronal structure of all the input data sets. The neuronal structure 

of each architecture was decided by the user who involved to this experiment. We 

conducted all the experiments based on the hypothesis that, ―any network with large 

number of hidden layers can be reduced to a smaller sized network without 
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degrading its performance.‖ The Peak Search Algorithm (PSA) described in the 

previous chapter 5 was used to determine the number of hidden layers of each of the 

network. To illustrate the procedure, the data set of cancer I and Flare I were chosen 

and their process of determining the number of hidden layers is described as 

follows. The process of achieving the number of hidden layers of all the other data 

sets is described in the Appendix 2.  

 

Cancer I Problem 

The breast cancer I contains 699 data samples and 525 were chosen for training 

purpose. The process started with a network with 20 hidden layers trained by the 

backpropagation algorithm. The number of hidden neurons in each layer is assumed 

to be same and this number is 

[
525

2 
]  26 

Hence, the total number of hidden neurons is 26 × 2  52 .  

 

174 data sets were used in the testing purpose. The generalization or the percentage 

of correct responses of the initial network with 20 layers     62 6.    was 

observed as 97 7  As    1   continued the procedure. Initially,   1 and 

  2 . Then  

  [
1  2 

2
]  1  

    was computed as 62 6  It agrees with the statement                     in 

the section 5.2. Hence, peak lies between 1 and 10. Then removed the interval 

 1  2 ] and replaced   by 1  and new  

  [
1  1 

2
]  5 

and      99 4    

Therefore,          . According to the                       , the peak 

can lie in interval [1 5] or [5, 10]. Then compute the mid points of two intervals    

and    such that,  
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   [
1  5

2
]  3            [

5  1 

2
]  7      

It observed that  

    98 9  and    94 3  

 

Then peak lies in the interval,  where    {               }      lies.  

 

Therefore, peak lies in the interval [3 7] and since,           , the peak can lie 

in interval [3 5] or [5, 7]. Then compute the mid points of two intervals    and    

such that,  

   [
3  5

2
]  4            [

5  7

2
]  6      

 

Then peak lies in the interval,  where    {              }       lies. 

 

That is in the interval [3 5] and since 3 4  5 are consecutive numbers, the number 

of layers which gives highest generalization is    

{          {        }}  4 

(Note: In this case       , so that it chooses smaller network as the optimimum 

solution.)  

 

To achieve the peak value of the above Cancer I problem, only 7 networks were 

trained. That is networks with layers 1 3 4 5 6 7 and 1   The whole process of 

determining the number of hidden layers which gives the best architecture in Cancer 

problem by the peak search algorithm is depicted by the Figure 6.8. 
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Table 6.6: Details of Initial networks 

 

Data Set 
No. of Hidden 

Layers 

Total no. of 

hidden neurons 

Type of hidden 

neurons 

Generalization 

(%) 

1 Banknote 12 1014 Ascending 100 

2 Cancer I 20 520 Equal 62.6 

3 Cancer II 20 360 Equal 65.6 

4 Cancer III 20 180 Equal 65.8 

5 Cancer IV 20 20 Equal 65.4 

6 Card I 12 516 Equal 53.4 

7 Card II 12 348 Equal 55.1 

8 Card III 12 168 Equal 54.8 

9 Card IV 12 12 Equal 55.3 

10 Cardio 12 1560 Ascending 58.9 

11 Climate 10 400 Equal 92.6 

12 Diabetes I 15 570 Equal 63.5 

13 Diabetes II 15 390 Equal 63.2 

14 Diabetes III 15 195 Equal 63.7 

15 Diabetes IV 15 45 Equal 65.1 

16 Flare I 12 780 Ascending 89.8 

17 Flare II 12 546 Ascending 92.7 

18 Flare III 12 234 Ascending 92.1 

19 Flare IV 12 78 Ascending 91.1 

20 Glass 10 160 Equal 100 

21 Heberman 10 230 Equal 71.4 

22 Iris  12 108 Equal 100 

23 Knowledge I 12 300 Equal 100 

24 Knowledge II 12 204 Equal 100 

25 Knowledge III 12 96 Equal 100 

26 Knowledge IV 12 24 Equal 100 

27 Monk‘s 1 10 120 Equal 100 

28 Monk‘s 2 12 169 Arbitrary 67.1 

29 Monk‘s 3 12 120 Equal 100 

30 Seeds 10 130 Equal 0.0 

31 Statlog 15 195 Equal 55.9 

32 Thyroid 12 156 Equal 66.7 

33 Tissue 10 80 Equal 100 

34 Yeast 12 1092 Ascending 100 
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Figure 6.8: Determining number of hidden layers in Cancer I 

 

 

 

Flare I Problem  

The Flare problem consists of 800 training patterns and a network was created with 

12 layers, where neurons are distributed ascending order as shown in the following 

table. The total number of hidden neurons was chosen as a number close to the 

number of training patterns.  Hence, as given in the table Table 6.5 the total number 

of hidden neurons was taken as 780. Initially set   1 and   12.  The 

generalization of the network of 12 hidden layers was given as  

    89 4 

The generalization of one hidden layer network is computed as   

   71 1 
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Table 6.7: Distribution of hidden neurons in Flare I data set 

 

 

As    1   and      1 , the process continued and   is computed as 

  [
1  12

2
]  6 

   8  1 and therefore,          . 

Hence, according to the case II in section 5.5.2 the peak lies in [6,12]  and the 

interval [1,6)  can be removed and replace   by 6. The new   is computed as 

  [
6  12

2
]  9 

   89 4 and          , by    in section 5.5.2,     and    are computed. 

 

   [
6  9

2
]  7        [

9  12

2
]  1  

       89 4 , Hence,                 .  Now 6 can be removed and 

thus L is replaced by 7. However, now this process has come to its worst scenario. 

That is as all the corresponding values are equal, generalization of each possible 

value of interval should be computed. However, it shows  

       89 4 

Now as every value in the interval [7 12] show generalization 89.4, the number of 

hidden layers in most appropriate network is taken as the least number in the 

corresponding interval, i.e, number of hidden layers in the most appropriate network 

is 7.   

 

The process is described in the following Figure 6.9 
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Figure 6.9: Determining number of hidden layers in Flare I problem 

 

 

The below Table 6.8 shows the results obtained by the peak search algorithm. It 

clearly shows that multilayer architectures of ANNs give better generalization than 

the single hidden layer networks. In these results only the ‗Yeast‘ data set reaches to 

its best performance with single hidden layer network. All the other problems 

needed two or more hidden layers. However, about 70% data sets reach to their 

maximum generalization within 5 hidden layers.  
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Table 6.8: Details of New architecture obtained by the Peak Search Algorithms 

 
Data Set 

 

No. of Hidden 

Layers 

Total no. of 

hidden neurons 

Amount of neuron 

reduction  (%) 

Generalization 

% 

Generalization 

Improvement 

(%) 

1 Banknote 2 172 83.3 100 0.0 

2 Cancer I 4 104 80.0 99.4 36.8 

3 Cancer II 4 72 80.0 95.7 30.1 

4 Cancer III 4 36 80.0 95.0 29.2 

5 Cancer IV 2 2 90.0 65.4 0.0 

6 Card I 6 258 50.0 87.2 33.7 

7 Card II 6 145 58.3 85.8 31.0 

8 Card III 5 70 58.3 85.3 30.4 

9 Card IV 3 3 75.0 65.7 10.4 

10 Cardio 4 200 87.2 72.9 14.0 

11 Climate 2 80 80.0 97.8 5.2 

12 Diabetes I 3 114 80.0 82.8 19.3 

13 Diabetes II 5 130 66.7 80.5 17.2 

14 Diabetes III 4 52 73.3 78.3 14.6 

15 Diabetes IV 3 9 80.0 77.5 12.4 

16 Flare I 7 280 64.1 89.8 0.0 

17 Flare II 7 196 64.1 92.7 0.0 

18 Flare III 7 84 64.1 92.1 0.0 

19 Flare IV 6 21 73.1 91.1 0.0 

20 Glass 4 64 60.0 100 0.0 

21 Heberman 6 138 40.0 77.9 6.5 

22 Iris  4 36 66.7 100 0.0 

23 Knowledge I 3 75 75.0 100 0.0 

24 Knowledge II 4 68 66.7 100 0.0 

25 Knowledge III 3 24 75.0 100 0.0 

26 Knowledge IV 2 4 83.3 100 0.0 

27 Monk‘s 1 7 84 30.0 100 0.0 

28 Monk‘s 2 4 78 53.9 86.8 19.1 

29 Monk‘s 3 6 60 50.0 100 0.0 

30 Seeds 4 52 60.0 90.6 90.6 

31 Statlog 8 104 46.7 100 44.1 

32 Thyroid 4 52 66.7 94.4 27.8 

33 Tissue 5 40 50.0 100 0.0 

34 Yeast 1 14 91.7 100 0.0 
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6.3.3 Correlation between the sum of Delta values and the output error 

When the number of hidden layers is fixed, the network starts the pruning process. 

The one of the main factors considered on pruning was the correlation between the 

sum of delta values of each layer   and the output error   which is denoted by     . 

Empirical results show that, most probably the value of      for the last hidden layer 

shows a negative value. In this section we discuss about this correlation for some of 

the above benchmark applications.  

 

6.3.4 Correlation between the sum of Delta values and the output error 

When the number of hidden layers is fixed, the network starts the pruning process. 

The one of the main factors considered on pruning was the correlation between the 

sum of delta values of each layer   and the output error   which is denoted by     . 

Empirical results show that, most probably the value of      for the last hidden layer 

shows a negative value. In this section we discuss about this correlation for some of 

the above benchmark applications.  

 

Cancer I problem shows its better performance for 4 hidden layer network. So that, 

we consider this architecture to prune unnecessary neurons. The Table 6.9 and 

Figure 6.10 depict the corresponding results of correlations after the first iteration of 

this Problem. These results imply that there is a significant relation between the sum 

of delta values and the output error and hence, this result is able to use in identifying 

the neurons such that removing those neurons, output error will decrease, i.e, by 

eliminating such neurons generalization power of the ANN would be increased.  

 

Table 6.9: Correlations of the Cancer I data set 

                     

Correlation 0.8913 -0.8853 0.8332 -0.8771 
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This figure shows that although summations of delta values are different, all the 

layers have same pattern, but it alternates the sign at each layer. A similar results 

can be observed in Cancer II, III and IV, which depict in the Table 6.11.  

 

Figure 6.10: Correlations of Cancer I problem 

The Card I problem shows its highest performance when there are 6 layers in the 

network and sum of the delta values in all 6 layers show significant correlation with 

the output error ( Table 6.10 and Figure 6.11) The two problems Card II and Card 

III reach to their peaks with 6 and 5 hidden layers respectively and all these sets 

show significant correlation in      for each hidden layer h.  
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Table 6.10: Correlations of the Card I data set 

 

 

 

 

Figure 6.11: Correlations of  Card I problem  

                               

Correlation 0.8046 -0.8047 0.8088 -0.7993 0.8138 -0.8160 
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Figure 6.12: Correlation of the Banknote problem 

 

The correlations of all such data sets are shown in the following Table 6.11. This 

shows that most of the datasets show considerable correlation     .  That is more 

than 78% show significant correlation. Other than banknote, every other network‘s 

changes its sign of      at each layer. Therefore, in these networks delta values and 

their signs are taken into consideration when removing the neurons from the hidden 

layers.  

 

Banknote, Flare I, II, III, IV  and Statlog problems have poor correlations. In 

addition, unlike the other networks, the correlations of both the layers of Banknote 

have the same (negative) sign. In these problems, sign of delta values are not 

considered while eliminating neurons. So that, in these cases in order to improve the 

performance, neurons which have positive or negative infinitesimal delta values are 

remove from the network.   
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Table 6.11: Correlation between sum of delta values and output error 

 Data Set 
Number of Hidden Layers 

1 2 3 4 5 6 7 8 9 

1 Banknote -0.0657 -0.0871        

2 Cancer I 0.8913 -0.8853 0.8332 -0.8771      

3 Cancer II 0.9396 -0.9384 0.9242 -0.9362      

4 Cancer III 0.9575 -0.9587 0.9475 -0.9672      

5 Cancer IV 0.6200 -0.6256        

6 Card 1 0.8046 -0.8047 0.8088 -0.7993 0.8138 -0.8160    

7 Card II -0.8478 0.8487 -0.8509 0.8736 -0.8662     

8 Card III -0.9660 0.9642 -0.9761 0.9743 -0.9747     

9 Cardio 0.6685 -0.6679 0.6810 -0.6776      

10 Climate 0.8839 -0.9024        

11 Diabetes 1 -0.8324 0.8314 -0.8327       

12 Diabetes 2 -0.8156 0.8332 -0.8006 0.8397 -0.7755     

13 Diabetes III 0.8650 -0.8626 0.8602 -0.9016      

14 Diabetes IV -0.9694 0.9705 -0.9699       

15 Flare 1 0.1470 -0.1522 0.1520 -0.1512 0.1512 -0.1143 0.1284   

16 Flare II 0.1491 -0.1540 0.1543 -0.1528 0.1587 -0.1201 0.1548   

17 Flare III 0.2913 -0.3149 0.3161 -0.3128 0.3118 -0.2795 .2786   

18 Flare IV -0.5623 0.5648 -0.5707 0.5676 -0.5738 0.5209    

19 Glass 0.8255 -0.8328 0.8216 -0.8608      

20 Heberman 0.8595 -0.8595 0.8629 -0.8650 0.8714 -.8867    

21 Iris  0.8448 -0.7906 0.8760 -0.9691      

22 Knowledge I -0.6889 0.6613 -0.7366       

23 Knowledge II 0.8519 -0.8481 0.8646 -0.8422      

24 Knowledge III -0.9213 0.9298 -0.9543       

25 Knowledge IV 0.6327 -0.7295        

26 Monk‘s 1 -0.8592 0.8607 -0.8568 0.8604 -0.8720 0.8903 -0.9079   

27 Monk‘s 2 -0.7754     0.7738 -0.7744 0.7671       

28 Monk‘s 3 0.8233 -0.8222 0.8249 -0.8258 0.8424 -0.8415    

29 Seeds -0.7893 0.8442 -0.8501 0.8512 -0.8513 0.8741 -0.8843   

30 Statlog 0.1445 -0.1432 0.1408 -0.1456 0.1602 -0.1587 0.1814 -0.0878  

31 Thyroid 0.8863 -0.8863 0.8914 -0.8846      

32 Tissue -0.6813 0.6866 -0.6270 0.5226 -0.8259     

33 Yeast -0.7964         
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6.3.5  Removing neurons 

In order to attain the optimal architecture, the unimportant neurons in the error 

decay process must be removed from the network architecture. In previous chapter, 

it was explained the procedure of eliminating neurons.  

 

Basically, we use the correlation coefficient shown in the above Table 6.11 to 

determine the removable neurons. If there is significant positive correlation value 

for      , the error could be minimized by removing the neurons with positive delta 

values. In this case, the neurons, which show infinitesimal positive for every 

training sample in the data set will be identified as removable neurons. In contrast, 

when there is a considerable negative correlation, neurons, which show the negative 

delta value whose absolute value is very close to zero for each training sample in the 

set will be removed.   

 

While removing the unnecessary neurons from the network it merges the neurons 

with similar weight vectors as described in the previous section 5.5.6.  The Table 

6.12 below depicts the experimental results and it compares the resultant network 

with the network obtained by the PSA and the initial network.  

 

The Cancer I problem started with 20 hidden layers and 520 hidden neurons divided 

equally among the layers. The generalization of initial network was 62.6%. The 

network obtained by PSA contained 4 layers and 104 hidden neurons. (Each layer 

consisted of 26 neurons). This network showed generalization 99.4%.  By using 

delta values of hidden neurons it was identified 10 unnecessary neurons (3, 4, 2 and 

1 from each layer) and removed them from the network. Hence, the optimal solution 

of this problem contains only 4 layers and 94 neurons. The hidden layer architecture 

was 23 – 22 – 24 – 25.  The proposed method has reduced 9.6% percent of hidden 

neurons from the network obtained by PSA. But this stage generalization had not 

increased. Comparing with the original network, it has reduced 81.9% neurons and 

improved generalization by 36.8%.    
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Similar results can be seen on the other data sets such as Cancer II, Card I, II, 

Diabetes I-III, Heberman and Seeds etc. The data sets such as Banknote, Flare I-IV 

and Glass, Iris have initially reached to their maximum generalization. Hence, by 

new algorithm it has lessened only the size of the network, which will enable to 

reduce test time. However, if we use very small data set as Cancer IV and Diabetes 

IV we cannot expect any improvement and process will last with the same network 

structure and the generalization.  
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Table 6.12: Neural network architectures obtained by the new model 

 

Data Set 

No. of 

Hidden 

Layers 

Total 

no. of 

hidden 

neurons 

Reduction of 

neurons 

Generalization 

% 

Improvement 

Relative 

to 

Phase I 

Relative 

to the 

original 

network 

Relative 

to 

phase I 

Relative 

to the 

original 

network 
1 Banknote 2 26 33.3 97.4 100 0.0 0.0 

2 Cancer I 4 94 9.6 81.9 99.4 0.0 36.8 

3 Cancer II 4 38 47.2 89.4 98.6 0.9 32.1 

4 Cancer III 4 31 13.9 82.8 95 0.0 29.2 

5 Cancer IV 2 2 0.0 90.0 65.4 0.0 0.0 

6 Card I 6 239 7.4 53.7 87.8 0.6 34.3 

7 Card II 6 110 24.1 68.4 84.4 0.6 31.3 

8 Card III 5 70 0.0 58.3 85.3 0.0 30.4 

 Card IV 3 3 0.0 75.0 65.7 0.0 10.4 

9 Cardio 4 160 20.0 89.7 77.0 4.1 18.1 

10 Climate 2 64 20 84.0 97.8 0.0 5.2 

11 Diabetes I 3 100 12.3 82.5 84.4 1.6 20.9 

12 Diabetes II 5 130 0.0 66.7 80.5 0.0 17.2 

13 Diabetes III 4 46 11.5 76.4 78.6 0.3 14.9 

14 Diabetes IV 3 9 0.0 80.0 77.5 0.0 12.4 

15 Flare I 7 23 91.8 97.0 89.8 0.0 0.0 

16 Flare II 7 150 23.5 72.5 92.7 0.0 0.0 

17 Flare III 7 80 4.8 65.8 92.1 0.0 0.0 

18 Flare IV 6 21 0.0 73.1 91.1 0.0 0.0 

19 Glass 4 60 6.3 62.5 100 0.0 0.0 

20 Heberman 6 101 26.8 56.1 79.2 1.3 7.8 

21 Iris  4 18 50.0 83.3 100 0.0 0.0 

22 Knowledge I 3 42 44 86 100 0.0 0.0 

23 Knowledge II 4 39 42.6 80.9 100 0.0 0.0 

24 Knowledge III 3 24 0.0 75 100 0.0 0.0 

25 Knowledge IV 2 4 0.0 83.3 100 0.0 0.0 

26 Monk‘s 1 7 60 28.6 50.0 100 0.0 0.0 

27 Monk‘s 2 4 67 14.1 60.4 87.1 0.3 20.0 

28 Monk‘s 3 6 47 21.7 60.8 100 0.0 0.0 

29 Seeds 7 42 19.2 67.7 93.2 2.6 93.2 

30 Statlog 8 68 34.6 65.1 100 0.0 0.0 

31 Thyroid 4 38 26.9 75.6 94.4 0.0 27.8 

32 Tissue 5 33 17.5 58.8 100 0.0 0.0 

33 Yeast 1 9 35.7 99.1 100 0.0 0.0 
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6.6  Data Analysis  

The summary of the hidden layers that gives the best performance is depicted in the 

Figure 6.13. According to the results all the networks show their best architecture 

within 8 hidden layers and more than 67% of them reach to the best architecture 

within 5 hidden layers. Moreover, it implies that the single hidden layer network is 

not the best solution for most of the problems, because only one data set (3%) 

shows its best performance with a single hidden layer ANN architecture. According 

to these results the average of the hidden layers in the most appropriate network is 

4. However, very few data sets (about 3%) need more than 7 layers to show their 

best performance.   

 
Figure 6.13: Summary of Peak search algorithm 

 

The number of hidden layers, which gives the best performance for each of the 

problem is given in the Table 6.8. It implies that the given method reduces network 

to a small one relative to the initial network. For example, in climate problem, initial 

network consists of 10 hidden layers with 400 neurons. But the resultant network 

contains only 64 neurons which are distributed in two layers. Comparing with the 

original network 84% of neurons have been removed while increasing the 
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generalization from 92.6% to 97.8%. In some problems such as Cancer, Diabetes 

and Flare, there is a huge reduction of neurons while increasing the generalization. 

 

The data set Yeast seems to train easily and they give 100% correct responses for 

single hidden layer networks. In this problem initial network contains 10 layers, 

which gives 100% generalization. The PSA firstly compute the generalization for a 

single hidden layer network and it was observed as 100%. Then the process stopped 

after computing the performance of single hidden layer networks. The Banknote 

Authentication set showed zero correct mappings for the single hidden layer 

network. Hence, procedure of PSA continued, and it was observed that each ANN 

architecture with higher number of layers gives 100% correct mappings. Thus, 

always right half of the interval removed and process ended with two-layer network. 

Unlike the other problems, Seeds data set starts with zero performance with 10 

hidden layers. However, PSA shows that this set gives its highest generalization 

90.6% at 7 hidden layers.  

 

The data sets of Flare I – IV, have been shown their maximum generalization for the 

initially input network architectures. Therefore, once the peak search results achieve 

this level, it retains there. Similar results show in the data sets of Glass, Iris, 

Knowledge I – IV, Monk‘s 1, 3 and Tissue with 100% of their highest performance. 

Thus, in each of these problems, the network with the smallest number that shows 

this highest performance is considered as the best architecture. In these problems, 

even though there is no improvement of generalization by comparing with original 

network, the performance is upgraded due to the training time is reduced by making 

the network smaller.  

 

The results obtained by the above results verified the assumption that ‗any trained 

network can be reduced to a smaller sized network without degrading its 

performance‘. Because according the experimental results, all 34 data sets have 

been reduced their sizes by at least 25% while improving the performance. The 

Figure 6.14 shows that, 17 samples that are 50% percent of the data sets remove 

more than 75% of the hidden neurons while achieving the optimal solution. Another 
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47% (16 samples) were able to remove 51% -75% neurons and only 1 set (3%) 

reduces its size by 26% - 50%. 

 

In addition, among the 17 data sets which reduce their size over 75%, two problems 

have been increased the generalization between 10% - 30%. Another 6 problems 

show 0% - 10% improvement of the performance. However, 7 data sets do not show 

any upgrading of their generalization as they have started with their highest 

generalization. For example, Flare I and Yeast problem. The initial configuration of 

these sets shows their maximum generalization 89.8% and 100% respectively. 

During the elimination process they reduce their hidden layer structure and make 

the data sets smaller. But their generalization retain at the same value.  

 

The Figure 6.15 explains that how the generalization has been improved in the 

above 34 data sets from their initial configuration. It shows that 9 data sets (26% of 

data) improve their generalization above 20%. Another 6 and 2 data sets upgrade 

their performance between 10% - 20% and 0%-10% respectively. Nevertheless, 17 

data sets (50%) begin the procedure with their maximum generalization and hence, 

they do not show any improvement of their generalization.   

 

 

 
 

Figure 6.14: Reduction of neurons from the initial network configuration 
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Figure 6.15: Increase of the generalization comparing with the initial network 

 

6.4 Comparison with Existing Method 

It was discussed in the Chapter 2 that, OBS and OBD are the two well-known 

methods in pruning, but they need extra computations for accommodate the Hessian 

matrix. The efficiency of Skeletonization method [73] is low as it always choose the 

neuron with least salience at each iteration. In addition, the productivity of MBP 

methods are not up to the standards, because they concern only on the magnitude of 

the connection weights in pruning [64]. The method of N2PS perform better than 

several other methods. However, it has restricted only for single hidden layer 

networks. A constructive method called rule extraction from ANNs (REANN) is 

also give significant results in medical diagnose problems, nevertheless it has not 

discussed the solution for large set of output vectors. 

 

The proposed method (PSDV) does not have complex computations and hence, it 

has easy accommodation in any large data set. On the other hand, while applying 

the peak search algorithm it removes all the neurons in the particular layer. 

Moreover, in the second part it recognizes all the removable neurons at once to trim 

the ANN architecture. Hence, rather than eliminating one neuron at a time PSDV 
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removes cluster of neurons at once. Therefore, relative to other approaches, the 

proposed method reaches to the optimal architecture of hidden layers faster.  

 

The following Table 6.13 depicts the comparison of the generalization PSDV with 

some existing methods. ‗-‗indicates that information is not available. It implies that 

this method gives best generalization relative to many other methods. Hence, PSDV 

is a very promising approach in determining the hidden layer architecture in ANNs.  

 

Table 6.13: Generalization of PSDV and other existing methods 

    Method 

 

 

 

 

Dataset 

 

 

 

VNP 

 

 

 

N2PS 

 

 

 

OBD 

 

 

 

OBS 

 

 

 

MBP 

 

 

 

REANN 

 

 

 

PSDV 

Cancer 97.8 97.1 92.5 90 94.2 96.28 99.4 

Diabetes 70.3 69.1 68.6 65.4 68.9 76.56 84.4 

Iris 97.7 98.7 98 98 98 - 100 

 

The following Figure 6.16 illustrates the results of the above table. It is clear that the 

proposed method PSDV has achieves highest accuracy in all 3 problems Cancer, 

Diabetes and Iris. In the other entire methods network consist only one single layer. 

Thus, it is obvious that generalization of network can be improved by adding more 

layers to the network.  

 

Figure 6.16: Comparison of PSDV with the other existing methods 
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6.5 Summary  

This chapter emphasizes the experimental results carried out to prove the hypothesis 

that any large network can be pruned to a smaller one by removing the hidden layers 

and hidden neurons without degrading its performance. 34 data sets were analyzed. 

From the entire network we were able to get a smaller network that the resultant 

network show same or better performance. Experimental results show that the single 

hidden layer network is not a good architecture for ANNs and some networks need 

8 – 9 layers to give a considerable solution. The significant number of data sets 

reach to their best architecture within 4 hidden layers and probability of having such 

network is 0.56.  At the end it compared with the existing methods and observed 

that the novel approach described here always gives best generalization. The next 

chapter will discuss how to extend the proposed PSDV method for deep leaning 

networks.   
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CHAPTER 7  

 

USING PSDV FOR DEEP NEURAL NETWORKS  

7.1 Introduction  

The previous chapter discussed the evaluation of newly introduced Peak Search and 

Delta Value (PSDV) method. It was observed that any large, trained network could 

be pruned to a more efficient network with lesser number of hidden layers and 

hidden neurons. Experimental results implied that, generally multilayered 

feedforward networks show better generalization than shallow networks.  

 

This chapter discusses how the PSDV method could be applied for deep neural 

networks. First, it introduces basic concepts of deep neural networks followed by 

the two widely used deep neural networks namely Convolutional Neural Networks 

and Deep Belief Networks. Next, it will discuss how to implement the proposed 

PSDV method to very common two deep nets namely, convolutional networks and 

deep belief networks.  

 

7.2 Preamble to Deep Neural Networks  

Deep learning neural networks that refer the artificial neural networks which  

consist of large number of hidden neurons arranged in several layers with different 

levels of abstraction [177], [178]. The concept of deep learning algorithms was 

inspired by the hierarchical structures of human speech perception and production 

systems [179]. The networks can be trained as supervised or unsupervised manner. 

The techniques of the deep learning widely used in image recognition, natural 

language processing, transcribe speeches in to text and match new items etc. These 

networks can be performed without interference of human. They are able to work 

closer to or sometimes better than human.  The conventional machine learning 

process is required a feature extractor that could transform the raw data, such that 

pixel value to image etc. into numerical vector form, which could represent an input 

pattern.  
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The deep learning methods are representative learning methods which transforms 

input data of one level to a more abstract level. For instance, in image recognition, 

the input is an array of pixel values. The first layer represents the existence or non-

existence of edges at particular positions in the image. The second layer detects the 

patterns by spotting the particular arrangements of edges. The third layer arranges 

the patterns of main objects and higher order layers would detect objects as these 

parts [178].  

 

Creating a simple network with one hidden layer is too simple to model complex 

structures on many real world problems. Because of the hardness of using multi-

layers, until recently, most researches restricted their researches for only single 

hidden layered networks. However, for better interpretation in the human brain 

sensory cortex, it needs an efficient way of adapting synaptic weights of multi-

layers of feature detection neurons. Because, active features in the higher layers are 

much better guide to activation of appropriate action than the lower level features 

[180]. For example, the visual system has multi-layers and it is able to generate 

features better than shallow networks [181]. However, in early 1990s, while 

backpropagation based training of multi-layered neural networks found to be 

difficult, deep learning showed feasible results on unsupervised learning for some 

extend. Since then deep learning neural networks became very popular and recent 

years it has won many contests in pattern recognition and machine learning [182].  

 

Based on the mathematical operations and requirement of parameters to perform the 

output, deep learning networks can be divided to several categories. Some widely 

used architectures in deep learning [181], [183] are as follows. 

 Feedforward Neural Networks (FNN) 

 Convolutional Neural Networks (CNN) 

 Deep Belief Networks (DBN) 

Throughout the previous six chapters, the obtaining optimal architecture for 

feedforward neural networks by using PSDV method was discussed, and it was 

concluded that deep feedforward neural networks show much generalized solution 
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relative to shallow networks. Therefore, This chapter will discuss how to apply the 

PSDV method to two widely used deep neural networks namely, convolutional and 

deep belief neural networks.  

 

However, deep neural network architectures are not restricted only for the above 

architectures and similar way it can apply the proposed method to other existing 

architectures too.  

 

7.2.1 Convolutional neural networks  

Like feedforward neural networks, Convolutional neural networks (CNNs) also 

consist of neurons with learnable connection weights. The major difference here is, 

they have used convolutional operation in some layers instead of matrix 

multiplication. The CNNs are originally designed to work with images and aim of 

them is to use spatial information between the pixels of image [184]. One of the first 

convolutional networks was LeNet-5, introduced by LeCun et al., which could 

classify handwritten digits. Other than the input layer, LeNet-5 contained 7 layers 

with trainable parameters (weights) and can be trained by backpropagation 

algorithm [185].  Generally, CNNs are based on discrete convolution [186].  

 

The convolution of two functions   and    is defined as follows.  

 

When    and   are continuous functions,  

                          ∫          ∫               

 

  

 ∫                     7 1  

 

  

 

When the functions are discrete, integral is replaced by the sum 

                             ∑             ∑            

 

    

 

    

            7 2  
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There are numerous different architectures in CNNs. But they all have same basic 

components. Usually a CNN has 3 types of layers namely, convolution layers, 

pooling layers and fully connected layers. 

 

The convolutional layers learn feature maps representation of their inputs. An input 

of a CNN is an element with 3 parameters, height, width and colour (R, G, B, 

colours). Then the input proceeds sequentially through layers and each layer 

transforms signals using convolutional filters (kernels) [187] as shown in the Figure 

7.1. As the retinal of human eye does, convolutional operators absorb features of the 

image by dividing them into small slices [188].  

 

 

Figure 7.1: The basic architecture of a convolutional neural network 

 

A pooling layer is placed in between two convolutional layers to achieve the shift –

invariance by reducing the resolution of the feature maps. The pooling layers resize 

the spatiality in inputs by independently operates on every depth slice of the input.  

The widely used types of pooling are max pooling and average pooling. In between 

convolutional and pooling layers, the activation function such as, ReLU exists.  

 

After many convolutional and pooling layers, there may some number of fully 

connected layers. The higher order cognitive part in the neural network is 

functioning through these fully connected layers. Generally, at present available 

networks have used maximum three hidden layers in this part.  Neurons in these 

layers have connections to all activation in previous convolutional and pooling 

layers as in feedforward artificial neural networks. These activations are done with 
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matrix multiplication. The activation functions such as softmax [189] or sigmoid are 

used to classify the output classes.  

 

7.2.2 Deep belief neural networks  

Deep belief network (DBN) was  introduced by Geoffrey E. Hinton [190] to 

overcome the limitations of deep feedforward artificial neural networks. The two 

most important properties of DBNs are 

 There is a layer by layer procedure for learning the top-down, generative 

weights that determines how the variables in one layer depend on the 

variables in the layer above. 

 After learning vales of latent variables in every layer can be inferred by a 

single, bottom-up pass that starts with an observed data vector in the bottom 

layer and uses the generative weights in the reverse direction.  

Unlike backpropagation algorithm deep nets leaning networks can be trained by 

unsupervised learning algorithms for feature detection. However, after unsupervised 

leaning DBN can further fine-tuned through supervised learning to perform 

classification or regression. This greedy-layered wise training is mostly performed 

by using backpropagation or other gradient decent algorithm [191]. In these 

networks each layer acts as a feature generator and converts the input to more 

abstract representation. A DBN consists of two different types of networks namely 

Belief Networks and Restricted Boltzmann Machines (RBM).  

 

Belief Network: Belief network is a directed acyclic graph that composed with 

layers of stochastic binary units with weighted connections.  These stochastic binary 

units have values  0 or 1. The probability to obtain 1 is decided by the bias and 

weights of the inputs. Thus, the probability equation of these units is as 

                                (   1)   
1

1        ∑      
                                                  7 3  

Where    and    are the inputs of neurons i and j respectively.      is the synaptic 

weight between i
th

 and j
th

 neurons.  
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Restricted Boltzmann Machines: Boltzmann machine is an undirected graph with 

stochastic binary units. The restricted type of Boltzmann machine composed with 

one visible layer to represent the data and one hidden layer. The hidden layer 

represents the features that capture higher order correlation in data. These input and 

visible layers are connected by a symmetric weight matrix. It says ‗restricted‘, 

because there are no connections between the neurons in the same layer [192], 

[193]. The restricted connectivity between hidden units makes learning easier.  

 

7.3 Using PSDV for Deep Neural Networks 

Deep learning refers the multiple levels of representation and feature detection. 

Hence, it always looks for deeper and deeper networks for better accuracy of the 

solution.  It is known that deeper networks are difficulty to train. On the other hand, 

they need unaffordable training time. Therefore, it can observe that, in recent past 

researchers have started to discuss the optimization of deep learning architectures 

[192], [193]. However, several research works are undergoing and there are only 

limited literatures and many researchers have used trial and error method to 

determine optimal network architecture.  

 

Although the PSDV method was introduced to FNNs, there are some rooms to 

extent this method to other deep learning architecture too. Hence, this section will 

discuss the applying of PSDV method to other deep neural architectures by 

considering two widely used deep leaning architectures namely convolutional neural 

networks and deep belief networks as examples.  

 

7.3.1 Applying PSDV to convolutional neural networks 

The first part of a convolutional network is composed with some convolutional 

layers and pooling layers alternatively. This part of the network is used for feature 

detection. It has observed that having more layers in the network cause to obtain 

better generalized solution.  But sometimes adding layer may face over-fitting. In 

addition, complexity of the network will increases with the number of layers.  In 
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such a case Peak Search Algorithm described in Chapter 5 can apply to obtain the 

optimal neural network architecture.  

 

However, this application is completely depends on the given problem. Because, 

training a convolutional network is very resource hungry. Therefore, application of 

PSDV involving additional training for the entire architecture (pooling layers and 

fully connected layers) of the CNN is counterproductive. On the other hand, pooling 

layers in a CNN are introduced on the basis of some interested features of inputs. 

Therefore, it is rather irrational to attempt to drop some layers and neurons from 

pooling layers. Therefore, PSDV can be applicable only for fully connected network 

part of a CNN.  

 

As already stated, latter part of CNNs there are composed of fully connected layers, 

and they are trained by using the backpropagation algorithm. Therefore, latter part 

of fully connected layers in a CNN behaves like feedforward artificial neural 

networks. We have already shown PSDV works for feedforward networks.  As such 

fully connected network within a CNN should work with PSDV. In such instance, it 

is possible reduce the size of network by reducing the number of hidden layers and 

removing less important hidden neurons (if exist) by using the delta values as 

describe in the Chapter 5. 

 

7.3.2 Applying PSDV to deep belief neural networks 

A deep belief network is an unsupervised learning networks trains by greedy 

leaning algorithm to discover new features. As stated, PSDV cannot be applied for 

unsupervised learning networks. Therefore, PSDV is not applicable for belief 

networks as they are.  

 

However, after detecting features, some DBNs execute fine tuning of the results, by 

a subsequent supervised learning network which uses backpropagation training 

algorithm. Given that PSDV is applicable for supervised learning, DBNs involving 

a phase of supervised leaning could be optimized by PSDV.    
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7.4 Summary  

The objective of this chapter was to discuss the concept of deep learning and to 

explain how PSDV could be applied for deep neural networks. In this sense, first, 

the concept of deep neural networks was discussed in relation to deep Convolutional 

Neural Networks (CNN) and Deep Belief Networks (DBN). Secondly, it was 

explained that PSDV could be applied for the phase involving supervised learning 

in CNN and DBN. As such fully connected network in CNN, and DBN associating 

with supervised learning could be optimized by PSDV.  

  

The next chapter will conclude the results and discuss the future works.   
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CHAPTER 8  

 

CONCLUSION AND FUTURE WORKS  

8.1 Introduction  

The interest in applying artificial neural networks of many fields including 

medicine, economics agriculture and engineering has been increased within the last 

few decades. Hence, the modelling of hidden layer architecture in ANNs has 

become crucial and important area of research. Throughout this research, a new 

method on designing hidden layer architecture of ANNs was discussed. The 

previous chapter discussed the experimental designing results of the newly 

introduced method. This chapter provides a summary of the thesis. The next gives 

the achievement of objectives mentioned in the chapter 1 and then concludes the 

experimental results.  Further, it discusses the limitations and future works.    

 

8.2 Modelling Hidden Layer Architecture in ANN 

Artificial neural networks are widely used in many real world problems including 

classification and pattern recognition. Despite many advantages of ANNs, choose 

the most appropriate architecture which gives the optimal solution for the given task 

is crucial. This thesis has addressed this problem by critically reviewing the existing 

many approaches. Although there are variety of approaches inspired by different 

optimization theories, still they have several drawbacks. The converging to 

undesired local minima has been identified as the one of main limitation of the 

current methods. This problem may be avoided by using the global optimization. 

However, these algorithms may not computationally economical [8]. 

 

The proposed novel approach to modelling hidden layers in ANN is inspired by the 

facts of neuroplasticity. Experimental results show that any large network can be 

trimmed down to a smaller one by pruning its hidden layers and neurons. However, 

the number of hidden layers in the architecture is significant and it depends on 

several parameters such as type of data, size of input vector and number of samples 

in the training set.  
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The accuracy of the result obtained by an ANN strongly depends on the number of 

hidden layers in the network. Generally, multilayered perceptron‘s give better 

performance than single hidden layer networks. However, there is an upper limit on 

the number of hidden layers and the maximum number of hidden layers found in a 

network in this research was 9 for Monk‘s 3 problem. The majority of the data sets 

achieved their best performance by 4 hidden layers.  

 

The proposed method successfully pruned the network without degrading its 

performance.  By the neurons elimination process, 5% - 50 % have been removed 

from the networks obtained by the PSA. As a whole, the process was able to 

eliminate about 80 % while improving the generalization. It is obvious that new 

method gives a better solution than the training an arbitrary sized network with back 

propagation algorithm. In addition, it shows improved results in generalization, 

comparing with the many existing methods. Moreover, this method does not have 

complex arithmetic and hence, it is easy to accommodate. Not only that, but also 

this approach eliminates cluster of neurons at once instead of removing one at each 

iteration. Thus, it reaches the optimal solution faster. 

 

8.3 Objectives-wise Achievement  

The aim of our research is to design most appropriate neural network architecture to 

solve the given problem. We achieved this goal while fulfilling the following 

objectives mentioned in the Chapter 1.  

 

Critical review of artificial neural networks and their uses: The chapter 2 

discussed the fundamental concepts of ANNs and critically reviews their uses. 

Further this was focused on different structure of ANNs and neural network 

learning by highlighting the activation functions and different learning rules 

associate with supervised learning, unsupervised learning and reinforcement 

learning. Moreover, it emphasized that the backpropagation learning rule is the most 
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widely learning algorithms and with the invention of the backpropagation algorithm, 

the research interest on ANNs was dramatically increased. 

 

In depth study of current approaches to model hidden layer architecture in 

ANNs: The Chapter 2 discussed various methods of modelling hidden layer 

architecture. Generally, these approaches have developed under 3 major techniques, 

pruning, constructive and evolutionary. It was considered methods from early 1940 

to 2015. Also, most famous approaches include OBD, OBS were taken in to 

account. The methodologies, strengths and weakness were discussed in depth. At 

the end strengths and limitations of deep learning algorithms were discussed.    

 

Develop an approach to prune hidden layer architecture of ANNs: The Chapter 

5 addresses the requirement of this objective. This is the most important chapter as 

the achievement of the whole research totally depends on this approach. The process 

was initiated with the hypothesis that any large network could make smaller one 

without degrading its performance by trimming down the neurons and weight 

connections. Two algorithms were designed to reach the optimal architecture and 

the first algorithm which determines the number of hidden layers was encouraged 

by bi-search algorithms. The second algorithm design to fine tune the network 

obtained by the first part by removing the irrelevant neurons. The removable 

neurons on the second phase were determined based on the delta values of hidden 

neurons. The layered structure, neurons elimination and merging were inspired by 

the facts of the neuroplasticity and the synaptic pruning.    

 

Evaluate of the novel approach: Evaluate the model which has obtained in the 

previous section is also one of the main tasks of this research. The evaluation 

process of this research was achieved by chapter 6. For this model, the evaluation 

was done with 34 real-world applications in 19 different domains. For all the data, it 

was able reduce the number of hidden layers and hidden neurons from the ANN 

architecture.  Hence, the modified architecture is computationally economic. 

Among the all data sets, 25% was able to reduce its size in more than 80%. In 

addition 15 data sets increased their accuracy while reducing the size. In the new 
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model it increases the accuracy mainly from 10% to 30%. However, some of the 

datasets started with their highest accuracy, and hence, it was not able to improve 

their generalization using this model. So, as the overall results, it shows that, this 

new method is able to cut down a large sized network to a smaller network while 

improving the performance. Not only that, it also depicts that, the proposed method 

gives better performance than many of the existing approaches. 

 

Extension of PSDV Method into Deep Neural Networks:  In recent years, deep 

neural networks have become one of the hot topics in pattern recognition and 

machine learning. However, training a deep network is hard and researches have 

started to see the possibilities of optimize the architectures for much efficient 

solution. Chapter 7 considered this matter and discussed how to extend the PSDV 

method to deep neural architectures. The convolutional neural networks and deep 

belief networks are two of widely used deep learning architectures and to identify 

unnecessary neurons and reduce some layer of these networks PSDV method can be 

applied. Also these results can be extended to the other existing deep nets too.   

 

 

8.4 Limitations and Future Directions  

The proposed method is successfully reached to the optimal solution with less 

computation relative to the other existing methods. However, this may not be the 

best achievement as still some limitations are there and they should be improved to 

enhance the applications of this method. 

 

Activation Function: The Back propagation algorithm was used in all the training 

process and the log sigmoid function was used as activation function in the hidden 

layers whilst linear function was used in the output layer. The log sigmoid function 

attains its limsup at about 8 repetitions and thus, the output of each network squeeze 

after a certain number of layers. So that in deeper networks, more knowledge will 

be lost, which will be caused on a huge error. To avoid this fault, some other 

activation function such as the rectified linear unit (ReLU) has been used in some 

deep networks. Nevertheless, ReLU fails at some points as it can be fragile and die 
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during the training. Hence, experiments need to be done with a carefully chosen 

activation function.   

 

Theoretical Aspects: Most of the decisions in this project derived based on the 

empirical results. Hence, the conclusion made here may diverge if we employ a 

different set of data. Hence, it encourages obtaining mathematical evidence on these 

aspects. For example, rather than showing network reach to a peak while increasing 

the hidden layers, it will be more appropriate if we can obtain an analytical solution.   

 

The ultimate goal of modeling hidden layer architecture is to come across a solid 

method, which enables to apply in solving the extremely complex data sets in the 

real-world problems. 

 

8.5 Summary  

This chapter concludes works done throughout this thesis. It summarized how it 

achieved the main objectives given in the Chapter 1. Further it discussed the 

achievements of newly introduced PSDV algorithm and how to extend to deep 

neural networks. Finally, it highlighted the limitations and future works.   
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Appendix A 

DATA SETS 

To assess the effectiveness of the proposed method in determining the hidden layer 

architecture, the number of simulations carried out in different fields. In order to 

justify the theory, 33 data sets were selected from different 19 domains. All the 

samples chosen are real world classification problems, available in the Machine 

learning repository, University of California, Irvine [194], [173]. All the 

experiments were done for fully connected feedforward neural networks on 

supervised learning.  

 

The different data sets from different domains were chosen to discuss the various 

steps of the approach of the modeling the hidden layer architecture in ANNs. Some 

data sets were tested by changing the size of input/output training patterns. The 

details of all chosen data sets are discussed here. 

 

1. Banknote Authentication Data Set (Banknote) 

The data set describes the information of 1372 banknotes, where 610 are genuine 

and 762 are counterfeit. By using digitalization, industrial camera 400x400 pixel 

images were taken and wavelet transformation tools were used to extract 4 features, 

Variance, Skewness, Kurtosis and Entropy. True banknotes have identified and 

labeled as 1 and others labeled as 0 [195].   

 

2. Breast Cancer Wisconsin (Cancer)  

The data set was introduced by  Dr. William H. Wolberg of the University of 

Wisconsin Hospital, Madison to diagnose the breast cancer and classify that a tumor 

as either benign or malignant level [170],[171],[172]. The decision makes based on 

the information gathered by microscopic examination of 9 features.  

 

The data set contains 699 continuous examples, where 65.5% are in benign stage 

[173]. To examine the performance of the proposed method different 4 types of data 

sets, namely Cancer I, Cancer II, Cancer III and Cancer IV considered with distinct 
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testing and training sets. The first group contains 75% of data in the training set 

while other 25% uses for testing purpose. The 2
nd

 set considered with 50% data in 

training and the 3
rd

 set contains 25% as training data. Finally, a very small group of 

data (20 sets) trained and tested the performance.  

 

3. Credit Card Approval Data Set (Card)  

A database to predict the approval or rejection of credit card to the applicants is 

presented here. Each example represents the details supplied by a real applicant and 

output shows whether the corresponding organization granted a credit card to the 

client or not. The decision makes based on 51 inputs with continuous values and 

690 examples. Out of 690 applicants 44.5% show positive output [174]. Four 

different networks architectures Card I, Card II, Card III and Card IV were designed 

from this data. 

 

4. Cardiotocography Data Set (Cardio) 

 This is a large data set, which consists of measurements of 2126 samples of fetal 

heart rate (FHR) and uterine contraction (UC) features on cardiotocograms. Each 

sample contains 21 attributes to classify the fetal class defined as Normal (0), 

Suspect (+1) or Pathologic (-1). From the whole set 77.8% and 13.9% were 

classified as normal and suspect respectively, while the rest are recognized as 

pathologic [196]. 

 

5. Climate Model Simulation Crashes Data Set (Climate) 

This data set uses to predict the simulation outcome, such as success or failure on 

given Latin hypercube samples of 18 climate model input parameter values. There 

are 540 samples in the data set and 494 are success and 46 are fail [197].  

 

6. Pima Indians Diabetes Data Set (Diabetes) 

This data was originally created by the National Institute of Diabetes and Digestive 

and Kidney Diseases to binary classification on whether a patient has diabetes. 

There are records of 768 patients and out of 500 ( 65.1%) shown positive for 

diabetes. All the patients here are females of above 21 years old of Pima Indian 
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heritage.  Four different networks, namely Diabetes I, II, III and IV carry 75%, 

50%, 25%, and 2% samples respectively created for testing [175].  

 

7. Solar Flare Data Set (Flare) 

This database has been created to predict the solar flare which will occur in next 24 

hours by using the information on past 24 hour period. In the set there are 1389 

attributes and results are classified in three different classes, common flare, 

moderate flare and severe flare [173]. There are 10 attributes in the input set. First 3 

inputs are given as the alphabetical characters whilst rest are integers. Before the 

training process, alphabetic characters converted to integers.  

 

8. Glass Identification Data Set (Glass) 

This is a classification dataset to identify the types of glass was motivated by 

criminological investigation. It suggests that, if it correctly identified, at the scene of 

the crime, the glass left can be used as evidence. The data set contains 10 attributes 

including Id number. In the classification glasses are distributed 7 different classes 

[198]. 

 

9. Heberman’s Survival Data Set (Heberman) 

The survival of patients who had undergone surgery for breast cancer is interpreted 

by this data set. The survey was conducted in 306 patients of the University of 

Chicago‘s billing hospital in between 1958 and 1970. Two survival classes were 

defined. 1) The patient survived 5 years or longer. 2) The patient died within 5 

years. It was reported that 225 patients belonged to the first class 81 in the second 

class [199]. 

 

10. Iris Plant Data Set (Iris) 

The Iris plant data sets [200], [201] classify 150 iris flowers on the basis of  four of 

their independent features namely sepal length, sepal width, petal length and petal 

width. The output was desired to one the 3 classes Setosa, Versicolour or Virginica. 

Each class contains 50 instances.   
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11. User Knowledge Modeling Data Set (Knowledge) 

The dataset is about the users' learning activities and knowledge levels on subjects 

of DC Electrical Machines. Information of 403 users with 5 attributes including the 

study time and exam performance considered for analysis. According to the 

information, uses knowledge was classified into four classes, very low, low, middle 

and high [176].  

 

12. MONK’s Problems Data Set (Monks) 

The Monk‘s problem which was generated by Sebastian Thrun [202],  contains a 

discrete data set which was created to classify the appearance of a robot. The 

appearance of each robot was described by 6 attributes, namely robot‘s head shape, 

body shape, is smiling (yes/no), holding item (sward/balloon/flag), Jacket colour 

and is a wearing a tie (yes/no). By analyzing these data it decides whether or not the 

given robot belongs to a one of the two classes.  

 

Three different data sets from the same domain, but with different features were 

created. For example; in the Monk‘s 1 data set, head and body shapes are equal or 

jacket colour is red. In the third data set jacket colour is green and in addition, it was 

added 5% classification noise [203].  

 

13. Seeds Data Set (Seeds) 

Seven geometric parameters of the kernel of three different varieties of wheat; 

Kama, Rosa and Canadian were given in this data set. There are 70 elements in each 

category. The high-quality visualization of the internal kernel structure was detected 

using a soft X-ray technique [204]. 

 

14. Statlog (Heart) Data Set (Statlog) 

This dataset is a heart disease database similar to a database present in the UCI 

repository (Heart Disease databases) [205] but in a slightly different form. The main 



164 

objective of this data is to predict whether or the heart disease is present. 13 inputs 

including age, sex are there in this data set. Among 270 patients 150 show absence 

in heart disease while other 120 show present [206]. 

 

15. Thyroid disease data set  

There are several data sets to determine whether a patient referred to the clinic is 

hypothyroid. Patients are classified in to three classes: normal (not hypothyroid), 

hyper function and subnormal functioning. In this test we chose the data set includes 

215 instances with 5 attributes.  

 

16. Breast Tissue (Tissue) 

The outcome of the application of electrical impedance spectroscopy in 

classification of breast tissue to detect cancer was described in the data set. 10 

features were measured in 106 instances and classified them to 6 classes [207], 

[208].  

 

17. Yeast Data Set (Yeast) 

The main objective of the data is to use 8 attributes to predict the 

localizations (called cellular components) of proteins in a yeast's cell where each 

protein must be classified into one of nine different cellular components. The output 

is given as non-numeric variable and converted them to a numeric. Altogether there 

are 1484 instances [209].  
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Appendix B 

 

DETERMINING THE NUMBER OF HIDDEN LAYERS  

 

The illustration of determining peak value of each network is described here. The 

table followed by the each figure verified the results.  

 

B.1 Banknote Data Set  

The input network of Banknote data set contains 12 hidden layers and 1014 hidden 

neurons. Neurons are divided in ascending order as shown in the Table B. 1. The 

initial network showed 100% accuracy. The single hidden layer network with 13 

hidden neurons gives 0.0% performance. Hence, the peak search algorithm applied 

and process ended with 2 hidden layer network as shown in the Figure B. 1. The 

experimental results are shown in the Table B. 1. which agrees with the results 

obtained by the PSA. 

 

 

 

Figure B. 1: Illustration of Banknote problem 
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Table B. 1: Generalization of Banknote Problem 

 

 

 

 

 

 

 

 

 

B.2 Cancer Data Sets 

Four different datasets were designed from Cancer data set which was described in 

the section 6.3.1. The Figure 6.8 illustrates the procedure of determining the number 

of layers in the Cancer I problem. Cancer II and III problems also have the same 

pattern with lesser generalization. All these sets start with 20 hidden layers and 

achieve their best performance at 4 hidden layers (Table B.2). The Cancer IV, 

which has only 20 sets in the training set always shows poor generalization 

comparatively other 3 sets. Figure B. 2 shows how it achieves the number of hidden 

layers in the Cancer IV problem. The Table B.3 verifies the results  

 

Table B. 2: Generalization of Cancer I-III problems 

 

Data Set 

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 12 

Generalization 0.0 100 100 100 100 100 100 100 100 100 100 

No. of hidden 

neurons 13 26 39 52 65 78 91 104 117 130 152 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 12 20 

Cancer I 525 97.7 97.7 98.9 99.4 99.4 96.0 94.3 95.4 62.6 62.6 62.6 62.6 

Cancer II 350 97.1 97.4 97.7 98.6 97.7 97.7 65.6 65.6 65.6 65.6 65.6 65.6 

Cancer III 175 94.7 94.7 94.7 95.0 94.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 
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Figure B. 2: Illustration of Cancer IV problem 

 

 

 

 

 

 

Table B. 3: Generalization of Cancer IV problem 

 

 

 

 

 

 

 

 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 12 20 

Cancer IV 20 63.5 66.7 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 
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B.2 Card Data Sets  

Each of the card problem has 51 attributes. Relative to the Cancer problems, they 

show poor generalization. The maximum generalization (88.1%) obtained for Card I 

problem with 6 hidden layers. However, like Cancer IV, Card IV which is having 

only one hidden neuron in each hidden layer show poor performance as the they do 

not have sufficient neurons to learn data. The following Figure B. 3 illustrate the 

method of obtaining the most suitable number of hidden layers in Card I problem. 

The performance of Card II is lesser than Card I, but it also has the same pattern ( 

Table B. 4) 

 

 

 

Figure B. 3: Illustration of Card I problem 

 

Table B. 4: Generalization of Card I – II problem 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Card I 518 81.4 81.4 84.9 86.6 86.6 88.1 53.4 53.4 53.4 53.4 53.4 53.4 

Card II 345 75.1 76.5 84.6 84.6 85.8 87.2 55.1 55.1 55.1 55.1 55.1 55.1 
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The illustration of achieving number of hidden layers of the most appropriate 

architecture of Card III problem is described in the below Figure B. 4. This process 

also starts with 12 hidden layer network trained by the backpropagation algorithm. 

Initially, network shows 54.8% generalization. The network achieves its best 

performance with 5 hidden layers and generalization 84.8%. The Table B. 5  

confirms this result.  

 

 

 

 

Figure B. 4: Illustration of Card III problem 

 

 

 

 

 

 

Table B. 5: Generalization of Card III problem 

 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Card III 172 68.7 75.7 79.1 84.4 84.8 54.8 55.1 54.8 54.8 54.8 54.8 54.8 
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Similar to the Cancer IV, Card IV also show poor performance. The highest 

generalization (65.7%) gives the 3 layer network (Figure B. 5, Table B. 6).  

 

 
Figure B. 5: Illustration of Card IV problem 

 

 

 

 

 

Table B. 6: Generalization of Card IV problem 

 

 

 

 

 

 

 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Card IV 20 59.4 62.2 65.7 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 



171 

B.4 Climate Data Set 

The initial network architecture of this set contained 10 hidden layers and 400 

hidden neurons which are equally distributed among the hidden layers. The 

generalization of the input network was 92.6%.  The single hidden layer network 

showed 95.6% accuracy. At the it was reduced to 2 hidden layer with generalization 

97.8%. The process of obtaining optimal architecture is shown in the Figure B. 6. 

 

 

Figure B. 6: Illustration of Climate problem 

 

The generalization of all the networks with hidden layers 1-10 were measured and 

the results are given in the table. These results verifies the above peak value.  

 

Table B. 7: Generalization of Climate problem 

 

Data Set   

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 

Climate 400 95.6 97.7 97.0 97.0 97.0 92.6 92.6 92.6 92.6 92.6 
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B.5  Flare Data Sets 

The procedure of obtaining Flare I is described in the section 6.5.2. Unlike Cancer 

and Card problems, Flare set show its highest performance when there are 50% 

neurons in the training set.  However, Flare I, II and III show there best performance 

at 7 hidden layer ANN architecture while highest performance of Flare IV gives it at 

6 hidden layers. Process of Flare data sets start with 12 hidden layer networks and 

they show that             . Hence, the interval [1,6) remove and continue the 

procedure. However, from 7 layers all the networks give same performance. 

Therefore, it needs to compute generalization of all the networks which are having 

hidden layers 7 – 12. The Figure 6.9, and 

Figure B. 7 illustrate the achieving of hidden layers of Flare I and II. 

 

 

The data of Table B. 8 depicts that Flare III and IV also have the same pattern.  
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Figure B. 7: Illustration of Flare II problem 

 

 

 

 

Table B. 8: Generalization of Flare I – IV problems 

Data Set   
No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Flare I 800 71.1 74.4 78.2 82.0 80.1 80.1 89.4 89.4 89.4 89.4 89.4 89.4 

Flare II 533 81.8 79.2 80.1 83.0 83.5 87.4 92.7 92.7 92.7 92.7 92.7 92.7 

Flare III 266 82.5 79.1 83.2 82.8 88.9 82.8 92.1 92.1 92.1 92.1 92.1 92.1 

Flare IV 50 68.4 83.1 80.2 81.6 80.7 91.1 91.1 91.1 91.1 91.1 91.1 91.1 

 

 

B.6  Monk’s Problems 

In the Monk‘s problem there are 3 different data sets Monk‘s 1, Monk‘s 2 and 

Monk‘s 3 which have described in the Appendix 1. The two sets Monk‘s 1 and 

Monk‘s 3 perform in a similar pattern.  The initial networks of both of them show 

100% generalization. The Monk‘s 1 problem started with 10 hidden layers while 

Monks‘s 3 started with 12 hidden layers. The total number hidden neurons in both 

the sets were 120 which were distributed equally among the hidden layers. At the 

end they could reduce to networks with 7 and 6 hidden layers respectively. The 
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process of determining the hidden layers of these two sets are same as that of the 

Flare I data set.  

 

However, Monk‘s 2 set shows different behavior.  It starts with the network with12 

hidden layer which contains 169 hidden neurons distributed arbitrary as shown in 

the Table B.. The generalization of the initial network was 67.1%. The data set 

shows its highest performance 86.8% with 4 hidden layers. The process of 

achieving this is shows in the Figure. The Table B.9 confirms this result   

 

 

Figure B. 8: Illustration of Monk‘s 2 problem 

 

Table B. 9: Generalization of Monk‘s 2 problems 

Data Set 

No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 11 12 

Generalization 75.2 81.2 81.2 86.8 85.4 85.9 84.3 67.1 67.1 67.1 67.1 67.1 

No. of hidden 

neurons 
22 20 18 18 17 15 15 14 13 10 5 2 
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B.7  Seeds Data Set 

The seeds problem started with 130 hidden neurons distributed with 10 hidden 

layers. The generalization of the initial network was 0.0 present. The network which 

shows the highest generalization has 7 hidden layers and 52 hidden neurons. The 

procedure of obtaining this is shown in the Figure B. 9. The values of the Table B. 

10 verifies the results. It shows that until 7 layers generalization increases and then 

from the 8 layer onwards it becomes zero.  

 

Figure B. 9: Illustration of Seeds problem 

 

 

 

Table B. 10: Generalization of Seeds problem 

Data Set   
No. of Hidden Layers  

1 2 3 4 5 6 7 8 9 10 

Seeds  130 77.4 79.2 81.1 79.2 83.0 89.2 90.6 0.0 0.0 0.0 
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B.8  Yeast Data Set 

The initial network of this data set contained 12 hidden layers and 1092 hidden 

neurons distributed in ascending order. However, at the first step of PSA it showed 

that the performance of the single hidden layer network was 100%. Hence, the 

process stopped at this stage. Therefore, the best architecture of this problem is 

network with 1 hidden layer and 14 hidden neurons [207] .  
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Appendix C 

 

SELECTED CODES  

 

C1. Introduction   

This appendix presents the implementation of system while highlighting the most 

important functions. The system is developed with MATLAB programming. The 

Excel files are used to store the initial data.  

 

C2. Import the data 

The raw data are stored in the excel file as shown in the Figure C. 1 below.  

 

 

Figure C. 1. Raw data in excel worksheet 

 

 

 

Firstly import the raw data to Matlab (Figure C. 2) and normalized them (Figure C. 

3). However, if the inputs are 0 and 1, it proceeds without normalization.  

 

 

Figure C. 2: Import raw data from excel 
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Figure C. 3: Normalization of inputs and outputs 

 

 

 

After deciding number of layers n , initial weights are randomly generated as 

depicted in the Figure C. 4 between layer    layer and layer      layer. where 

  1 2     

 

 

Figure C. 4: Generate random weights  

 

 

 

 

C3. Backpropagation Algorithm 

 

Now network has created and ready to train by the backpropagation algorithm. 

Thus, feed the inputs and obtain the output of each neuron using the codes given in 

the Figure C. 5 and compute the output error. Next compute the delta of each neuron 

and update the weights (Figure C. 6).  
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Figure C. 5: Calculating error of a training cycle  

 

 

 
Figure C. 6: Updating weights using delta values   
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C4. Removing Hidden Neurons  

While removing the neurons first it identifies the removable neurons by using the 

correlation coefficient of sum of delta value and output error. If there is no 

considerable correlation, it assumes correlation is 0. Then neurons which have 

infinitesimal delta values are identified as removable neurons which describes in the 

Figure C. 7. 

  

 

Figure C. 7: Identify removal neuron when delta is zero   

 

When there is considerable positive correlation (i.e. CORR_1=1) between 

summation of delta values and the output error, neurons with positive delta values 

which are very closed to zero are identified as removable neurons Figure C. 8. 

Similarly, when correlation is negative, neurons with negative delta values which 

are very close to zero are identified as removable neurons.  

 

 

Figure C. 8: Identify removal neuron when delta is a positive value   
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Then remove the neurons from each layer while merging the similar neurons as 

shown in the figures Figure C. 9 and Figure C. 10. 

 

Figure C. 9: Removing unimportant neurons  

 

 

 

Figure C. 10: Merging similar neurons 

 

 



182 

Appendix D 

 

PUBLICATIONS  

 

1. N. M. Wagarachchi and A. S. Karunananda, ―Mathematical Modelling of 

Hidden Layer Architecture in Artificial Neural Networks", 3
rd

 International 

Conference on Information Security and Artificial Intelligence (ISAI 2012) 

DOI: 10.7763/IPCSIT.2012.V56.28 IPCSIT vol. 56 IACSIT Press, Singapore, 

pp. 154-159, 2012   

 

2. N. M. Wagarachchi and A. S. Karunananda, ―Optimization of multi-layer 

artificial neural networks using delta values of hidden layers,‖ in 

Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), 

2013 IEEE Symposium on, 2013, pp. 80–86. 

 

 

3. N. M. Wagarachchi and A.S. Karunananda, ― A Novel Technique for 

Optimizing the Hidden Layer Architecture in Artificial Neural Networks‖, 

American International Journal of Research in Science, Technology 

Engineering and Mathematics, Issue 4, vol. 1,  pp 1-6, November 2013. 

 

4. N. M. Wagarachchi and A.S. Karunananda, ―A Theoretical Basis for the 

Optimization of Hidden Layer Architecture in Artificial Neural Networks, 

HETC symposium 2014, July 2014. (Abstract only)  

 

5. Mihirini Wagarachchi and Asoka Karunananda,‖ Towards a Theoretical Basis 

for Modelling Hidden Layer Architecture in Artificial Neural Networks‖, 2
nd

 

International Conference on Advances Computing, Electronics and 

Communication, Switzerland, 2014.  

 

6. N. M. Wagarachchi and A.S. Karunananda, ―Optimization of Artificial Neural 

Network Architecture Using Neuroplasticity,‖ Int. Journal of Artificial 

Intelligence. vol. 15, no. 1, pp. 112–125, 2017.  

 

7. Mihirini Wagarachchi and Asoka Karunanda ―Modelling  Modeling of 

Hidden layer Architecture in Multilayer Artificial Neural Networks‖  SLAAI  

International Conference on Artificial Intelligence (SLAAI – ICAI – 2018),  

University of Moratuwa , Sri Lanka.  

 

 

 

 

 

 


