
AUTOMATIC ANSWER GENERATION FOR
MATH WORD PROBLEMS

Kulakshi Fernando

178090C

Thesis/Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

May 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-

out acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowl-

edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters Dissertation under

my supervision.

Name of the Supervisor: Dr. Surangika Ranathunga

Signature of the Supervisor: Date:

Name of the Supervisor: Prof. Gihan Dias

Signature of the Supervisor: Date:

i

ACKNOWLEDGEMENTS

I am sincerely grateful for the advice and guidance of my supervisors, Dr. Surangika

Ranathunga and Prof. Gihan Dias. Without their support, mentoring, and en-

couragement this project would not have been completed. I would like to thank

them for taking time out of their busy schedule to be available anytime that was

needed with help and advice.

I would also like to thank my progress review committee, Dr. Dulani Mee-

deniya and Dr. Supunmali Ahangama. Their valuable insights and guidance

helped me to enhance the quality of my research work.

I would like to thank the entire staff of the Department of Computer Science

and Engineering, both academic and non-academic for all their help during the

course of this work and for providing me with any resources necessary to conduct

my research.

This work was funded by a Senate Research Committee (SRC) Grant of the

University of Moratuwa.

Finally, I would like to express my gratitude to my friends, specially Mr.

Mokanarangan Thayaparan and Ms. Ishadi Jayasinghe who were always sup-

porting me at my research work and to my family for their immense support.

ii

ABSTRACT

Automatic Answer Generation for Math Word Problems

A math word problem (MWP) is a mathematical problem expressed using

natural language. In this research, elementary level set-related word problems in

which information is given in set notation are considered. As per our knowledge,

this is the first research addressing set theory related word problems.

This research introduces an abstract representation to interpret mathematical

semantics of set expressions and relations between sets. Two methods to extract

given set related expressions were implemented: rule based method and a statisti-

cal method. Results show that statistical method is more robust to typing errors

and unexpected expression formats. A parser based on a context free grammar is

introduced to validate set related expressions and give feedback to the user when

there are incorrect expressions. Along with these functionalities, we present a

complete set problem solver system that understand and solve a given set word

problem.

In addition to the solver, we experiment in extracting mathematical expres-

sions from unstructured plain text using sequential classifiers. Several sequential

classification models including conditional random-fields (CRF) and Long-Short

Term Memory (LSTM) networks were compared with word and character level

features. The results show that using character level features significantly increase

the performance of mathematical expression extraction.

Keywords: Set theory. Answer generation. Math word problems.

iii

LIST OF FIGURES

Figure 3.1 Overview of the system 21

Figure 3.2 Venn diagram of set A, the set of all positive integers between 1

and 9 23

Figure 3.3 The Venn diagram denoting information in question Q1. Numbers

denote the cardinalities of sets and bordered labels denote the set

that represent by each region 25

Figure 3.4 The graphical representation of subset-superset relations between

all the possible sets in Q1. The binary representation of the sets

are written with set names. Edges of the graph point subsets to

supersets. 29

Figure 3.5 Extracting information from Q2 using rule based approach 31

Figure 3.6 Network architecture of the W-LSTM model 34

Figure 3.7 Network architecture of the W-Bi-LSTM model 34

Figure 3.8 Network architecture of the W-CH-Bi-LSTM model 36

Figure 3.9 Finding the universal set in Q2 39

Figure 4.1 CRF performance against cumulatively added feature sets from

the set A to set G listed in Table 3.4 49

Figure 4.2 Performance of RNN models with respect to number of epochs 50

iv

LIST OF TABLES

Table 3.1 Problem categories based on information part of the problem 24

Table 3.2 Binary representation of sets given in Q1 and cardinality informa-

tion about each set 26

Table 3.3 Regular expressions used to extract set information 30

Table 3.4 Features used for CRF divided into categories. The left most col-

umn contains a label for each of the set of features 35

Table 3.5 Examples for set expressions that can be validated by the CFG

parser 36

Table 3.6 Generated equations for sets in Q1 42

Table 4.1 Datasets used to evaluate solver system 46

Table 4.2 Statistics of problems in the dataset, DExpr 47

Table 4.3 Accuracy, Recall, Precision and F1-score of the best performance

of all models 50

Table 4.4 Performance of statistical and rule-based expression extractors 51

Table 4.5 Statistics of the data used to evaluate the parser 51

Table 4.6 Evaluation results of the parser 52

Table 4.7 Statistics of the data used to evaluate the solver 52

Table 4.8 Evaluation results of the solver 52

Table 4.9 Evaluation results of the complete system 53

v

LIST OF ABBREVIATIONS

MWP Math Word Problem

GCE General Certificate of Education

IGCSE International General Certificate of Secondary Education

GCSE General Certificate of Secondary Education

JCE Junior Certificate Examination

NCERT National Council of Educational Research and Training

NLP natural Language Processing

CRF Conditional Random Field

LSTM Long-Short Term Memory

Bi-LSTM Bi-directional Long-Short Term Memory

CFG Context Free Grammar

vi

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Ackowledgement ii

Abstract iii

List of Figures iv

List of Tables v

List of Abbreviations vi

Table of Contents vii

1 Introduction 1

1.1 Background 1

1.2 Research Problem 2

1.3 Research Objectives 3

1.4 Contributions 3

1.5 Scope and Limitations 4

1.6 Publications 4

1.7 Organization 4

2 Literature Survey 6

2.1 Math Word Problem Solving Systems 6

2.1.1 Rule-based approaches 7

2.1.2 Statistical approaches 8

2.1.3 Hybrid approaches 9

2.1.4 MWP domains addressed in previous research 15

2.1.5 Discussion on problem solving systems 15

2.2 Expression Extraction Methods 16

2.3 Information Extraction Using Sequential Classifiers 17

2.4 Summary 19

3 Methodology 20

3.1 System Overview 20

3.2 Set Problem Categorization 20

vii

3.2.1 Presentation formats of sets 20

3.2.2 Properties of sets 22

3.2.3 Problem categorization 23

3.3 Abstract Representation of Sets 23

3.3.1 Representing any number of Sets 26

3.3.2 Representing main sets 26

3.3.3 Representing derivable sets 27

3.3.4 Finding subsets and supersets 28

3.4 Expression Extraction 28

3.4.1 Rule based expression extraction 29

3.4.2 Limitations of regular expressions 30

3.4.3 Expression extraction using statistical approach 32

3.5 Expressions Parsing 33

3.6 Mapping to Data Representation 38

3.7 Question Validation 39

3.8 Answer Generation 41

3.8.1 Generating equations and calculating cardinalities 41

4 Evaluation 45

4.1 Data Sets 45

4.2 Experimental Setup 46

4.3 Evaluations 48

4.3.1 Evaluation of math expressions extraction based on sequen-

tial classifiers 48

4.3.2 Evaluation of set expressions extraction 49

4.3.3 Parsing sets expressions 51

4.3.4 Solving a set problem 52

4.3.5 End-to-end performance 52

5 Conclusion 54

5.1 Future Work 55

References 56

viii

Chapter 1

INTRODUCTION

A ‘math word problem’ (MWP) is a mathematical problem expressed using nat-

ural language. This thesis introduces an automatic solver for MWPs related to

elementary set theory. The solver understands and solves a subset of problems

in elementary set theory questions in ordinary level (O/L) examination papers.

This chapter introduces the background of the research problem, describes the

motivation behind the research, presents research objectives, contributions and

research publications.

1.1 Background

Mathematics is a fundamental subject that students must pass in almost every

O/L examination around the world. Hence there are many online educational

platforms for students to learning mathematics. MWPs given in elementary and

ordinary level examinations are presented in human readable format using natural

languages. They may also include descriptions and explained scenarios relevant

to the problem.

E-learning systems support student-centered learning by helping students to

learn and practice mathematical knowledge they gain in the classroom. In e-

learning systems, it is important to give assignments to students, assess students’

answers and give feedback on students’ performance. In the process of fully au-

tomating such a system, understanding problems and generating answers for the

problems given in assignments are quite useful. Given this capability, teachers

can simply submit questions and let the system to validate questions, find an-

swers, create marking schemes and assess students’ answers and give feedback on

them.

There is much research conducted to automatically solve MWPs in several

mathematical domains since 1964. Simple MWPs may be easily comprehensible

1

even to children in elementary schools. However, given the complexities of natural

language and the requirement of common sense, understanding MWPs is quite a

challenge to computers. For example, consider the following problem;
Select equivalent sets from the following.

𝐴 = {Letters of the word “LONDON"},

𝐵 = {27, 72},

𝐶 = {Positive odd numbers less than 10},

𝐷 = {Multiples of 2 less than 10}”.

In order to solve this problem, a machine should understand semantics of the

notation and common sense such as a written word is consists of letters. In ad-

dition, it needs mathematical knowledge such as how two sets become equivalent

and what odd numbers are. In other types of questions it is also critical to filter

out irrelevant information, specially when a scenario is described. Given all these

requirements, even though answer generation for MWPs has been experimented

through several decades, still there is not any system that performs adequately

for all types of MWPs written in English language.

Research conducted to answer MWPs are mostly focused in a single mathe-

matical domain in order to reduce the complexity in understanding MWPs. On

the other hand, characteristics of MWPs are specific for different domains of

mathematics. Most of this research covers elementary level arithmetic and al-

gebraic problems[1, 2, 3, 4, 5]. Also, there is a few systems that address other

domains such as kinetics, geometry and probability questions[6, 7].

1.2 Research Problem

Basic set theory is an essential mathematical domain in mathematical syllabi

around the world including GCE O/L mathematics syllabus in Sri Lanka. Local

GCE O/L mathematics syllabus1 includes the knowledge of simple set manip-

ulations that can be used in day today life. The syllabus includes formats of
1http://nie.lk/pdffiles/tg/e10tim109.pdf and http://nie.lk/pdffiles/tg/

e11tim168.pdf

2

presenting a set, basic set operations and solving simple problems using set the-

ory and Venn diagrams. Usually, the GCE O/L maths paper includes 3-5 num-

ber of questions from set theory in each year including multiple-choice-questions

(MCQs) and a structured question. As well as the local O/L examination, gen-

eral and junior level certified international math examinations including GCE,

IGCSE, GCSE, and JCE and government examinations of other countries such

as NCERT contains set theory and Venn diagram related questions in every year.

There are semi-automatic platforms available that support different aspects

in learning set theory. For example, Wijesinghe et al. [8, 9] present systems

that represent Venn diagrams and a system that assesses answers provided for

Venn diagram related questions. However, the second system expects teachers to

provide marking schemes.

So far, we are not aware of any system that automatically generates answers

for set theory related MWPs. This is a gap that should be fulfilled in order

to make a step forward towards an e-learning platform that can automatically

generate answers and assess students’ answers for a given sets related questions.

1.3 Research Objectives

Objectives of this research are as follows:

1. Introduce an abstract representation that captures semantics of sets problems.

2. Implement a solver that can solve O/L sets related MWPs.

3. Provide a baseline to evaluate systems that solve sets related MWPs in future.

1.4 Contributions

Following contributions are made in this thesis;

∙ Introduced a categorisation of set related questions.

∙ A dataset of sets related word problems.

∙ A dataset of math problems, which is annotated for math expressions belonging

to several mathematical domains.

3

∙ An abstract data representation to store set related information in a problem,

based on Knuth’s representation of 16 logical connectives [10].

∙ A context-free grammar (CFG) parser that can identify errors in an mathe-

matical expression written in set notation.

∙ A solver for set type MWPs using above elements.

∙ Comparison of sequential classifiers for the task of math expression extraction

from unstructured plain text

1.5 Scope and Limitations

1. This research focuses only on textual set related problems where related infor-

mation to solve the problem is presented in set notation.

2. The information types that the implemented system can understand is limited

to set names, subset and superset relations, set cardinality and enumerated

elements of sets. The system does not currently recognize other information

provided using set notation such as set builder form of a set.

3. The system is implemented to recognize symbols in Unicode standard.

1.6 Publications

∙ "Answer Generation for Set Type Math Word Problems", in 2018 International

Conference on Advances in ICT for Emerging Regions (ICTer) at University of

Colombo School of Computing, Sri Lanka.

∙ "Mathematical Expression Extraction from Unstructured Plain Text", in 24th

International Conference on Applications of Natural Language to Information

Systems.

1.7 Organization

This thesis is organized as follows. Chapter 2 provides the background and related

work for MWP solvers and math expression extraction. The methodology used

to implement the solver and its components are described in Chapter 3. The

4

implementation details, evaluation details, and results of each element of the

solver is mentioned in chapter 4 along with result discussions. Finally, chapter 5

provides the conclusion of the thesis and future work possible in the research.

5

Chapter 2

LITERATURE SURVEY

This chapter describes the literature related to understanding and answering

MWPs. The chapter is divided into three sections.

Section 2.1 describes previous approaches taken in solving MWPs. Recent

MWP systems are reviewed based on the technical approach used and the data

representation adapted to interpret the problem.

Correctly identifying related text from the given problem is one of the key

factors that contributes to the accuracy of an MWP solver. Identifying given

math expressions from ordinary text is challenging when the text is unstructured.

Section 2.2 presents few previous work related to math expression extraction from

unstructured plain text.

Statistical math expression extraction can be mapped into a problem of se-

quential text classification. Section 2.3 describes the contribution in sequential

classifiers.

2.1 Math Word Problem Solving Systems

A system for answering MWPs has first implemented on 1964 which named

‘STUDENT’[11], for simple arithmetic and algebraic problems. Mukherjee and

Garain [12] provide a descriptive review on math problem answering systems

introduced in the last few decades starting from ‘STUDENT’[11]. Systems ex-

plained in this survey use rule based inference methods to understand and solve

problems. There are many domains of mathematics covered in these systems,

including arithmetic, algebra, geometry, probability, kinetics, mechanics, metrics

and physics. However, Mukherjee and Garain [12] show that most of these sys-

tems are not evaluated empirically nor test data is provided to compare with

other systems. Mandal and Naskar [13] provide a survey on recent arithmetic

word problem solvers. They show the advancement in arithmetic problem solvers

6

in last three decades. Technologies used in solvers have gradually moved into

statistical and hybrid methods from complete rule based methods.

The general steps used in any solvers is to first identify relevant information

from text, then map them into a machine readable interpretation and finally

solve the problem by generating proper equations based on that interpretation.

Equations are then solved using computer algebraic systems(CAS). The majority

of the work of automatically solving a MWP is on extracting relevant informa-

tion accurately, and on interpreting information in a way that helps to generate

equations. MWP solving systems can be categorized according to the technolo-

gies and information interpretation structures used in the system. A review of

recent attempts taken in MWP solvers based on their technologies and the data

representation structures is presented in this section.

2.1.1 Rule-based approaches

Rule-based approaches mainly try to understand the semantics of the problem by

generating a corresponding meaning representation, which is then used to gen-

erate equations. When semantic representations are used for problem solving,

the text is parsed using a grammar into a pre-defined structure that models the

semantics of the problem.There have been systems that use combinatory categor-

ical grammar (CCG)[14] to parse text of MWPs. CCG is based on combinatory

logic and supports understanding text both syntactically and semantically.

Matsuzaki et al. [15, 16] use CCG to parse pre university MWP in Japanese

language. Then via a discourse level semantic decomposition they resolve co-

references of the problem text. Problem text is then converted into a formula

in Zermelo–Fraenkel set theory. They rewrite these formulae preserving their

meaning into a more machine understandable format. Finally, the answer is

obtained using CAS (Computer Algebra System) and ATP (Automated Theorem

Proving) systems. Even though the accuracy is less, they show that the system

competes well with average human performance on pre-university mathematics

examinations.

7

Semantic representations used in systems vary with domain specific properties

of mathematical problems. Shi et al. [17], Seo et al. [6], and Dries et al. [7] intro-

duce meaning representation languages for numerical, geometry and probability

word problems, respectively. Works of Seo et al. [6] and Dries et al. [7] are de-

scribed under hybrid approaches in subsection 2.1.3. Shi et al. [17] present DOL,

which stands for ‘Dolphin Language’ in their solver (named ‘SigmaDolphin’) for

number word problems. A given word problem is mapped into a parse tree in

DOL using 9600 CFG rules generated in a semi automatic way. The node types

of a DOL tree are, constants, classes and functions. constants are numbers and

nouns in the problem (e.g., 3.56, ‘New York’) and classes refer to a predefined

data types for entities in the problem. For example, the class of the entity ‘New

York’ is ‘location.city ’ and class of ‘3.56’ is math.number. Functions are used to

form larger language units and comprise with a set of built in functions such as

‘nf.math.sum’. Given a DOL tree, equations are generated in a reasoning mod-

ule. They show that SigmaDolphin performs significantly better than the work

of Kushman et al. [2] which was the state-of-the-art work at that time.

2.1.2 Statistical approaches

In contrast to rule-based approaches, statistical methods focus on generating

equations to solve a given problem, based on statistics of the problems seen in

the training phase.

The work of Roy [18] uses a cascade of classifiers for each step of their system.

They address arithmetic word problems in this research. Their system originally

focuses on extracting and understanding quantity information in a text, which is

called ‘quantity entailment’. Quantity information can be presented in various

forms. Just a cardinal number can be written using numbers or letters. In

addition ordinal numbers, dates, a time duration, rates, currency, etc. are related

to quantity information in a text, which may need to consider for calculations.

In addition the way quantities are represented can be more complex sometimes.

For example “A bomb in a Hebrew University cafeteria killed five Americans and

8

four Israelis" can also be written as “bombing at Hebrew University in Jerusalem

killed nine people, including five Americans".

Roy [18] first finds segments of texts describing quantities, using a bank of clas-

sifiers that use features including word class, POS tags and character information.

Then units (entities) are extracted using co-reference resolution and semantic role

labeling. Finally, quantities are represented in a tuple containing values, units

and changes (such as increasing and decreasing) of a quantity. As an application

of quantity entailment, they have implemented an arithmetic MWP solver. Here

they use additional classifiers to find related quantity pairs, arithmetic operations

that should be applied to a pair of quantity, and order of operations that should

be applied to a set of quantities. Even though they claimed to have high accuracy

rates (over 86%), an empirical evaluation has not been carried out to compare

results with other state-of-the-art systems.

2.1.3 Hybrid approaches

Solving MWPs include handling a comparatively restricted language domain and

problem traits specific to mathematical domains. Even though rule based ap-

proaches seem more suitable to the problem they are hard to scale and require

lot of hard work to tackle all the complexities of the problems. In contrast, sta-

tistical approaches are more scalable but require more data and computational

power. In the problem of answer generating to MWPs, hybrid approaches that

combine both rule based and statistical based approaches are widely used.

Using equation templates : In template matching approaches, the text

is converted directly into the necessary system of equations by filling slots of

predefined equation templates. The matching template for a given problem is

selected using a trained statistical model. Kushman et al. [2] first introduced

template matching approach for automatically solving math word problems. They

addressed algebraic word problems and their work is a well-recognized research

in this field. They find suitable template of system of equations for the problem,

aligned with numbers and nouns given in the text. The combination of a given

9

word problem, matching system of equation templates, aligned equations with

nouns and numbers and the answer of the problem is named as a derivation.

The best derivation for a given problem is matched using a log-linear model and

beam-search. Much research [19, 20, 21, 5] was then conducted to enhance the

performance of this method on solving algebraic word problems. Zhou et al. [19]

update the features and the search algorithms used in the work of Kushman et

al. [2]. Also, instead of considering both nouns and numbers in the problem text,

they only consider numbers to align with equation templates which drastically

reduce the space and time complexity of the process. With respect to Kushman

et al. [2] they achieve 10% more accuracy on the same dataset.

Both the work of Kushman et al. [2] and Zhou et al. [19] is empirically

evaluated by Huang et al. [20] on a large-scale dataset called Dolphin18K that

comprises 18K MWPs. They show that these systems perform poorly in such a

large dataset in contrast to less diverse small-scale datasets used in the original

research. They also confirm that using more training data does not provide

much of a benefit to improve the performance of given two statistical approaches.

Huang et al. [20] also introduce an algebraic word problems solver named SIM

which performed best in their experiment for the large scale dataset. SIM is

also a template based approach, but the approach for aligning templates with

data employs a similarity based method. They calculate the weighted Jaccard

similarity between vectors of word TF-IDF scores of a given problem and every

problem in the training set. The template corresponding to the most similar

problem is selected to solve the given problem.

Taking a step ahead on the work of Zhou et al. [19], Upadhyay and Chang

[21] found that accuracy of the answer can be increased by evaluating all candi-

date derivations and selecting the best one, instead of evaluating only the final

answer. The problem of evaluating only the answer is that the correct answer can

be generated via incorrect derivations. Huang et al. [5] also use the strategy of

finding several candidate templates. In their approach, instead of only extract-

ing numbers from the text, they find for textual expressions that can be found

in algebraic word problems and they map these phrases into math expressions.

10

For example, textual expressions such as ‘[NUM]% discount ’ and ‘[NUM]% off ’

should be mapped to the math expression ‘(1−𝑛)’ when writing equations. They

show that their system achieves 10% higher accuracy with respect to state-of-the-

art systems over ‘Dolphin18K’[20] dataset.

Using expression trees : Another approach used to representing infor-

mation of arithmetic word problems is using expression trees, which is a tree

representation of the required mathematical equation, where nodes of the tree

are operators and leaves are operands. Koncel-Kedziorski et al. [22] introduce

expression trees to solve multi-line algebra word problems in their solver names

ALGES. They first identify ‘Qsets’ of the problem which is a tuple of the entity,

and information about the entity such as adjectives, verbs and location informa-

tion. Candidate expression trees are generated using log-linear programming and

these tree structures are scored based on their likelihood of capturing mathemat-

ical computation expressed in the word problem. This likelihood score is found

by learning discriminative models; a local model trained to map spans of text to

math operations and global model trained for the coherence of the entire equation

with respect to global problem text structure.

Roy and Roth [23] ground a given problem containing all arithmetic operators

(multiplication, division, addition and subtraction) which may need to be solved

using multiple steps into an expression tree. They first extract candidate operands

from the text and then from all candidate operands they find relevant set of

operands using classifiers. The least common operators between pairs of operands

are predicted using a multi-class SVM classifier and the best operator is selected

using a join inference procedure. Roy and Roth [4] introduce ILLINOIS Math

Solver as the implementation of the described concept.

‘Unit dependency graphs (UDG)’ are another tree representation of problems

introduced in Roy and Roth [24]. They use UDG of a problem when creating the

expression tree to make the expression tree more accurate and consistent with

the text. A UDG maps relationships between quantities and their units. An

example of such a relationship is application of rates, as in, “40 miles per hour ”.

One of the vertices of a unit dependency graph represents the question asked and

11

other vertices represent quantities in the question whereas the links connecting

vertices are labeled with the relationship between two quantities. Vertices and

edges of the graph are found using a binary classifier and a multi-class classifier

respectively. It achieves accuracy over 80% on available datasets.

Using problem classification : In this approach problems are first clas-

sified based on procedures that can be used to solve the given problem. Then

equations are generated by matching numbers and nouns in the problem into

predefined equation templates according to the problem category. A common

classification used for arithmetic categorizing [3, 25] is dividing problems into

‘change’ (or ‘join and separate’), ‘part-whole’ and ‘compare’ classes. For exam-

ple, the arithmetic problem ‘There are 7 dogs to walk on Henry’s street. Henry

walked 4 of them. How many dogs does Henry have left to walk? ’ belongs to the

‘Change’ category. Problems in ‘Change’ category represents a quantity change

of some entity; the changing entity in the above problem is ‘dogs ’. ‘Change’ class

is mapped with the equation format,

𝑉 𝑎𝑙𝑠𝑡𝑎𝑟𝑡 +
∑︁

𝑔𝜖𝑔𝑎𝑖𝑛𝑠

𝑉 𝑎𝑙𝑔 =
∑︁
𝑙𝜖𝑙𝑜𝑠𝑒𝑠

𝑉 𝑎𝑙𝑙 + 𝑉 𝑎𝑙𝑒𝑛𝑑 (2.1)

Mitra and Baral [25] use further sub categorization step for arithmetic prob-

lems according to the placement of unknown variable of the equation. They use

a probabilistic model with a set of features related to each category. They use

ConceptNet1 to compare the type of entities and verbs associated with quanti-

ties. They claim an accuracy over 86%. Among the challenges to these systems, a

common one is failing to handle complex questions. In such questions properties

of several categories may applicable. For example, ‘There are 48 erasers in the

drawer and 30 erasers on the desk. Alyssa placed 39 erasers and 45 rulers on the

desk . How many erasers are now there in total ? ’ combines both ‘change’ and

‘part-whole’ properties. Also, these systems are not capable of handling questions

that require common sense information such as a week has seven days.

The work of Cetintas et al. [26] is worth mentioning here. They experiment in
1http://conceptnet.io/

12

categorizing arithmetic word problems into two categories, ‘multiplicative com-

pare’ and ‘equal group’ using an SVM classifier. They conduct the classification

with different settings of data such as avoiding stop word removal, stemming and

using POS tagging. They identify that stemming and stop word removal reduce

the accuracy of text classification. Also, they show identifying discriminative and

non-discriminative POS tags related to the classification in the problem text is

important to enhance the accuracy of the classification.

State/Frame identification and verb categorization : An arithmetic

word problem usually describes a scenario in real world. This method identifies

world states of the problem and update quantities in these states according to

verbs that govern entities in the states. There are some research [22, 1, 7, 27]

that identify objects from the problem that represent an entity along with related

information about entities. For example, Koncel-Kedziorski et al. [22] identify

a tuple of entity, and other information including quantity, adjectives, location,

verbs, syntactic and positional information, and container of the entity. They de-

fine this combination as a ‘Qset’. Dries et al. [7] identify entities, their properties,

containers of entities, and actions related to an entity.

Hosseini et al. [1] introduced states that may include several objects. They

use verb categorization to track the state changes in arithmetic word problems

in their solver named ‘ARIS’. They introduce 7 categories of verbs. An SVM

classifier is used for the classification. Mishra et al. [27] recently introduced

frames that consist of entity-objects that they name as slots. They use two kinds

of frames, state frames and action frames. Action frames are what act upon state

frames that cause a state change. The creation of frames is triggered by verbs in

the sentence and the frame identification is done using SVM and random forest

models. They try to answer any type of question asked about the scenario given

in the problem such as ‘who’ and ‘what’ problems. They also present the answer

with step by step illustrations of the solution to help students. However, the

performance in answering in this system is much lower compared to the work of

Hosseini et al. [1].

The main limitation of using verbs to understand a problem is that it fails

13

when common sense is required to match two verbs. For instance consider the

problem,‘Last week Tom had $74. He washed cars over the weekend and now has

$86. How much money did he make washing cars? ’. The relationship between

washing cars and making money needs common sense knowledge.

Using meaning tags : In this approach the selected text is tagged using

role-tags such as ‘verb’ and ‘subject’, in order to understand the semantics of the

problem. Liang et al. [28] solves arithmetic word problems that are solvable us-

ing one operator. Their approach is a tag-based statistical method. The system

first uses a linguistic analyzer to obtain corresponding linguistic representations

of the problem such as dependency trees and co-reference chains. Solution type

classifier, which is an SVM with linear kernel functions, classifies problems ac-

cording to their solution types such as ‘addition’, ‘subtraction’, ‘multiplication’,

‘time variant quantities’ and etc. They use verb category, key-word indicators

and aggregation pattern indicator related features to classify problems into so-

lution types. According to the solution type, logical form converter converts

the problem into a logical representation using first order logic based on a rule

based approach. Afterwards, based on the logical form, equations are inferred

and answers are generated by the inference engine. The system has achieved high

accuracy over 90% which is higher than state-of-the-art systems at that time.

Using declarative languages : Some research ([6, 17, 7]) introduces

new declarative languages to represent semantics of the problem according to

the domain of mathematics. Seo et al. [6] introduced a fully automated sys-

tem named GEoS, for solving multiple answer questions in SAT level geometric

problems. They statistically parse both text and images into an expression in

a newly introduced declarative language, Ω. Ω is a subset of typed first order

logic that includes ‘constants’ (e.g., 0, 5), ‘variables’ (e.g., ‘AB’ in ‘line AB’),

‘predicates’ (e.g., Equals, IsDiameter) and ‘functions’ (e.g., LengthOf, SumOf,

AreaOf). Types of these components are either numeric or Boolean.

Dries et al. [7] recently addressed answering probability related questions

using a similar approach as Seo et al. [6]. They introduced a dataset of 2160

probability word problems. Given a problem, they identify entities, containers

14

and attributes as in Hosseini et al. [1] from the problem text using a set of rules.

Their language includes a set of containers (multisets), a set of attributes and their

associated values, a set of size containers, a set of mutiset relations, and a set of

observations and a set of queries. Given the probability problem defined using

the aforementioned language, the problem is solved using a Bayesian network by

calculating conditional probabilities.

2.1.4 MWP domains addressed in previous research

Clearly, most of the MWP solving research is conducted to solve arithmetic and

algebraic word problems. In the survey of Mukherjee and Garain [12], they

summarize research conducted in other domains, including distance and volume

rate (calculus) problems [29], matrices [30], mechanics [31, 32], physics [33, 34],

and mathematical proofs [35].

Investment, distance, projectiles and percents related problems are addressed

by Morton and Qu [36] recently. Matsuzaki et al. [15] address any MWP in pre-

university mathematics examinations including mathematical proofs. In addition,

recent research are available that solve number word problems [17], geometry

problems [6], and probability word problems [7].

Other essential mathematical domains such as statistics and graphs, set and

Venn diagrams, trigonometry, surface area and volume of solids, inequalities, and

geometric constructions are not yet addressed by any previous research so far, as

per our knowledge.

2.1.5 Discussion on problem solving systems

Recent approaches for answer generating for MWPs widely adapt hybrid meth-

ods. That eliminates the overhead of preparing data in statistical methods and

utilize more domain level properties of MWPs. Among hybrid approaches, the

template matching method is a widely scalable and a remarkable method which

attracted lot of attention recently. The highest benefit of this method is that

it can be used in any math problem which can be solved using a system of lin-

15

ear equations. However, the performance of this method heavily depend upon

the training dataset and the systems may fail to solve unseen types of problems.

Also, the challenge of correctly filtering relevant and irrelevant information and

correct alignment with slots in the template is still there which is later improved

using methods including template ranking and deep learning. The other well

performing method is using a semantic based approach where text is parsed into

a representation using a language that is build to understand problems in the

particular domain. Even though this method brings better performance, this is

less scalable across different domains.

Solving problems in arithmetic and algebra is more researched than other

domains like geometry and probability. Therefore, there are standard datasets

and baseline methods available for these mathematical domains. For example,

Koncel-Kedziorski et al. [37] provide an online repository for math word prob-

lems, MAWPS with a unified test-bed to evaluate new algorithms. There repos-

itory includes arithmetic and algebraic problem datasets provided by research

explained above. Cetintas et al. [38] research on identifying relevant and irrel-

evant information given in arithmetic problems by considering joint probability

between words in question and information parts of the problem. In contrast,

other mathematical domains do not have such facilities. Also, some domains like

sets related problems are not have been addressed so far, as per our knowledge.

2.2 Expression Extraction Methods

Most of the times the math expressions in the World Wide Web are presented in

the form of images, where they are written using tools like latex or MathML that

converts the structured math expressions into pictorial expressions. Extracting

textual math expressions written in unstructured format needs a mechanism to

separately identified from other ordinary text.

Most of the MWP solving systems in arithmetic and algebraic domains do

not require a special attention for extracting and understanding math expressions,

rather they focus on selecting relevant information which is given as constants and

16

nouns. Other domains such as Geometry requires understanding given formulae

and other math expressions. Seo et al. [6] use regular expressions to extract

numbers and variables. At implementation level, they use a simple equation

parser that parse arithmetic equations into prefix notation. Matsuzaki et al.

[15] address pre-university math problems that contain complex mathematical

expressions, but they expect these expressions to be annotated in the input using

MathML.

The work of Tian et al. [39] is the only research that focuses on extracting

math expressions in unstructured plain text according to our knowledge. They

use a Hidden Markov Model (HMM) with 8 hidden states which are parts of math

expressions such as variables, constants, monocular and binocular operations, left

and right delimitation, etc. These states correspond to observable mathematical

symbols in the text accordingly. The model is trained with a dataset that consists

of 13,423 expressions and achieved over 89% accuracy and 77% recall. However,

the dataset is not publicly available in order to be used as a baseline.

2.3 Information Extraction Using Sequential Classifiers

In NLP, automatically extracting structured information from semi-structured or

unstructured text is known as information extraction. Extracting unstructured

textual mathematical expressions is a special kind of information extraction which

needs to be handled specifically with respect to ordinary information extraction

methods. This can be considered as a sequential classification task for two classes

of text; ordinary text and math expressions related text. Sequential text classifiers

are trained by taking a sequence of labeled text, and learning correlations between

units of text to classify the text into predefined classes. Given an unlabeled

sequence of text, a sequential text classifier then predicts the classes of the units

of the text considered in the application.

Early approaches in text classification used rule-based methods such as domain-

specific gazetteers[40], rule inference and dictionary based approaches. Then

unsupervised learning based methods[40] like clustering and feature based super-

17

vised learning methods were used. Feature based supervised learning approaches

include Hidden Markov Models (HMM) [41, 42], decision trees [43], Maximum En-

tropy Models [44], Support Vector Machines(SVM) [45] and Conditional Random

Fields (CRF) [46] which were dominating methods in sequential text classifica-

tion in past decades. With respect to other models, CRFs can take both past

and future text into account when learning the model. The work of Finkel et

al. [47] was a milestone model that uses CRF which performed well on CoNLL

2003 dataset at that time. Nadeau and Sekine [48], Sharnagat [49], Yadav and

Bethard [50] provide detailed surveys on these approaches.

Deep learning technologies are the state-of-the-art procedure for sequential

classification nowadays[51]. With respect to previous methods, deep learning

methods support non-linear mapping between the input and output. Therefore,

it can learn complex features from data. It reduces the effort of feature engineering

that is required for other learning approaches. The input for a deep learning model

is usually word-level, character-level or hybrid vector representations of text,

known as embeddings, where dimensions of a vector represent latent features.

They capture both semantic and syntactic properties of text. But on the other

hand, deep learning methods require a lot of data to train the model. Convolution

neural networks (CNN) and recurrent neural networks (RNN) are the two main

types of deep learning models. Yin et al. [52] show that RNNs such as Long

Short Term Memory (LSTM) networks and gated recurrent units (GRU) performs

better and more robustly than CNNs for sequential classification tasks.

Combining both deep learning and traditional supervised learning methods

is proven to be beneficial in NER tagging. Huang et al. [53] experimented

with Long Short Term Memory (LSTM) networks combined with CRFs for NER.

LSTM networks reduce the vanishing gradient problem in standard RNNs and

perform well for long sequences of data. Bidirectional LSTM (Bi-LSTM) networks

increase the accuracy of sequence tagging by considering both past and future

inputs. Huang et al. [53] experiment with different combinations and show that

the model architecture which combines a Bidirectional-LSTM (Bi-LSTM) with a

CRF layer at the output performs best in their experiment. The work of Chiu and

18

Nichols [54] is another milestone in sequential text classification which combined

Bi-LSTM with CNN. Research including the work of Ling et al. [55] show that

using character level information with LSTM networks is effective in increasing

the performance of language modeling. Li et al. [51] provide a detailed survey

on modern deep learning strategies used for in sequential text classification. Now

the burden of feature engineering is minimized, they identify main challenges in

text classification to be annotating data and handling unseen data.

Mathematical expression extraction is a special task of sequential text classifi-

cation. OIn summary, deep learning methods are the state-of-the-art technology

used in sequential classification. Recent research use combined models[53] of

both deep learning and traditional supervised learning methods to enhance the

accuracy in sequential text classification.

2.4 Summary

When considering technologies used in MWP solvers, it is clear that hybrid ap-

proaches that employ both rule based and statistical methods are widely used.

Most of the MWP solvers in previous research solve arithmetic and algebraic

word problems. Therefore, resources like datasets and online testing platforms

that facilitate research for solving arithmetic and algebraic problems are available.

Many domains of essential mathematics involving set theory is not yet addressed

as per our knowledge.

Extracting math expressions in unstructured plain text is a special task in

information extraction that can be solved using sequential text classification. The

state-of-the-art procedure used in sequential text classification is deep learning

methods. Tian et al. [39] is the only research available for math expression

extraction from plain text, and they use an HMM based model in their research.

19

Chapter 3

METHODOLOGY

This chapter explains the methodology used in this research to solve a given

set related problem. Section 3.1 provides an overview of the system. Section 3.2

describes the categories of sets related problems. Section 3.3 presents the abstract

data representation used to capture the mathematical semantics of the problems.

Section 3.4 describes the approaches used to extract information from a given set

problem. Finally, section 3.8 describes the steps of generating the answer.

3.1 System Overview

Figure 3.1 depicts the overview of the set problem solving system. Given a prob-

lem, first expressions presented in set notation are extracted out. Then these

expressions are parsed to check syntactical errors. Next, expressions in set nota-

tion is mapped into a data representation which is capable to model the semantics

of set related information. After that, using this representation the problem is

validated. Any syntactical error of expressions or a logical error in the problem is

displayed to the user as a feedback. Finally, given the information mapped into

the aforementioned representation, necessary equations are generated and solved

to obtain the answer.

3.2 Set Problem Categorization

3.2.1 Presentation formats of sets

Information of sets can be presented using set notation, set builder notation,

roster form, Venn diagrams and descriptions. Set notation is the well known

formal way of expressing information of sets. In set notation, a set is considered as

an object. When describing a set, a set is denoted using curly braces (‘{}’) and the

definition or elements of the corresponding set is written inside the curly braces

20

Figure 3.1: Overview of the system

21

(e.g.,‘A ={Monday,Tuesday,Wednesday,..}). Presenting a set using its members

is known as roster form of the set. Instead of listing all elements, the way to

find the members of a set can be formally written using set builder notation. For

example, {𝑥 ∈ N | 𝑥 ̸= 0} denotes the set of all positive numbers in set builder

notation. Venn diagrams [56] are another famous illustrative model to represent

information about sets. Apart from these formal methods, a set can be described

in words (e.g., Set A denotes the set of all days in a week).

3.2.2 Properties of sets

A set has a name, definition, elements and a cardinality. Set name is the identity

of a set. Usually, set name is a capital English letter. By convention, some

symbols are reserved for widely used and important sets. For example, N denotes

the set of natural numbers and R denoted the set of real numbers. In addition 𝜉

denotes the universal set and 𝜑 denotes the empty set.

The definition of a set is basically an expression of what the set contains. For

example, ‘A is the set of positive integers between 1 and 10 ’ is a definition of the

set A. This can be written either as an informal description, in set notation or in

set builder notation. Set A is represented in set notation and set builder notation

as follows; 𝐴 = {positive integers between 1 and 10} and 𝐴 = {𝑥 | 𝑥 ∈; 1 < 𝑥 <

10}.

Elements are the members of a set. Elements can be expressed in roster form

as an unordered, comma-separated list inside the set. For example, elements of

set A is written as 𝐴 = {2, 3, 4, 5, 6, 7, 8, 9}. This can be illustrated in a Venn

diagram as shown in Figure3.2.

Cardinality is the number of elements in a set. It can be written in a descrip-

tion. For example, ‘the size of set A is 8 ’ or ‘the set A has 8 elements ’. Formally,

cardinality is denoted in set notation as 𝑛(𝐴) = 8 or | 𝐴 |= 8. Set cardinality is

illustrated in a Venn diagram by writing the cardinality on the boundary of a set

as denoted in Figure3.2.

22

Figure 3.2: Venn diagram of set A, the set of all positive integers between 1 and
9

3.2.3 Problem categorization

According to the presentation formats and properties of sets, we categorized prob-

lems in the collected dataset. Prior to the categorization, the information and

the question parts of the problem is separated. Table 3.1 shows the categories

for information part of the problem along with examples. The same procedure is

applied when categorizing the question part of the problem text.

3.3 Abstract Representation of Sets

In this section we describe the data representation we use to denote sets related

information. It is based on the Venn diagram representation of sets. Venn dia-

grams can depict,

∙ Universal set and its subsets with names,

∙ Elements of sets,

∙ Cardinalities of sets,

∙ Superset-subset relationships among sets,

∙ Sets derived from applying set operations (complement, union and intersection)

between given sets

Since derived sets are also sets we refer given sets as ‘main sets’ and sets gen-

23

Ta
bl

e
3.

1:
P

ro
bl

em
ca

te
go

ri
es

ba
se

d
on

in
fo

rm
at

io
n

pa
rt

of
th

e
pr

ob
le

m

C
at

eg
or

y
Fo

rm
at

of
th

e
R

ep
re

se
nt

a-
ti

on

G
iv

en
In

fo
r-

m
at

io
n

N
u
m

b
er

of
E
qu

a-
ti

on
s

E
xa

m
p
le

if
|A

|=
37

,|
B

|=
50

an
d

A
⊂

B
,fi

nd
|A
∪

B
|a

nd
|A
∩B

|
1

C
ar

di
na

lit
y

22
0

If
n(
𝜉)

=
24

,
n(

A
)=

11
,

n(
B

)=
18

,fi
nd

th
e

gr
ea

te
st

va
lu

e
of

n(
A
∪B

)?
2

Se
t

no
ta

ti
on

E
le

m
en

ts
,

C
ar

-
di

na
lit

y
16

1
S

=
{s

,q
,u

,a
,r

,e
},

V
=

{a
,e

,i
,o

,u
}

I.
Li

st
th

e
m

em
be

rs
of

S∩
V

II
.F

in
d

n(
S∪

V
)

3
D

es
cr

ip
ti

on
C

ar
di

na
lit

y
10

6
T

he
re

ar
e

30
pe

op
le

in
a

gr
ou

p.
17

ow
n

a
ca

r,
11

ow
n

a
bi

cy
cl

e
an

d
5

do
no

t
ow

n
ei

th
er

a
ca

r
or

a
bi

cy
cl

e.
U

si
ng

a
V
en

n
di

ag
ra

m
,fi

nd
ho

w
m

an
y

pe
op

le
in

th
is

gr
ou

p
ow

n
a

ca
r

bu
t

no
t

a
bi

cy
cl

e.
4

Se
t
bu

ild
er

no
ta

-
ti

on
/

se
t

no
ta

-
ti

on

D
efi

ni
ti

on
of

th
e

se
t

97
𝜉=

{x
:1
6

x6
12

,
x

is
an

in
te

ge
r}

,
M

=
{o

dd
nu

m
be

rs
},

N
=

{m
ul

ti
pl

es
of

3}
I.F

in
d

n(
N

).
II

.W
ri

te
do

w
n

th
e

se
t
M
∩N

.

5
V
en

n
di

ag
ra

m
C

ar
di

na
lit

y
15

6
T

he
V
en

n
di

ag
ra

m

sh
ow

s
th

e
nu

m
be

r
of

st
ud

en
ts

w
ho

st
ud

y
Fr

en
ch

(F
),

Sp
an

-
is

h
(S

)
an

d
A

ra
bi

c
(A

)
I.

F
in

d
n(

A
∪(

F
∩S

))
.I

I.
O

n
th

e
V
en

n
di

ag
ra

m
,s

ha
de

th
e

re
gi

on
F
’∩

S.

6
E

le
m

en
ts

96
U

se
se

t
no

ta
ti

on
to

co
m

pl
et

e
th

e
st

at
em

en
t:

{u
,v

}
_

_
_

_
Z

Sh
ad

e
X
∩(

Z∪
Y

)’
.

7
O

th
er

ty
pe

s
of

P
ro

bl
em

s

24

erated by applying operations to main sets as ‘derived sets’. In a Venn diagram,

we refer a Jordan curve (non-self intersecting closed-curve) as a ‘region’. We refer

combinations of regions as ‘combined-regions’ which also depicts sets.

Our representation utilizes the presentation used by Knuth [10] when describ-

ing 16 logical connectives between two binary variables. Since logical operations

are similar to set operations, these 16 logical connectives which are represented

in a binary value can be mapped into a shaded Venn diagram. So that, when

considered a Venn diagram drawn for two variable (considering the sets are inter-

secting), each possible shading in the Venn diagram denotes each of the binary

connectives between two binary variables. This is achieved by assigning each re-

gion of the corresponding Venn diagram into a bit position of the binary value.

If the corresponding bit of a region is 1, the region is shaded; if the bit is zero,

the region is kept unshaded.

To simplify the description consider the question Q1,

‘It is given that n(𝜉) = 40, n(P) = 18, n(Q) = 20, and n(P ∩ Q) = 7. Find,

(i) 𝑛(𝑃 ∪𝑄)

(ii) 𝑛(𝑃 ′ ∩𝑄′)

The Venn diagram that represent above information is illustrated in Fig-

ure 3.3. Using the binary representation for Venn diagrams described above, we

can map the Venn diagram depicted in figure 3.3 into binary values in Table 3.2.

Figure 3.3: The Venn diagram denoting information in question Q1. Numbers
denote the cardinalities of sets and bordered labels denote the set that represent
by each region

25

Table 3.2: Binary representation of sets given in Q1 and cardinality information
about each set

Region\
Combined-
region

Bit positions Decimal value
of the binary
representation

Cardinality
of the set

P’Q’ PQ’ P’Q PQ
𝑃 ∩𝑄 0 0 0 1 1 7
𝑄 0 0 1 1 3 20
𝑃 0 1 0 1 5 18
𝑃 ∪𝑄 0 1 1 1 12 NA
𝑃 ′ ∩𝑄′ 1 0 0 0 14 NA
𝜉 1 1 1 1 15 40

3.3.1 Representing any number of Sets

In this research, we extend the mapping used in the illustration in Knuth [10]

into any number of variables instead of two variables. Given 𝑛 number of main

sets, a Venn diagram should have 2n maximum number of regions (when each set

intersect with other sets). This can be shown using simple induction; we omit

the proof since it is trivial. Consider Γ, the set of all regions in a Venn diagram

denoting 𝑛 number of main sets which intersect with each other. By taking the

power set of Γ we can say that the number of all regions and combined-regions (or

in other words, number of possible shadings of the Venn diagram or number of all

sets that can be denoted by the Venn diagram) is 22n . To map this information

into binary representation we need 2n bit positions, so that we can denote any

shading in the Venn diagram, or any set combination given 𝑛 main sets, using 2n

number of bits and 22n number of binary values.

3.3.2 Representing main sets

In order to keep track of which bit position represents which region in the corre-

sponding Venn diagram, there should be a particular order of representing regions.

We chose an order where leftmost bits carry the presence of complements of main

sets and rightmost bit positions carry the presence of main sets. For example,

26

refer the Table 3.2. There we ordered sets which participate complements of both

main sets in Q1 into leftmost bit. As move to the right, the complement of a

main set is omitted. Finally, we get the order of regions in Q1 as 𝑃 ′𝑄′, 𝑃 ′𝑄, 𝑃𝑄′,

𝑃𝑄.

When regions always follow a particular order the binary representation of

main sets remain unchanged. Given 𝑛 number of main sets, we can calculate

the decimal value of the binary representation of main sets as follows. Consider

a matrix of ones and zeros. Let columns of this matrix denote regions in the

corresponding Venn diagram where regions are ordered in the above mentioned

manner. Let rows of the matrix denote all possible sets that can be represented

in the corresponding Venn diagram. Let 𝑉 be 𝑖th row vector in the matrix and

𝑛 be number of sets. Then, equation 3.1 shows 𝑣𝑚𝑎𝑖𝑛𝑠𝑒𝑡𝑖, the decimal value of the

binary representing of the 𝑖th main set.

𝑣𝑚𝑎𝑖𝑛𝑠𝑒𝑡𝑖 =
𝑛−1∑︁
𝑗=0

𝑉𝑖,𝑗 × 2𝑛−1−𝑗 (3.1)

3.3.3 Representing derivable sets

Once binary representations of main sets are calculated (equation 3.1), all repre-

sentations of derived sets can also be obtained. The binary representation of the

derived set obtained by applying union operation between two sets is the result

of bitwise-OR of the binary representations of participating sets. Likewise, the

binary representation of intersection and complement is found by using bitwise-

AND and bitwise-complement between binary values of participating sets, respec-

tively. For instance, consider sets mentioned in the question, Q1. Let decimal

values of binary representations of set P and Q, in Q1, be 5 and 3, respectively.

The binary representation of the set (𝑃 ′ ∩𝑄′) is calculated as follows.

Binary representation of set P = 01012

Binary representation of set P’

= Bit-wise complement of 01012

= 10102

27

Binary representation of Q’ = 11002

Binary representation of (𝑃 ′ ∩𝑄′)

= Bitwise AND of binary values of P’ and Q’

= 01002

3.3.4 Finding subsets and supersets

In a Venn diagram, supersets comprised of regions representing their subsets.

Therefore, in the binary representation of a set, each combination of non-zero

bits denotes each of its subsets. This relation between binary values representing

sets in Q1 is depicted in Figure 3.4. In this graph, directed lines denote the

subset-superset relationship where arrow heads are pointed to supersets.

3.4 Expression Extraction

To extract information we employ two approaches and compare the performance

of each approach. First method is a rule-based approach where expressions are ex-

tracted using regular expressions and filtered using simple heuristics. The second

is a statistical approach where expressions like text is selected using a sequential

text classifier. We compare several sequential classification approaches and used

the best performing classifier for set expressions in our system.

In addition to rule-based and statistical approaches, keyword matching is also

used to extract certain information. For example, a problem in category 1 (refer

the Table 3.1) may ask to find the least possible value of the cardinality of a

set. We maintain a glossaries of words such as “least, minimum" and “maximum,

greatest" for each type of expected information.

Consider the problem, Q1 mentioned previously. Information expected to

extract from Q1 are the following;

n(𝜉) = 40, n(P) = 18, n(Q) = 20,

n(P ∩ Q) = 7, 𝑛(𝑃 ∪𝑄), 𝑛(𝑃 ′ ∩𝑄′).

28

Figure 3.4: The graphical representation of subset-superset relations between all
the possible sets in Q1. The binary representation of the sets are written with
set names. Edges of the graph point subsets to supersets.

3.4.1 Rule based expression extraction

We used a list of regular expressions to extract sets related expressions. Table 3.3

shows the list of regular expressions used to extract set information from text.

We tried to cover as much as possible variations in our rules giving flexibility for

different formats. For example, using spaces, allowing multiple-word set names,

using ‘N’ instead of ‘n’ in cardinality expressions (e.g., ‘𝑁(𝐴) = 8’), and mistak-

enly using different bracket types (e.g., ‘B={1,2,3}’ , ‘B=[1,2,3]’, ‘B={1,2,3)’).

This flexibility sometimes cause irrelevant text to be extracted by regular expres-

sions such as extracting ordinary bracketed phrases.

In order to filter out irrelevant text, few heuristics are applied. Prior to using

regular expressions common keywords that appear before set names are replaced

with a special delimiter ‘#’. Few such common keywords are ‘set’, ‘universal

set’, ‘and’ and ‘the’. After extracting expressions, set names are separated from

equations by considering the left had side of equations. Then the non noun words

in the beginning of the set names are removed by considering the POS tags of

set names. An example of rule based information extraction is illustrated in the

Figure 3.5 considering the following problem (Q2);

29

Table 3.3: Regular expressions used to extract set information

Regular Expression Example
[𝑁𝑛][]*([∖(∖[]([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)[∖)∖]])|
∖|([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)∖|

𝑛(𝐺𝑖𝑟𝑙𝑠∪𝐵𝑜𝑦𝑠), |𝑃 ∪
𝑄|

[𝑁𝑛]{0, 1}[]*(∖(([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+
)∖))[]*=[]*[−]{0, 1}[]*∖𝑑+|∖|([𝐴−𝑍
𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)∖|[]*=[]*[−]{0, 1}∖𝑑+

𝑛(𝐺𝑖𝑟𝑙𝑠∪𝐵𝑜𝑦𝑠) = 5,
𝑛(𝜉) = 100

([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)[]* (𝐺𝑖𝑟𝑙𝑠∪𝐵𝑜𝑦𝑠)

([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)[]*=[]*[∖{∖(∖[]
[∖𝑤, .]*[∖)∖}∖]]

Colours = {red, blue,
green}

([𝐴−𝑍𝑎−𝑧∩∪∖′] + []*[⊂⊆][]*[𝐴−𝑍𝑎−𝑧∩∪𝜉∖′]+)|
([𝐴−𝑍𝑎−𝑧∩∪𝜉∖′] + []*[⊃⊇][]*[𝐴−𝑍𝑎−𝑧∩
∪∖′]+)

𝐴 ⊂ 𝐵

[𝑁𝑛][]*(∖(([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)∖))[]*=
[]*[𝑁𝑛][]*(∖(([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+)∖))|∖|
[]*(([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+))∖|([]*=[]
∖|[](([𝐴−𝑍𝑎−𝑧∩∪𝜉∖−∖(∖)∖′∖]+))∖|)*

𝑛(𝑃∪𝑄)=𝑛(𝑅)

If A={3,4,5,6}, B={2,3,5,7,9} and universal set U={1,2,...,9,10} draw a Venn

diagram to represent this information. Hence write down the elements of:

a. A’ b. A ∩ B c. A ∪ B

3.4.2 Limitations of regular expressions

Math expression include many types of tokens such as digits, numbers and op-

erators, delimiters and variables. Variables used in math expression can always

be ambiguous to separately identify from ordinary text since variables are often

indicated by letters and nouns, which can be misleading. For instance, the token

‘a’ in ‘Let a be a positive integer’ is both a math expression and a stop word.

Digits and letters used to number questions in examination papers can be mis-

interpreted as relevant numbers or set names that require to solving problems.

In addition, years, table or figure labels, and abbreviated names for irrelevant

entities are few other occasions that can be misinterpreted as math expressions.

When considering general math expressions, another ambiguity is writing lists

of elements to denote separate elements in a list with respect to mathematical

30

Figure 3.5: Extracting information from Q2 using rule based approach

31

sequences. In contrast to a list, sequences should be identified as a single math

expression. For example, in the text “In the sequence 7, 14, 28, x, 112.. what

is the value of x?", the mathematical expression is the sequence:‘ 7, 14, 28, x,

112..’ whereas in “Find arithmetic mean of the numbers in the list 8 - a, 8, 8 +

a", math expressions are individual expressions separated by commas.

Regular expressions alone cannot handle any of the above challenges when

extracting math expressions. Apart from above mentioned ambiguities in seman-

tic level, there can be syntactic level limitations to extract math expressions by

regular expressions when typing errors are present. For example, if 𝐴 = {1, 2}

was written with a typo as 𝐴 = 1, 2}, regular expressions will fail to identify the

expression. Another important fact is the start and end of a math expression.

An expression that contains words such as ‘Let A = total area of five circles of

radius r’, or an expression with typos like ‘Let set A={Students of grade five and

set B = {Girls in grade five}’ do not have a clear lexical separation from the

usual text. It is less practical to predict all the possible typing errors and write

flexible regular expressions to capture them.

3.4.3 Expression extraction using statistical approach

The second approach for extracting expressions is using sequential classifier. In

addition to the set related problems, we used problems in arithmetic, open vocab-

ulary algebra, closed vocabulary algebra, geometry, sets and few problems from

other domains such as probability and data representations. Collected problems

were tokenized based on spaces and punctuation marks and annotated for math

expressions using the IOB format to prepare the dataset. For example, the sen-

tence Write down the set 𝑀 ∩ 𝑁 is tagged as O O O O B-EXP I-EXP I-EXP

O.

Models

We compared several sequential models to extract expressions and selected the

best performing model for the solver.

32

Conditional Random Field (CRF) model :

First models is a Conditional Random Field (CRF) with features listed in Table

3.4. The features were selected based on the works of Finkel et al. [47], Huang

et al. [53] which focus on NER for English language using CRF models. Few

more features were added which seem relevant to math expressions, and they are

distinguished from aforementioned features by the italic font in the Table 3.4).

LSTM network models:

Other models used to extract text based on Long Short Term Memory (LSTM)

networks and Bi-directional LSTM (Bi-LSTM) networks. The basic LSTM and

Bi-LSTM network architectures were used for the experiment. We used word

embeddings created for words in the training dataset with a LSTM and a Bi-

LSTM network. These models are referred as W-LSTM and W-Bi-LSTM in

this document. The architecture of the W-LSTM and W-Bi-LSTM networks are

illustrated in Figure 3.6 and Figure 3.8 respectively. We trained another Bi-LSTM

with both word embeddings and character embeddings created for each word in

the dataset. We refer this model as W-CH-Bi-LSTM.

3.5 Expressions Parsing

Sets related expressions which are extracted from the problem text are validated

using a LL(1) CFG grammar. It covers a wide range of expected set expressions

in set notation shown in the Table 3.5.

Grammer rules for parsing set expressions are defined as follows;

<S> −→ <Eqn>

<Eqn> −→ <Expr> { <equal> {<Expr> | <Rhs> | <emptySet>}}... | <Re-

lationExpr> | <CardEqn> | <Expr>

<Expr> −→ <specialSet> | <emptySet> | <AndExpr> [<OrExprRHS>]*>

<Rhs> −→ <StatementRhs> | <SetBuilderRhs> | <ElemRhs>

<RelationExpr> −→ <SetRelationExpr> <BelongToExpr>

33

Figure 3.6: Network architecture of the W-LSTM model

Figure 3.7: Network architecture of the W-Bi-LSTM model

34

Table 3.4: Features used for CRF divided into categories. The left most column
contains a label for each of the set of features

Context features
A Uni-grams, bi-grams, tri-grams and their frequencies

Token level features
B Whether the token is a single character
C case related features (all upper case, all lower case, starts with

capital, contains non-initial capital letters)
D features related to character type (contains only digits, contains

bracket delimiters, contains only letters, is a mix of digits and
letters, contains punctuation marks, word shape, word shape
summarization[53])

E Last two and last three suffixes
Semantic level features

F POS tag of the token and surrounding tokens (window size 5)

<CardEqn> −→ <CompCardExpr> [<equal> <CompCardExpr>]* [<equal>

<number>] [<equal> <CompCardExpr>]* | {<number> { <equal> <Com-

pCardExpr>}*}

<StatementRhs> −→ <leftCurlyBrace> <Statement> <rightCurlyBrace>

<SetBuilderRhs> −→ <leftCurlyBrace> [<Statement>] [<Expr>] {<separa-

tor> <Statement>}... <rightCurlyBrace>

<ElemRhs> −→ <leftCurlyBrace> <Element>... <rightCurlyBrace>

<Statement> −→ <name> { <name> [<quotes>]*} | <inequality> | <Rela-

tionExpr>

<Quotes> −→ <leftQuote> <name> < name>... <rightQuote>

<BelongToExpr> −→ {<Expr> | <Element>} <belongToOP> <Expr>

<SetRelationExpr> −→ <Expr> {<subsetOP> | <supersetOP>} <Expr>

<inequality> −→ {<Expr> | <AnyNumber>} {<inequalityOp>, {<Expr> |

<AnyNumber>}...

<Element> −→ <period>* | <AnyNumber> | <word>

<CardAddExpr> −→ <addSubOp> <CardFactor>

<CardFactor> −→ <CardPrimary> <mulDivOp> <CardPrimary>

<CardPrimary> −→ <CardExpr> | (<CompCardExpr>) | <Number>

<CardExpr> −→ <cardNotation> <leftPara> <Expr> <rightPara> | <card-

35

Figure 3.8: Network architecture of the W-CH-Bi-LSTM model

Table 3.5: Examples for set expressions that can be validated by the CFG parser

Expression Type Examples
Set names A, A∩(B’∪ C), Colours
Enumerated sets {1,2,3,...,10}, {Nimal, Kamal,

Amal}
Set definitions in statements A={Whole numbers less than

10}, B={letters of “MA-
HARAGAMA” }

Set definitions in set builder notation A = {x | x ∈ 𝑁 }, B {x : x is a
multiple of 5 ; 0 < x ≤ 20}

Set definitions in enumerated sets A∩B = {1,2,3}
Set cardinality expressions n(A∪B), |A∪B|
Set cardinality equations n(A∪B’)=n(C)=5, |A∪B| = 5
Complex set cardinality expressions n(A) + n(B∩C)
Complex set cardinality equations n(A) - n(B∩C) = 10 = n(D)
Set relationships A ∈ Z , A ⊆ 𝜉
Set equalities (P ∩ Q) = 𝜑

36

Notation2> <Expr> <cardNotation2>

<OrExprRHS> −→ <orDiffOp> <AndExpr>

<AndExpr>−→<Primary> | <Complement> | <Rhs> [<andExprOp> <Com-

plement>| <Primary> | <Rhs>]*

<AndExprLHS> −→ <Primary> | <Complement> | <Rhs>

<Complement> −→ <Primary> <complementOp>

<Primary> −→ <leftPara> <Expr> <rightPara> | <word>

Terminals:

<rightQuote> −→ <complementOp> | ”

<separator> −→ <cardNotation2> , : , <comma> , ; , , and

<comma> −→ ,

<emptySet> −→ 𝜑

<specialSet > −→ 𝜉 , Z , N

<addSubOp> −→ +,−

<mulDivOp> −→ × , /

<andExprOp> −→ ∩, ∖

<orDiffOp> −→ ∪ , -

<inequalityOp> −→<,>,≤,≥, ̸=

<belongToOP> −→∈, /∈

<supersetOP> −→⊃, ̸⊃,⊇,+

<subsetOP> −→⊂, ̸⊂,⊆,*

<complementOp> −→ ’

<leftQuote> −→ ‘ , “

<rightPara> −→)

<leftPara> −→ (

<rightCurlyBrace> −→ }

<leftCurlyBrace> −→ {

<cardNotation1> −→ n

<cardNotation2> −→ |

<period> > −→ .

<equal> −→=

37

The notation of above grammar rules are as follows;

1. <word> - The variable to denote any alphanumerical string

2. <number> - The variable to denote any unsigned integer

3. ... - one or more

4. * - zero or more

5. [] - optional

6. {} - A sequence of symbols that should be considered as an unit

3.6 Mapping to Data Representation

Once set expressions are extracted and validated, they are mapped into the data

representation described in Section 3.3. Following are the steps of mapping set

expressions.

1. Expand sequences

2. Find universal set

3. Find number of sets

4. Initialize the data structure

5. Find main set indices and store

6. Find derived set indices and store

The first two pre-processing steps are applicable for questions in 2nd category

(Table 3.1). First, compressed sequences in set expressions such as ‘{1,2,3,...,10}’

are expanded to get the complete list of elements. Then the universal set is

selected among given sets. If a set is denoted using 𝜉, it is considered as the

universal set. Otherwise, the superset of all sets is selected as the universal

set. An example for these two steps is shown in Figure 3.9 using Q2 mentioned

previously.

Other steps of mapping data into the binary representation is straight forward.

First the number of sets are counted and data structure is initiated with null

values. Then main set indices are calculated using Equation 3.1. When main

sets are stored on the data structure indices of derived sets can be calculated as

described in Section 3.3.3. According to the indices, these sets are stored in the

38

Figure 3.9: Finding the universal set in Q2

data structure.

Algorithm 1 shows the algorithm for obtaining an index of a given derived

set name. The algorithm takes a set name as the input. Given a set name, say

(𝑃 ′ ∩𝑄′), it first converts this into prefix notation. The converted expression of

(𝑃 ′ ∩ 𝑄′) is (∩(¬(𝑃),¬(𝑄)), where ¬ denotes the complement operation. This

expression is then fed into a stack. Next, an operator and two operands are

popped from the stack, calculated the binary representation of the resulting set,

and then pushed back into the stack iteratively, until the stack is empty. This

process finally results in the binary representation of the given derived set.

3.7 Question Validation

Problems are validated to check following properties.

∙ Set cardinalities are non-negative

∙ Set cardinalities are integers

∙ Cardinalities of subsets are less than supersets

Given a set, all its supersets and subsets can be found as described in Sec-

tion 3.3.4. If there is an error in the problem, they are reported to the user with

appropriate error messages. For example, the error message “ Inconsistent data

: Cardinality cannot be negative” is shown when a negative cardinality is present

in the question.

39

Algorithm 1: Find index of a derived set
Input: setName
Output: index corresponding to setName
setOperators ← [‘AND’, ‘OR’ , ‘NOT’]
stack ← stack()
parseTree ← convertToPrefix(setName)
tokens ← tokenize(parseTree).reverse()
tokens ← reverse(tokens)
forall token ∈ tokens do

if token /∈ setOperators then
if token is not ‘(’ then

stack.push(getIndex(token))

else /* token is a set operator; get operands of the set
expression */

operands = new list
item= stack.pop()
while item is not ‘)’ do

operands.add(item)
item = stack.pop()

// compute the value of set expression
if token = ‘AND’ then

stack.push (bitWiseAnd(operands))
else if token = ‘OR’ then

stack.push (bitWiseOr(operands))
else

stack.push (bitWiseComplement(operands))

return stack.top ()

40

3.8 Answer Generation

When a given set problem is provided in the form of the data representation

described in section 3.3, answer generation can be done on top of this represen-

tation. According to categories of problems that are addressed in this research

following questions are expected.

∙ Find elements of a set, given elements of other sets

∙ Find cardinality of a set, given cardinalities or elements of other sets

∙ Find maximum or minimum cardinality of a set, given cardinality or elements

of some other sets

When elements of a derived set is been asked answer can be trivially obtained

by applying set operations over given participating sets. When it is required to

find a cardinality, necessary equations should be generated to solve the problem.

3.8.1 Generating equations and calculating cardinalities

In order to find answers related to cardinality, a system of equations should be

generated according to given information. Sum of cardinalities of a set of regions

in a Venn diagram is equal to the cardinality of the set that combines those

regions. Therefore, based on the region-wise binary representations the equations

are generated for each given set in the problem.

Consider the binary representation for sets in a problem with 𝑛 number of

main sets. A variable, 𝑐𝑖 is assigned to 𝑖𝑡ℎ bit position of each binary representa-

tion of sets in the problem. 𝑐𝑖 denotes the cardinality of the 𝑖𝑡ℎ region. The bit

in 𝑖𝑡ℎ bit position is 𝑏𝑖 where 𝑏𝑖 ∈ {0, 1}. The equation for the cardinality of a

set, 𝑐𝑗 where 𝑖 ∈ {𝑥 : 𝑥 ∈ N; 0 6 𝑥 < 2𝑛} and 𝑗 ∈ {𝑥 : 𝑥 ∈ N; 0 6 𝑥 < 22𝑛} is;

𝑐𝑗 =
2𝑛∑︁
𝑖=0

𝑏𝑖 × 𝑐𝑖 (3.2)

After obtaining the set of simultaneous equations for each given cardinality

information, the equations are solved to find the set of cardinalities, 𝐶 = {𝑐𝑖; 𝑖 ∈

N; 0 6 𝑖 < 2𝑛} of regions in the corresponding Venn diagram. Now, any unknown

41

cardinality can be found by calculating the sum of cardinalities of regions corre-

spond to the given set. Table 3.6 shows generated equations for sets in Q1. The

solution of system of equations generated for Q1 is; 𝑎 = 19, 𝑏 = 11, 𝑐 = 13, 𝑑 = 7.

Thus the final answer for Q1 is; 𝑃 ∪𝑄(= 𝑏 + 𝑐 + 𝑑) = 31 and 𝑃 ′ ∩𝑄′(= 𝑎) = 19.

Finding minimum and maximum cardinality of a set

To Find maximum and minimum possible cardinalities we can use the knowledge

of supersets and subsets. Algorithm 2 shows how to find the minimum cardinality

of a given set. Inputs of the algorithm are, the set to find the minimum cardinality,

number of sets, and the set of equations generated for available set information.

If a set has subsets, then the minimum possible cardinality of the set is the

cardinality of its largest subset. If this is the case, the size of the largest subset

(max_subset_size) is returned as the output in the algorithm. If the set does

not have any subset, then the minimum possible cardinality is the surplus value

obtained when the cardinality of the given set is assumed to be zero. In order to

find this surplus value, the algorithm updates the available set of equations by

adding a new equation which equates the cardinality of the regarding set to zero.

Then the system of equations are solved and the solutions are obtained. Finally,

the absolute value of the negative value present in the set of solutions is returned

as the minimum cardinality of the given set.

Maximum cardinality of a set is the nearest value to the cardinality of its

smallest superset such that it preserves cardinality constrains of the system. It

Table 3.6: Generated equations for sets in Q1

Set Name Binary repre-
sentation of
the set

Cardinality of
the set

Corresponding equation
/ expression

𝑃 ∩𝑄 0001 7 d - 7 = 0
𝑄 0011 20 c + d - 20 = 0
𝑃 0101 18 b + d - 18 = 0
𝑃 ∪𝑄 0111 NA b + c + d
𝑃 ′ ∩𝑄′ 1000 NA a
𝜉 1111 40 a + b + c + d - 40 = 0

42

means that the cardinality of supersets should be greater than cardinality of sub-

sets. Algorithm 3 finds the maximum cardinality of a given set. Its inputs are,

the set to find the maximum cardinality, number of sets and set of equations

generated. First, the cardinality of the smallest superset (min_superset_size)

is found. Then, in order to find the maximum cardinality of the given set, its

cardinality is assumed to be the cardinality of its smallest superset. The equation

for the given set is generated by equating its cardinality to min_superset_size

and added to the set of available equations. Then the system of equations are

solved. Now, the surplus value, or the difference between actual maximum car-

dinality of the given set and min_superset_size is equal to the negative value

present in the set of solutions. Therefore the surplus is found and added to the

min_superset_size to get the maximum cardinality of the given set.

Algorithm 2: Find minimum cardinality of a set
Input: set, no_of_sets, set_of_equations
Output: minimum cardinality of given set
sub_sets= findSubSetsOf(set.index)
max_subset_size ← max(getSizes(sub_sets))
if sub_sets.length > 0 then

return max_subset_size
math_expression_for_set ← getMathExpr(set.index, no_of_sets)
assumed_equation_lhs ← math_expression_for_set − 0
set_of_equations_copy ← set_of_equations.add(assumed_equation_lhs)
results ← solveSystemOfEqns(set_of_equations_copy)
forall value ∈ results do

if value < 0 then
return abs(value)

return 0

43

Algorithm 3: Find maximum cardinality of a set
Input: set, no_of_sets, set_of_equations
Output: maximum cardinality of given set
max ← 0
super_sets= set.index
min_superset_size ← min(getSizes(sub_sets))
math_expression_for_set ← getMathExpr(set.index, no_of_Sets)
assumed_equation_lhs ← math_expression_for_set −
min_superset_size

set_of_equations_copy ← set_of_equations.add(assumed_equation_lhs)
results ← solveSystemOfEqns(set_of_equations_copy)
surplus_value ← 0
forall value ∈ results do

if value < surplus_value then
surplus_value ← value

return min_super_set_size + surplus_value

44

Chapter 4

EVALUATION

This chapter presents evaluation methods of this research. Section 4.1 details the

datasets used in the experiment. Section 4.2 presents the parameters of the ex-

periments and important implementation details of the system. The evaluations

were carried out for the performance following processes;

1. Math expressions extraction based on sequential classifiers

2. Sets expressions extraction using best performed sequential classifiers and reg-

ular expressions

3. Parsing sets expressions

4. Solving a set problem given in data representation described in Section 3.3

Section 4.3 describes each of the above evaluations, results and a discussion about

the result respectively.

4.1 Data Sets

We are not aware about any available dataset created for MWPs in set theory.

Thus we collected data from past papers of local GCE O/L examination and

several international O/L examinations including GCE, IGCSE, GCSE and JCE

examinations. Also we collected problems from local school term test papers,

mock examination papers, tutorials and other online sources. The problems in

Sinhalese were manually translated into English. Most of the questions taken from

online educational forums such as algebra.com1, there were many typing errors

present in problems. We evaluated our system with both corrected problems and

original problems. We created four datasets from sets related data as depicted in

table 4.1.

In order to train sequential models to extract math expressions, we used above
1https://www.algebra.com/algebra/homework/sets-and-operations/

sets-and-operations.faq

45

mentioned dataset combined with the SemEval-2019 task-102 dataset. It contains

problems in mathematical domains such as elementary level arithmetic, open and

closed vocabulary algebra, geometry and other domains such as probability and

data representations. We refer this dataset as ‘DExpr’. Table 4.2 shows statistics

of the dataset, DExpr used for expression extraction.

4.2 Experimental Setup

This section first explains the experimental setting of math expressions extraction

using sequential classifiers. Then the important implementation details of the

complete solver system are also described.

The dataset, DExpr introduced in the Section 4.1 was used in sequential

classification models. It was randomly split into training, validation and test

sets in 8:1:1 ratio to train sequential classifiers. This being the first research

conducted for expression extraction using RNNs, we used the standard feed-

forward LSTM and Bi-LSTM models for first two settings (W-LSTM and W-Bi-

LSTM), which comprised a word embedding layer where the 50-length output is

subjected to a 10% dropout to avoid overfitting, one LSTM layer and an output

layer with softmax normalization. The third setting (W-CH-Bi-LSTM) comprises

an additional embedding layer for characters before the Bi-LSTM layer. Prior to

the training we experimented with different optimizers (standard SGD, Adam
2https://github.com/allenai/semeval-2019-task-10

Table 4.1: Datasets used to evaluate solver system

Dataset Content number
of prob-
lems

DC1-E Problems of category 1 (Ta-
ble 3.1) with typing errors

65

DC1-NE Problems of category 1 without
typing errors

64

DC2-E Problems of category 2 with typ-
ing errors

54

DC2-NE Problems of category 2 without
typing errors

54

46

Table 4.2: Statistics of problems in the dataset, DExpr

Category Number
of prob-
lems

Number
of expres-
sions

Number
of tokens

Number
of ex-
pression
tokens

Closed-algebra 1088 3832 29541 10886
Open-algebra 360 1059 16332 1372
Geometry 702 2351 22677 4288
Elementary set theory 487 2419 31380 16308
Other 86 124 3634 156
Uncata-
gorized 528 1717 22796 3219

and RMSProp), dropout rates (10%, 20%, 50%) different batch sizes (10, 32, 50

100) and epochs (10, 20, 50, 100, 500 and 1000) and selected batch size of 10, 10%

dropout and RMSProp optimizer with 0.001 learning rate to train the models.

In the solver system, we use an array of size 22𝑛 to store set information of

each set given in the problem, according to the binary representations of sets

mentioned in section 3.3. The array index correspond to the decimal value of the

binary representation of sets. The system is separately evaluated for both rule

based and statistical based expression extractors. The best performing sequential

classifier for set expressions was selected as the statistical model to extract set

information from problem text. The CFG parser described in the Section 3.5

is implemented using a python library named pyPEG23 which supports writing

custom expression parsers. The grammar rules are listed in the Section 3.5.

We used the library ‘boolean.py’4 to convert a given expression into a parsed-

tree string in prefix notation. To generate the system of equations to solve the

problem, we used Sympy[57], a well-known python library that supports symbolic

mathematics.
3https://pypi.org/project/pyPEG2/
4https://github.com/bastikr/boolean.py

47

4.3 Evaluations

All the components of the set problem solving system is evaluated for each of the

datasets listed in the Table 4.1. In addition to that a dataset of 96 problems was

used to training and validation testing of the system. General math expression

extraction using sequential classifiers were trained and evaluated using the dataset

DExpr.

4.3.1 Evaluation of math expressions extraction based on sequential

classifiers

The accuracy, precision, recall and F1-score of the CRF model and RNN models

were calculated based on identifying complete math expressions correctly. In

order to calculate aforementioned accuracy matrices true-positives (TP), false-

positives (FP) and false-negatives (FN) were calculated for each model as follows.

Given the set of expected expressions, E, and the set of predicted expressions, P;

TP = {Expressions in both E and P }

FP = {Expressions in P but not in and E }

FN = {Expressions in E but not in P }

The text which is correctly predicted as expressions is counted as a true positive,

text which is not an expression but predicted as an expression is counted as a false

positive, and text which is an expression that is not identified as an expression is

counted as a false negative.

The results of the CRF model against cumulatively added features are pre-

sented in the graph in Figure 4.1. It shows that character-based features such

as containing digits or only letters and suffixes of the tokens contributes to the

performance in a statistically significant rate.

W-LSTM, W-Bi-LSTM and W-CH-Bi-LSTM models were evaluated on the

same test set as the CRF model. Figure 4.2 shows the accuracy of each model

against the number of epochs used to train the model. The W-CH-Bi-LSTM

performs much better than other two models. The W-Bi-LSTM model performs

better than W-LSTM model, but it takes more number of epochs to achieve high

48

Figure 4.1: CRF performance against cumulatively added feature sets from the
set A to set G listed in Table 3.4

accuracy levels.

Table 4.3 shows the best results of all sequential models. Given the dataset

is small-sized, the CRF model also performs equally the W-Bi-LSTM model.

4.3.2 Evaluation of set expressions extraction

This evaluation compares the best performing statistical model and rule based

extractor for set expression extraction. Statistical models were trained for extract-

ing general math expressions. When these models were applied for sets expression

extraction the CRF model performed better due to less amount of data for only

set related expressions. Therefore, CRF model were used as the statistical set

expression extractor. Both statistical and rule-based extractor were tested for

each dataset mentioned in the Table 4.1

Rule based extractor always extracts expressions that exactly matches to the

defined rules. Therefore, in DC1-E and DC1-NE, the precision of the rule-

based extractor is 1. In contrast, the statistical extractor extracts all possible

expressions, therefore shows a higher recall rate and lower precision and accu-

racy rates. Another important observation on extracted expressions are that the

statistical extractor extracts other symbols combined with expressions. For ex-

ample, consider expressions extracted only by statistical extractor; ‘𝑛(𝐴 ∩ 𝐵) =

_______’, ‘∖𝑢200𝑏𝑛(𝐴∩𝐵′) = ∖𝑢200𝑏(𝐶)’ and ‘𝑛(𝐵) = 21|’. The first expres-

49

Figure 4.2: Performance of RNN models with respect to number of epochs

Table 4.3: Accuracy, Recall, Precision and F1-score of the best performance of
all models

Model Acc. Recall Prec. F1
CRF 0.866 0.931 0.923 0.927
W-
LSTM

0.837 0.922 0.901 0.911

W-Bi-
LSTM

0.862 0.911 0.941 0.926

W-
CH-Bi-
LSTM

0.912 0.959 0.949 0.954

sion has an underline to write the answer, which is captured in statistical parser,

but filtered out by the rule-based parser. The second expression includes ∖𝑢200𝑏𝑛

, the zero length white space character, and the third expression includes ‘|’ which

is a typo. While extracting first and last expressions reduce the accuracy, they

show the robustness of the statistical expression extractor to extracting unseen

characters that are related to expressions.

Expressions in category-2 (Table 3.1) are more difficult to extract with respect

to expressions of category-1, because category-1 expressions are surrounded with

𝑛() whereas expressions in category-2 do not have such an obvious boundary.

Therefore, the rule based extractor shows lower results than the statistical ex-

tractor in both DC2-E and DC2-NE datasets.

50

Table 4.4: Performance of statistical and rule-based expression extractors

Dataset Results
Rule-based Extractor Statistical Extractor

Accuracy Precision Recall Accuracy Precision Recall
DC1-E 0.962 1 0.962 0.938 0.968 0.968
DC1-NE 0.979 1 0.979 0.964 0.982 0.982
DC2-E 0.705 0.834 0.821 0.727 0.878 0.809
DC2-NE 0.821 0.93 0.875 0.835 0.94 0.882

4.3.3 Parsing sets expressions

Given all expressions including correct and incorrect ones in each DC1-E and

DC2-E datasets, the performance of the parser was evaluated according to the ex-

pression validation accuracy. Given the set of Correct expressions, CE, and incor-

rect expressions IE, true-positives (TP), false-positives (FP) and false-negatives

(FN) were calculated as follows;

TP = {Expressions in CE identified as correct expressions}

TN = {Expressions in IE identified as incorrect expressions}

FP = {Expressions in IE identified as correct expressions }

FN = {Expressions in CE identified as incorrect expressions}

Results of the both rule based and statistical expression extractors are combined

to perform the parser. The statistics of these data are shown in the Table4.5.

Table 4.6 shows the evaluation results of the parser.

The expression parser fails when incorrect expressions are ambiguous with

names. For example, (𝐴𝐵) is an erroneous expression of (𝐴 ∪𝐵); but the parser

recognize it as correct since 𝐴𝐵 can also be a name. Other failures include

unexpected expressions (e.g., 𝐶 ∩ 𝜑) and using different symbols (e.g., using
⋂︀

instead of ∩).

Table 4.5: Statistics of the data used to evaluate the parser

Dataset # Correct Expressions # Incorrect Expressions
DC1-E 310 36
DC2-E 336 45

51

Table 4.6: Evaluation results of the parser

Dataset Results
Accuracy Precision Recall

DC1-E 0.948 0.954 0.990
DC2-E 0.936 0.984 0.942

4.3.4 Solving a set problem

The solver component was evaluated using problems in the dataset DC1-NE and

DC2-NE (refer Table 4.1). In order to conduct an independent evaluation prob-

lems that include expressions that expression extractors and parser could not han-

dle properly were eliminated. The statistics of resulting datasets are mentioned

in the Table 4.7. Evaluation results of the solver is detailed in the Table 4.9.

Table 4.7: Statistics of the data used to evaluate the solver

Dataset # Problems
DC1-NE2 66
DC2-NE2 51

Table 4.8: Evaluation results of the solver

Dataset Accuracy
DC1-NE2 100%
DC2-NE2 100%

4.3.5 End-to-end performance

This section presents the results of the complete system.

52

Table 4.9: Evaluation results of the complete system

Dataset Accuracy with unseen
problem types

Accuracy without un-
seen problem types

DC1-E 93.85% 96.83%
DC1-NE 95.31% 98.39%
DC2-E 85.19% 91.84%
DC2-NE 85.19% 93.88%

53

Chapter 5

CONCLUSION

This research takes the first step towards automatically answering set related

MWPs. As a result, a complete system that understand and answer problems that

include expressions written in set notation in O/L mathematics examinations.

We provide a categorization for set problems that are commonly presented in

O/L examinations and introduce a dataset of 220 set problems that belongs to

two identified categories. Facilitating any set related problems solver, an abstract

data structure is introduced in this research, that captures mathematical seman-

tics of set expressions in basic set theory. This representation, which adapt the

binary representation used in Knuth [10], can cover all concepts and relationships

that can be represented in a Venn diagram. Extracting sets related expressions

were experimented with two approaches; a rule-based and statistical approach.

The results show that the statistical extractor is robust for unseen expression

types (e.g., expressions with typing errors) and symbols. A CFG parser is used

to validate expressions. A feedback is given to the user when there are invalid

expressions. We present a complete solver systems which use sets related infor-

mation mapped into the above mentioned representation to validate problems,

generate equations and find the solution of the problem.

This research narrows down solving any O/L sets related problem expressed

in natural language to a problem of representing given information using set

notation. Once expressions in set notation are provided our system can validate

expressions, validate the problem and generate answer of the problem. It also

provides a baseline for set problem solvers.

In addition we experimented with several sequential classifiers for extracting

general math expressions from unstructured plain text. Results show that using

character level features benefit in increasing accuracy of this text classification

task. An annotated dataset with 102K tokens and 9K math expressions is also

54

introduced for math problems in several domains such as algebra, geometry and

basic set theory.

5.1 Future Work

In future work we try to present the solver with an API and enhanced features to

be used in problem solvers for basic set theory. Expression extraction, being the

major bottleneck of the system accuracy should be further enhanced by training

with more data for the statistical approach. We hope to experiment more in

general math expression extraction using better methods and more data.

Ultimately, the system presented in this thesis leads to a system that can

solve any set related problem in O/L examinations. There are more set problem

categories that is not addressed in this research, but can be solvable using the

abstract data representation presented here. Therefore we can widen the system

to answer problems in other categories including problems where all information

is presented in natural language and problems that presents information through

Venn diagrams.

55

References

[1] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate

Kushman. Learning to solve arithmetic word problems with verb categoriza-

tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 523–533, 2014.

[2] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learn-

ing to automatically solve algebra word problems. In Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), volume 1, pages 271–281, 2014.

[3] Bussaba Amnueypornsakul and Suma Bhat. Machine-guided solution to

mathematical word problems. In Proceedings of the 28th Pacific Asia Con-

ference on Language, Information and Computing, 2014.

[4] Subhro Roy and Dan Roth. Illinois math solver: math reasoning on the web.

In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Demonstrations, pages 52–56,

2016.

[5] Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian Yin. Learning fine-

grained expressions to solve math word problems. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pages

805–814, 2017.

[6] Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint

Malcolm. Solving geometry problems: Combining text and diagram inter-

pretation. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 1466–1476, 2015.

[7] Anton Dries, Angelika Kimmig, Jesse Davis, Vaishak Belle, and Luc

De Raedt. Solving probability problems in natural language. In Proceed-

56

ings Twenty-Sixth International Joint Conference on Artificial Intelligence,

pages 3981–3987, 2017.

[8] Diunuge B Wijesinghe, Surangika Ranathunga, and Gihan Dias. Computer

representation of venn and euler diagrams. Advances in ICT for Emerging

Regions, pages 100–105, 2016.

[9] Diunuge Buddhika Wijesinghe, Jcs Kadupitiya, Surangika Ranathunga, and

Gihan Dias. Automatic assessment of student answers consisting of venn and

euler diagrams. In 2017 IEEE 17th International Conference on Advanced

Learning Technologies (ICALT), pages 243–247. IEEE, 2017.

[10] Donald Ervin Knuth. The art of computer programming volume 4, pre-

fascicle 0b. a draft of section 7.1. 2: Boolean evaluation, 2007.

[11] Daniel G Bobrow. Natural language input for a computer problem solving

system. 1964.

[12] Anirban Mukherjee and Utpal Garain. A review of methods for automatic

understanding of natural language mathematical problems. Artificial Intel-

ligence Review, 29(2):93–122, 2008.

[13] Sourav Mandal and Sudip Kumar Naskar. Solving arithmetic mathematical

word problems: A review and recent advancements. In Information Tech-

nology and Applied Mathematics, pages 95–114. Springer, 2019.

[14] Mark Steedman and Jason Baldridge. Combinatory categorial grammar.

Non-Transformational Syntax: Formal and Explicit Models of Grammar,

pages 181–224, 2011.

[15] Takuya Matsuzaki, Hidenao Iwane, Hirokazu Anai, and Noriko H Arai. The

most uncreative examinee: A first step toward wide coverage natural lan-

guage math problem solving. In AAAI, pages 1098–1104, 2014.

[16] Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai, and

Noriko H Arai. Semantic parsing of pre-university math problems. In Pro-

57

ceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 2131–2141, 2017.

[17] Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui.

Automatically solving number word problems by semantic parsing and rea-

soning. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 1132–1142, 2015.

[18] Subhro Roy. Reasoning about quantities in natural language. PhD thesis,

University of Illinois at Urbana-Champaign, 2017.

[19] Lipu Zhou, Shuaixiang Dai, and Liwei Chen. Learn to solve algebra word

problems using quadratic programming. In Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Processing, pages 817–822,

2015.

[20] Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma.

How well do computers solve math word problems? large-scale dataset con-

struction and evaluation. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), vol-

ume 1, pages 887–896, 2016.

[21] Shyam Upadhyay and Ming-Wei Chang. Annotating derivations: A new

evaluation strategy and dataset for algebra word problems. arXiv preprint

arXiv:1609.07197, 2016.

[22] Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Et-

zioni, and Siena Dumas Ang. Parsing algebraic word problems into equa-

tions. Transactions of the Association for Computational Linguistics, 3:585–

597, 2015.

[23] Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv

preprint arXiv:1608.01413, 2016.

[24] Subhro Roy and Dan Roth. Unit dependency graph and its application to

arithmetic word problem solving. arXiv preprint arXiv:1612.00969, 2016.

58

[25] Arindam Mitra and Chitta Baral. Learning to use formulas to solve simple

arithmetic problems. In Proceedings of the 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), volume 1,

pages 2144–2153, 2016.

[26] Suleyman Cetintas, Luo Si, Yan Ping Xin, Dake Zhang, and Joo Young Park.

Automatic text categorization of mathematical word problems. In FLAIRS

Conference, 2009.

[27] Pruthwik Mishra, Litton J Kurisinkel, and Dipti Misra Sharma. Arith-

metic word problem solver using frame identification. arXiv preprint

arXiv:1808.03028, 2018.

[28] Chao-Chun Liang, Shih-Hong Tsai, Ting-Yun Chang, Yi-Chung Lin, and

Keh-Yih Su. A meaning-based english math word problem solver with un-

derstanding, reasoning and explanation. In Proceedings of COLING 2016,

the 26th International Conference on Computational Linguistics: System

Demonstrations, pages 151–155, 2016.

[29] Eugene Charniak. Carps: a program which solves calculus word problems.

1968.

[30] Bruce W Ballard and Alan W Biermann. Programming in natural lan-

guage:âĂĲnlcâĂİ as a prototype. In Proceedings of the 1979 annual confer-

ence, pages 228–237. ACM, 1979.

[31] Johan De Kleer. Qualitative and quantitative knowledge in classical mechan-

ics. 1975.

[32] Alan Bundy, George Luger, M Stone, and Robert Welham. Mecho: Year

one. In Proceedings of the 2nd Summer Conference on Artificial Intelligence

and Simulation of Behaviour, pages 94–103. IOS Press, 1976.

[33] Gordon S Novak Jr. Computer understanding of physics problems stated in

natural language.(dissertation), also technical report nl-30. 1976.

59

[34] GE Oberem. Albert: a physics problem solving monitor and coach. In Pro-

ceedings of the first international conference on computer assisted learning

(ICCALâĂŹ87). Calgary Alberta, Canada, pages 179–184, 1987.

[35] Xiaorong Huang. Human oriented proof presentation: A reconstructive ap-

proach. 1999.

[36] Kyle Morton and Yanzhen Qu. A novel framework for math word problem

solving. International Journal of Information and Education Technology,

3(1):88, 2013.

[37] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Han-

naneh Hajishirzi. Mawps: A math word problem repository. In Proceedings

of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 1152–

1157, 2016.

[38] Suleyman Cetintas, Luo Si, Yan Ping Xin, Dake Zhang, Joo Young Park, and

Ron Tzur. A joint probabilistic classification model of relevant and irrelevant

sentences in mathematical word problems. arXiv preprint arXiv:1411.5732,

2014.

[39] Xuedong Tian, Ruihan Bai, Fang Yang, Jinyuan Bai, and Xinfu Li. Math-

ematical expression extraction in text fields of documents based on hmm.

Journal of Computer and Communications, 5(14):1, 2017.

[40] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsuper-

vised named-entity extraction from the web: An experimental study. Artifi-

cial intelligence, 165(1):91–134, 2005.

[41] Sean R. Eddy. Profile hidden markov models. Bioinformatics (Oxford, Eng-

land), 14(9):755–763, 1998.

60

[42] Daniel M Bikel, Scott Miller, Richard Schwartz, and Ralph Weischedel.

Nymble: a high-performance learning name-finder. arXiv preprint cmp-

lg/9803003, 1998.

[43] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

[44] Jagat Narain Kapur. Maximum-entropy models in science and engineering.

John Wiley & Sons, 1989.

[45] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their

applications, 13(4):18–28, 1998.

[46] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling sequence

data. 2001.

[47] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporat-

ing non-local information into information extraction systems by gibbs sam-

pling. In Proceedings of the 43rd annual meeting on association for computa-

tional linguistics, pages 363–370. Association for Computational Linguistics,

2005.

[48] David Nadeau and Satoshi Sekine. A survey of named entity recognition and

classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[49] Rahul Sharnagat. Named entity recognition: A literature survey. Center For

Indian Language Technology, 2014.

[50] Vikas Yadav and Steven Bethard. A survey on recent advances in named

entity recognition from deep learning models. In Proceedings of the 27th

International Conference on Computational Linguistics, pages 2145–2158,

2018.

61

[51] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learn-

ing for named entity recognition. arXiv preprint arXiv:1812.09449, 2018.

[52] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Compara-

tive study of cnn and rnn for natural language processing. arXiv preprint

arXiv:1702.01923, 2017.

[53] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for

sequence tagging. arXiv preprint arXiv:1508.01991, 2015.

[54] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional

lstm-cnns. Transactions of the Association for Computational Linguistics,

4:357–370, 2016.

[55] Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio

Amir, Chris Dyer, Alan W Black, and Isabel Trancoso. Finding function in

form: Compositional character models for open vocabulary word represen-

tation. arXiv preprint arXiv:1508.02096, 2015.

[56] John Venn. I. on the diagrammatic and mechanical representation of propo-

sitions and reasonings. The London, Edinburgh, and Dublin philosophical

magazine and journal of science, 10(59):1–18, 1880.

[57] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík,

Sergey B Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-

son K Moore, Sartaj Singh, et al. Sympy: symbolic computing in python.

PeerJ Computer Science, 3:e103, 2017.

62

