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Abstract 

Search engines or localized software systems developed for information searching, play an 

important role in knowledge discovery. Proliferation of data in the web and social media has 

posed significant challenges in finding relevant information efficiently even using those search 

engines or other software systems. Moreover, those systems or engines tend to collect massive 

number of data, which could be useful for humans in various ways but overlook the meaning of 

the search phrases, hence generate irrelevant search results. A unit level searching i.e. searching 

information within a website or page is also not effective as they follow exact keyword matching 

techniques and ignore the semantic level matching of search phrases. In order to address those 

deficiencies, this research proposes a hybrid approach which use the semantics of data, 

community preferences as well as collaborative filtering techniques for semantic information 

retrieval. More specifically, Topic modeling based on Latent Dirichlet Allocation together with 

topic-driven based community detection methods are applied for identifying personalized search 

results and hence improve the relatedness of the research results. Based on the proposed hybrid 

approach a framework for semantic search that can easily be integrated to a software application 

has been implemented. The evaluation results confirm the effectiveness of search results which 

outperform benchmark approaches that follow traditional keyword search algorithms. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Prolegomena  

There is a great growing demand for sophisticating information retrieval based on users’ 

need with the help of search engines [1]. To meet this demand current system heavily 

used data representation technique in computer systems including database models, 

especially relational databases which enables efficient information storing and querying 

[2]. Since most of the current web applications are supporting relational schema-based 

information retrieval, they could not provide any semantic sense of feedback to users. 

Now ontologies emerged as an alternative to databases in applications that require a 

more 'enriched' meaning [3]. 

Todays web applications contain vast amount of data and users of those applications are 

looking for easy access to the data they want in a short period of time rather wasting 

time searching bulk of data. Those applications contain large number of documents also 

and handling and retrieval should be efficient for obtaining a business value. Almost all 

search engines use text-based search techniques where it matches the query string with 

the text in the files or database. The search result is generated just based on the number 

of occurrences and this does not take real meaning of the query string. The same applies 

to an application where the user tries to find help details inside an application. Hence 

searching based on content only has become a challenge to most applications [4].  

One of the primary applications of natural language processing is to automatically 

extract what topics people are discussing from large volumes of text. Some examples of 

large text are feeds from social media, customer reviews of hotels, movies, etc. user 

feedbacks, news stories, e-mails of customer complaints etc. Knowing what people are 

talking about and understanding their problems and opinions is highly valuable to 

businesses, administrators, political campaigns. And it’s really hard to manually read 
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through such large volumes and compile the topics. Thus, is required an automated 

algorithm that can read through the text documents and automatically output the topics 

discussed. In such a case, semantic search strategies could enhance semantic search 

results. 

Even though sites like “Google” provides better search results with personalization up to 

some extent, in general individual sites lack semantic search engines to search within its 

site. Intelligent Sematic Frameworks for individual sites [5] has focused only to Latent 

Semantic Indexing and Personalization based on users’ history. Therefore, current 

semantic search engines lack a model which focus on semantics of data, community 

preferences based on dynamically changing semantics of data and personalization. 

Therefore, the proposed solution is to provide internal semantic search engine to search 

within its site based on semantics of data and community interests. The proposed model 

is more focusing on better semantics of data extraction based on LDA model and 

community detection based on LDA model to extract communities from the semantics of 

data itself dynamically. Further the model has optimized based on personalization. 

 

1.2. Objectives 

a) In-depth study of technology used for semantic meta data extraction. 

b) Critical review of analyzing ‘item based collaborative filtering’. 

c) Critical review of analyzing ‘topic-based community detection’. 

d) Design and develop semantic information retrieval platform 

e) Evaluate solution 

f) Document the entire project 
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1.3. Background and Motivation 

Today world contains lots of accessible information pieces, which could be unreadable 

by machines, but could be understandable by humans. To be able to use this information 

people are heavily engaged with search engines. Between key search and semantic 

search, semantic search plays a major role in semantic information retrieval. Lack of 

semantic search framework which can directly integrate with industry software 

applications is the key motivational point towards this research. Proving semantically 

relevant search results and personalized semantic search based on dynamically detected 

communities would be really beneficial for each web application today. Even though 

search engine like “Google” provide better search results based on personalized results, 

most individual sites lack internal semantic search engines. Most of the individual 

software applications lacks internal semantic search engines within their sites.  

1.4. Problem in Brief 

Current software industry application search engines support mostly just relational data-

based and text-based information retrieval. It lacks semantic information retrieval 

platform, which provides user most appropriate search results based on relevancy and 

personalization. Those Search platforms lack providing search results based on most 

relevant topics for a given context and based on dynamically detection of individuals 

who are sharing common topic interests in a community. 

1.5. Proposed Solution 

Proposed solution is to provide a semantic information retrieval platform for internal 

searching of a software application. Information retrieval would be based on semantics 

of data, based on topic-based community detection, based on applying personalization 

and collaborative filtering on top of detected communities for providing more 

meaningful search results to user. To provide semantically rich search results, 

application will look into latent Dirichlet allocation and topic-driven community 

detection methods integrating with collaborative filtering. 
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The system contains five modules called  

1. UI module which provide user interface for uploading documents and entering 

search query. Here user can create documents and folders also. User can view, edit, 

delete uploaded files. User can configure the settings related to their company.  

2. Discover topics Module which discover hidden topics in user uploaded documents. 

First the documents are preprocessed and then train LDA model and by using LDA 

model do topic extraction. These extracted topics are used to define communities and 

indexing search engine. 

3. Community extraction module which is detecting communities based on topic-driven 

approach and community detection algorithms. Here by using LDA topic-model 

which returned user-topic distributions and by using Jensen-Shannon Divergence 

algorithm, the topic distances between two users are calculated. Then using the 

calculated distances, community graph has been constructed. Then to construct use 

communities used an adapted approach of Girvan-Newman which is based on 

divisive classification. 

4. Item based collaborative filtering Module which uses the detected communities and 

user history to find more relevant articles. Item based collaborative filtering consider 

about the user search history in a particular community (based on communities 

identified by above community detection module) and according to the frequency of 

any article viewed or downloaded, article would be given a preference value. These 

inferred preference values are stored with the search results and they are used to 

derive a final composite score, on which ultimate search results are based on. 

5. Search optimization Module which is responsible for integrating above modules to 

search engine, build indexing, rank files, execute the query and find best search 

results. Lucene is used to internalize the topics and topic memberships while 

building the index and executing the queries. Here used Payloads to cleverly encode 

the topics in each document at index time. When user has entered the query, 

determine which topics are in the query, based on the terms in the query. Then create 
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a Payload query based on these topics. Lucene will then find all documents that 

contain these topics. We ignore the actual relevancy returned by Lucene, and instead 

use the contents of the Payload to compute the relevancy ourselves, and re-rank the 

results. 

1.6. Resource Requirements 

1. Software application, which stores document repository, which calls APIs, which 

calls libraries, which implements algorithms and which integrates all modules into 

one. 

2. Programming Languages, client side scripting languages (ASP.Net Core, HTML, 

CSS, Java script), databases(SQL Server). 

3. Server for storing files and to run software application. 

1.7. Structure of the Thesis 

This thesis has been structured with 8 chapters. Chapter 1 gave an overall introduction 

the project. Chapter 2 provides a critical review of the developments and issues in the 

area of semantic information retrieval by defining the research problem and 

identification of technologies.  Chapter 3 is on technology adapted to semantic 

information retrieval platform. Chapter 4 presents our approach to semantic information 

retrieval for software industry applications. Chapter 5 illustrates the design of research 

and Chapter 6 presents the how the application is implemented. Chapter 7 describes how 

the application is evaluated based on several criteria. Finally, Chapter 8 concludes the 

thesis with a note on the possible further work. 

1.8. Summary 

This chapter provided an introduction to the entire project. For this purpose, we have 

presented our research problem, objectives, technology adopted, proposed solution and 

resource requirements. Next chapter provides a detailed critical review of semantic 

information retrieval system.
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CHAPTER 2 

2. SEMANTIC INFORMATION RETRIEVAL ISSUES AND CHALLENGES  

2.1. Introduction 

Chapter 1 gave an introduction to overall project. This chapter presents a critical review 

of literature on semantic information retrieval. 

The study of relationships between words and how we construct meaning, how we 

experience the world, how we understand others and ourselves can be considered as 

semantic language. Semantics can also refer to the branch of study within linguistics that 

deals with language and how we understand meaning. Hence searching through 

documents considering more than one syntactic level of keyword matching can be called 

as semantic search. This plays a major role in semantic searching unlike key word 

matching in traditional searching. In traditional searching if it fails to catch exact key 

word, then it would fail to provide any result. In searching based on semantic data, to 

provide actual meaning of data, the semantics of data should be considered where ever it 

is possible. Semantic languages are used to keep track of metadata of a data source. 

2.2. Generation of Semantic Information Retrieval 

Searching technology of the first generation that regards directory index as 

characteristics keywords and the second generation considers the importance of pages of 

searching technology of technical analysis and hyperlink features. Network information 

is developing towards the third generation searching technology with semantic and 

personality.  

The first generation of searching technology product is yahoo, data model of network 

literature is established and its model is similar to the approach of the library literature 

classification, the function is simple and not standardized. During the course of manual 
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classification, there exit the problems of high cost and low efficiency, which does not 

satisfy the rapid growth of online information resources management.  

The second generation of searching technology is google and baidu in domestic 

products, both data models of network resource use a number of keywords to express, 

and the inverted index is established. This model has the advantages that it can provide 

large scale searching for the computers, but keywords are only symbol of the page in it, 

and the semantic which is referred has not been used. As the searching technology 

cannot understand the semantics which exits at the website of the information, leading to 

much duplication and too little useful information, searching information is 

inconvenient.  

The third generation searching technology uses semantic data model that combines xml, 

rdf, ontology, laying the foundation for the content that computer can learn, now there 

are not representation products. The current searching technology is mainly based on 

matching keywords or full text of classification based on themes. The results often return 

a large number of unrelated links, allowing user to spend too much time on the exclusion 

of irrelevant information. At the same time users and network documentation on the 

presentation of the same concept are different, then does not receive useful information. 

In order to solve the current problems of information retrieval, the searching technology 

is more effective tool that is firstly applied to the network information searching. But 

there are some defects such as providing search results based on dynamically detected 

community interests, poor real-time information, searching technology in the database 

cannot be changed with the network of dynamic documents, which is unable to provide 

timely updated information for the users, information seekers are poor and cannot 

retrieve the corresponding areas of information according to the requirements of users, 

leading to emergence of large number of irrelevant information, and frequently using 

searching technology every day for millions of users with services, even if such 

searching technology that uses high performance server hardware systems is also 

difficult to provide such a range of rapid response. 
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2.3. State of the Art of Personalized Semantic Information Retrieval 

Search engines are based on several approaches. Two major principles we could identify 

in search engines. It is key search and semantic search. 

• Key search 

It is based on just keywords or phrases. People use technologies like tokenizers, filters 

etc. it uses process called indexation which is for transforming input document into one 

term. It is the base for searching. The issue with that is they don’t consider semantics 

like relationships, knowledge etc. 

• Semantic search 

This technology is based on the semantics of the data. It is more intelligent than key 

searching. It could use synonyms in general way to find hidden some information. 

One of the targets of W3C consortium is also semantic web. It provides styles for web 

which could be readable understandable by both humans and machines. Therefore, 

machine knows how to find, infer or derive the information.  

A. Topic Modeling 

The predecessor of topic modeling can be traced back to LSA (Latent Semantic 

Analysis) [6]. LSA is based on spatial dictionaries, and implicit semantic documents are 

implemented in low- dimensional representation of space, but it cannot solve the 

problem of the coexistence of many possible meanings for a word or phrase. Hofmann 

proposes a PLSA (Probabilistic Latent Semantic Analysis) [7,8] for the defect of LSA, 

mainly using the probability distribution corresponding to one dictionary in each 

dimension. However, PLSA does not provide a probabilistic model at the document 

level, which leads to overfitting problems easily due to the linear increase in the number 

of parameters to be estimated in the model with the size of the corpus. LDA (Latent 

Dirichlet Allocation) [9] is a generation model that uses the Dirichlet a priori distribution 

of topics to overcome the shortcomings of PLSA. The model can find the semantic 

structure of the text set, mining the theme of the text (Table 2.1). 
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Table 2.1 - Topic Modeling Current Practices and Issues 

 

B. Community Detection 

Community detection algorithms has been widely used for detecting hidden 

communities. They can be generally divided into two classes: topic-based approaches 

and structure-based approaches. Widely studied structure-based approach [11,12] does 

not have a clear perspective on how to make sense of identified communities. Only a 

few research efforts fall into the topic-based approach, which groups individuals sharing 

common topic interests into a community.  

Sachan et al., [18] proposed a generative model to discover communities based on 

topics, social graph topology, and nature of user interactions. Pathak et al., [19] proposed 

a Bayesian generative model for community extraction which considered both the 

network topology and user topic to generate communities. Structure-based approaches 

for detecting communities mine shared common interests on Twitter based on their 

relationship hierarchies starting from celebrities which represents an interest category 

[20]. A LDA-based model has been used to detect user topics based on their tweets [21], 

then created the topic graph also called semantic graph where the weight was the topic 

similarity of two users, then applied existing community detection algorithm to find the 

community in the topic graph. Jaffali et al., [22] presented an approach based on 

grouping users who share the same interests by analyzing their textual posts. They 

applied Principal Component Analysis to find the principle components, called interest 
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center and used k-mean clustering algorithms to cluster the users based on their distance 

to principle components. Current semantic search engines lack a dynamic approach 

which uses the user uploaded files for detecting communities (Table 2.2). 

Table 2.2 - Community Detection Current Practices And Issues 

 

C. Collaborative Filtering 

Personalization is essential for personalized search results suggestion. Providing search 

results based on user preferences as well as their profiles is one way of doing 

personalization and it is tightly coupled with the relevant search functionality. 

Collaborative filtering which is massively used in recommendation systems is an 

approach deriving profile based on who historically had similar tastes [13]. Current 

semantic search engines’ personalization is based on user history and already defined 

communities, but they lack dynamically detected community-based personalization 

approach. 

Item based collaborative filtering is much popular by now than user based collaborative 

filtering. Item based collaborative filtering which was presented by Badrul Sarwar [14] 

has overcome scalability problems and literature emphasizes is better than K-nearest 

algorithm (Table 2.3). 
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Table 2.3 – Collaborative filtering current practices and issues 

 

Information  retrieval  by  searching  information on  the web  is not  a  fresh  idea  but  

has  different challenges when it is  compared  to  general information  retrieval.  

Different  search  engines return different search results due to the variation in indexing 

and search process. Google, Yahoo, and Bing  have  been  out  there  which  handles  the  

queries  after  processing the  keywords.  They  only search information given on the 

web page, recently, some research group’s start delivering results from their semantics 

based search engines, and however most  of  them are  in  their  initial  stages. Till  none  

of  the search  engines  come  to  close indexing  the  entire  web  content,  much  less  

the entire Internet.  Current  web  is the  biggest global  database that  lacks the  

existence of  a  semantic  structure and hence  it  makes  difficult  for  the  machine  to  

understand  the  information  provided  by  the  user. When the information was 

distributed in web, we have two kinds of research problems in search engine i.e.    

• How  can  a  search engine  map  a  query to  documents  where  information  is 

available  but does not retrieve in intelligent and meaning full information. The  

query results  produced  by  search engines  are  distributed  across  different  

documents that may be connected with hyperlink.  

• How  search engine can recognize efficiently such a distributed results.   

Semantic web  [27]  [28], can solve  the  first problem in  web  with semantic  

annotations  to  produce intelligent and meaningful information by using query interface 
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mechanism and ontology’s. Other one can be solved by the graph-based query models 

[29]. The Semantic web would require solving extraordinarily  difficult  problems  in  

the  areas  of  knowledge  representation,  natural  language understanding. The 

following figure depicts the semantic  web  frame  work  it also  referred as the semantic 

web layercake by W3C.  

Present  World  Wide  Web  is  the  longest  global  database  that  lacks  the  existence  

of  a  semantic structure and hence it becomes difficult for the machine to understand the 

information provided by the user in the form of search strings. As for results, the search 

engines return the ambiguous or  partially  ambiguous result  data  set; Semantic  web  is  

being  to be  developed  to overcome  the following problems for current web.    

• The web content lacks a proper structure regarding the representation of 

information.  

• Ambiguity of information resulting from poor interconnection of information.  

• Automatic information transfer is lacking.  

• Usability to deal with enormous number of users and content ensuring trust at all 

levels.  

• Incapability  of  machines  to  understand  the  provided  information  due  to  

lack  of  a universal format.   

 

Hakia [30] is a general purpose semantic search  engine that search structured text like  

Wikipedia. Hakia  calls  itself  a  “meaning-based  (semantic)  search  engine”  [31].  

They’re  trying  to  provide search  results  based  on  meaning  match,  rather  than  by  

the  popularity  of  search  terms.  The presented news, Blogs, Credible, and galleries are 

processed by hakia's proprietary core semantic technology called QDEXing [30]. It can 

process any kind  of  digital artifact by its Semantic  Rank technology using third party 

API feeds [32]. 
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D. Types of Semantic Search Engines 

Semantic is the process of communicating enough meaning to result in an action. A 

sequence of symbols can be used to communicate meaning, and this communication can 

then affect behavior. Semantics has been driving the next generation of the Web as the 

Semantic Web, where the focus is on the role of semantics for automated approaches to 

exploiting Web resources. ‘Semantic’ also indicates that the meaning of data on the web 

can be discovered not just by people, but also by computers. Then the Semantic Web 

was created to extend the web and make data easy to reuse everywhere.   

Semantic web is being developed to overcome the following main limitations of the 

current Web [33]:    

• The web content lacks a proper structure regarding the representation of 

information.   

• Ambiguity of information resulting from poor interconnection of information.   

• Automatic information transfer is lacking.   

• Unable to deal with enormous number of users and content ensuring trust at all 

levels.   

• Incapability  of  machines  to  understand  the provided  information  due  to  lack  

of  a universal format.    

✓ Semantic search engines   

Currently many of semantic search engines are developed and implemented in different 

working environments, and these mechanisms can be put into use to realize present 

search engines.   

Alcides Calsavara and Glauco Schmidt proposes and defines a novel kind of service for 

the semantic search engine. A semantic search engine stores semantic information about 

Web resources and is able to solve complex queries, considering as well the context 

where the Web resource is targeted, and how a semantic search engine may be employed 
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in order to permit clients obtain information about commercial products and services, as 

well as about sellers and service providers which can be hierarchically organized [34]. 

Semantic search engines may seriously contribute to the development of electronic 

business applications since it is based on strong theory and widely accepted standards.   

Sara Cohen Jonathan Mamou et al presented a semantic search engine for XML 

(XSEarch) [35].It has a simple query language, suitable for a naïve user. It returns 

semantically related document fragments that satisfy the user’s query. Query answers are 

ranked using extended information-retrieval techniques and are generated in an order 

similar to the ranking. Advanced indexing techniques were developed to facilitate 

efficient implementation of XSEarch. The performance of the different techniques as 

well as the recall and the precision were measured experimentally. These experiments 

indicate that XSEarch is efficient, scalable and ranks quality results highly.   

Bhagwat and Polyzotis propose a Semantic-based file system search engine- Eureka, 

which uses an inference model to build the links between files and a File Rank metric to 

rank the files according to their semantic importance [36]. Eureka has two main parts: a) 

crawler which extracts file from file system and generates two kinds of indices: 

keywords’ indices that record the keywords from crawled files, and rank index that 

records the File Rank metrics of the files; b) when search terms are entered, the query 

engine will match the search terms with keywords’ indices, and determine the matched 

file sets and their ranking order by an information retrieval- based metrics and File Rank 

metrics.   

Wang et al . project a semantic search methodology to retrieve information from normal 

tables, which has three main steps: identifying semantic relationships between table 

cells; converting tables into data in the form of database; retrieving objective data by 

query languages [37]. The research objective defined by the authors is how to use a 

given table and a given domain knowledge to convert a table into a database table with 

semantics. The authors’ approach is to denote the layout by layout syntax grammar and 

match these denotation with given templates which can be used to analyze the semantics 
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of table cells. Then semantic preserving transformation is used to transform tables to 

database format.   

Kandogan et al . develop a semantic search engine-Avatar, which combines the 

traditional text search engine with use of ontology annotations [37]. Avatar has two main 

functions: a) extraction and representation – by means of UIMA framework, which is a 

workflow consisting of a chain of annotators extracted from documents and stored in the 

annotation store; b) interpretation – a process of automatically transforming a keyword 

search to several precise searches. Avatar consists of two main parts: semantic optimizer 

and user interaction engine. When a query is entered into the former, it will output a list 

of ranked interpretations for the query; then the top- ranked interpretations are passed to 

the latter, which will display the interpretations and the retrieved documents from the 

interpretations.    

✓ Ontology search engines   

Maedche et al . designed an integrated approach for ontology searching, reuse and 

update [38]. In its architecture, an ontology registry is designed to store the metadata 

about ontologies and ontology server stores the ontologies. The ontologies in distributed 

ontology servers can be created, replicated and evolved. Ontology metadata in ontology 

registry can be queried and registered when a new ontology is created. Ontology search 

in ontology registry is executed  under two conditions -query-by-example is to restrict 

search fields and search terms, and query- by-term is to restrict the hyponyms of terms 

for search.   

Georges Gardarin et al. discussed a SEWISE [39] is an ontology-based Web information 

system to support Web information description and retrieval. According to domain 

ontology, SEWISE can map text information from various Web sources into one 

uniform XML structure and make hidden semantic in text accessible to program. The 

textual information of interest is automatically extracted by Web Wrappers from various 

Web sources and then text mining techniques such as categorization and summarization 

are used to process retrieved text information. 
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2.4. Future Trends  

Topic extraction based on topic models, community detection based on topic-driven 

approach and collaborative filtering have now become emerging areas by now. 

Providing search results based on discovered topics, based on community user 

preferences is one way of enhancing semantic search results and it is tightly coupled to 

search functionality. 

Emulating brain learning structure based on the Random Neural Network with Deep 

Learning clusters [8] has emerge as a semantic information retrieval mechanism for 

large data sets today. This algorithm measures and evaluates Web result relevance by 

assigning each Deep Learning cluster with a specific Web Search Engine and it selects 

the best performing learning cluster to teach other clusters. The learning clusters 

outperform other Web search engines and we confirm that cluster performance can be 

improved by learning from best learning clusters [9]. 

2.5. Problem Definition  

Today the web applications contain vast amount of data which contain large number of 

documents also. Most web application search engines support mostly just relational data-

based and text-based information retrieval. It lacks semantic information retrieval 

platform, which provides user most appropriate search results based on relevancy and 

personalization.  Almost all search engines use text-based search where it matches the 

query string with the text in the files or database. The search result is generated just 

based on the number of occurrences and this does not take real meaning of the query 

string. The same applies to an application where the user tries to find help details. Those 

Search platforms lack providing search results based on most relevant topics for a given 

context and based on individuals who are sharing common topic interests in a 

community.  

Present web application semantic search engines lack providing more semantically rich 

and personalize search results. The search engines use user history and already 
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established communities (eg: twitter followers topology) [5*] for personalizing data. 

Detecting communities from the semantic content itself is hardly found in literature.  

1. Limitations 

• Semantic search engines lack of dynamic community detection approach which 

uses the current semantics of data 

• Incapability of finding user community preferences, when established 

community structure is not given 

• Inability to extract more relevant semantics of data 

• Semantic search engines lack a model combined with semantics of data 

extraction using latest technology (LDA) module and dynamic community 

extraction module.  

• Hence searching based on content has become a challenge to most applications. 

2.6. Summary 

Chapter 2 described about the background towards this research. The generation of 

semantic information retrieval and future trends towards semantic information retrieval. 

Chapter 2 specifically described about the Topic modeling, Community detection and 

Collaborative filtering current practices and issues. Next chapter will discuss about the 

technologies adapted. . 
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CHAPTER 3 

3. TECHNOLOGIES ADAPTED 

3.1. Introduction 

Proposed solution is to provide a semantic information retrieval platform for internal 

searching of a software web application. Information retrieval would be based on topics 

extracted from topic-model, based on communities detected from topic-driven model 

and based on applying personalization and collaborative filtering for providing more 

meaningful search results to user. To provide semantically rich search results, 

application will look into Latent Dirichlet Allocation, Community detection algorithms, 

indexing and ranking methods integrating with collaborative filtering. 

3.2. Discover Topics Based on Optimized LDA Model 

At the document level, one of the most useful ways to understand text is by analyzing its 

topics. The process of learning, recognizing, and extracting these topics across a 

collection of documents is called topic modeling. Topic modeling most popular 

techniques today are: LSA, pLSA, LDA, and the newer, deep learning-based lda2vec.  

All topic models are based on the same basic assumption: 

• each document consists of a mixture of topics, and 

• each topic consists of a collection of words. 

In other words, topic models are built around the idea that the semantics of our 

document are actually being governed by some hidden, or “latent,” variables that we are 

not observing. As a result, the goal of topic modeling is to uncover these latent variables-

topics-that shape the meaning of our document and corpus. The rest of this blog post will 

build up an understanding of how different topic models uncover these latent topics. 
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▪ LSA 

Latent Semantic Analysis, or LSA, is one of the foundational techniques in topic 

modeling. The core idea is to take a matrix of what we have-documents and terms-and 

decompose it into a separate document-topic matrix and a topic-term matrix. 

The first step is generating our document-term matrix. Given m documents and n words 

in our vocabulary, we can construct an m × n matrix A in which each row represents a 

document and each column represents a word. In the simplest version of LSA, each 

entry can simply be a raw count of the number of times the j-th word appeared in the i-th 

document. In practice, however, raw counts do not work particularly well because they 

do not account for the significance of each word in the document. For example, the word 

“nuclear” probably informs us more about the topic(s) of a given document than the 

word “test.” 

▪ PLSA 

pLSA, or Probabilistic Latent Semantic Analysis, uses a probabilistic method instead of 

SVD to tackle the problem. The core idea is to find a probabilistic model with latent 

topics that can generate the data we observe in our document-term matrix. In particular, 

we want a model P(D,W) such that for any document d and word w, P(d,w) corresponds 

to that entry in the document-term matrix. 

Recall the basic assumption of topic models: each document consists of a mixture of 

topics, and each topic consists of a collection of words. pLSA adds a probabilistic spin to 

these assumptions: 

given a document d, topic z is present in that document with probability P(z|d) 

given a topic z, word w is drawn from z with probability P(w|z). 
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▪ LDA 

LDA stands for Latent Dirichlet Allocation. LDA is a Bayesian version of pLSA. In 

particular, it uses dirichlet priors for the document-topic and word-topic distributions, 

lending itself to better generalization. 

Consider the very relevant example of comparing probability distributions of topic 

mixtures. Let’s say the corpus we are looking at has documents from 3 very different 

subject areas. If we want to model this, the type of distribution we want will be one that 

very heavily weights one specific topic, and doesn’t give much weight to the rest at all. 

If we have 3 topics, then some specific probability distributions we’d likely see are: 

▪ Mixture X: 90% topic A, 5% topic B, 5% topic C 

▪ Mixture Y: 5% topic A, 90% topic B, 5% topic C 

▪ Mixture Z: 5% topic A, 5% topic B, 90% topic C 

If we draw a random probability distribution from this dirichlet distribution, 

parameterized by large weights on a single topic, we would likely get a distribution that 

strongly resembles either mixture X, mixture Y, or mixture Z. It would be very unlikely 

for us to sample a distribution that is 33% topic A, 33% topic B, and 33% topic C. 

That’s essentially what a dirichlet distribution provides: a way of sampling probability 

distributions of a specific type. Recall the model for pLSA: 

The model the proposed system use, is the well-known statistical topic model, Latent 

Dirichlet Allocation (LDA) [10,11]. In LDA model (Figure 3.1), the hidden semantic 

structure includes:  

 

Figure 3.1 - LDA model 
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3.3. Community Detection Based on Topic-Driven Approach 

A number of community-detection algorithms and methods have been proposed and 

deployed for the identification of communities in literature. There have also been 

modifications and revisions to many methods and algorithms already proposed. We can 

divide the previous work in literature in two approaches   

✓ First Approach (Based On The Relation Between Community Members)  

This approach divided into four categories. First category is node centric community 

detection, Second category is group centric community detection (Density-Based 

Groups), and third category is network centric community detection, while the fourth 

category is hierarchy centric community detection.   

✓ Node centric community detection  

Wherever nodes satisfy different properties as complete mutuality which implies cliques; 

another property is reachability of members as k-clique.   

✓ Group centric community detection (Density-Based Groups)  

It needs the total group to satisfy an explicit condition for instance the group density 

greater than or equal a given threshold and take away nodes with degree under the 

typical average degree.   

✓ Network centric community detection  

It takes into account connections within a network globally. Its goal to partition nodes of 

a network into disjoint sets, five different perspectives utilized in network-centric 

community detection.  First is the clustering supported vertex similarity using Jaccard 

similarity and Cosine similarity. Second is Latent space models supported k-means 

clustering. Third is the block model approximation based on exchangeable graph 

models. Fourth is spectral clustering are using minimum cut problem that the number of 

edges between the two sets is reduced. The fifth is modularity maximization by 

measures the strength of a community partition by taking into consideration the degree 

distribution. 
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✓ Hierarchy centric community detection 

Hierarchy centric community detection Aims to build a hierarchical structure of 

communities supported network topology to permit the analysis of a network at different 

resolutions two representative methods. First divisive hierarchical clustering (top-down) 

and the second is agglomerative hierarchical clustering (bottom-up). The strength of a tie 

is measured by edge betweenness that is the number of shortest paths that pass along 

with the edge. 

For detecting communities the proposed model uses hierarchy centric community 

detection with topic-driven approach. Here by using LDA topic-model which returned 

user-topic distributions and by using Jensen-Shannon Divergence algorithm the topic 

distances between two users have been calculated. Then using the calculated distances, 

community graph has been constructed. Used an adapted approach of Girvan-Newman 

which is based on divisive classification. Girvan-Newman Algorithm is as follows. 

1. Start all nodes as only one community 

2. Calculate betweenness scores for all edges 

3. Find edge with highest score and remove it from network 

4. Recalculate betweenness for all remaining edges 

5. Remove until get communities 

3.4. Collaborative Filtering Module 

Item-based collaborative filtering (IBCF) was launched by Amazon.com in 1998, which 

dramatically improved the scalability of recommender systems to cater for millions of 

customers and millions of items. Prior to the launch of IBCF, there had been many 

systems of user-based collaborative filtering (UBCF) developed in the academia and the 

industry, which had the issues of huge computational cost and limited scalibilty, but 

since the IBCF algorithm was published in IEEE Internet Computing in 2003, it has been 

widely adopted across all the Web giants, including YouTube, Netflix, and lots of others. 
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This article will bring a toy example to explain how UBCF and IBCF work and why 

internet giants prefer IBCF to UBCF. 

✓ User-Based Collaborative Filtering 

o Step 1: Calculate the similarity between Alex and all other users 

The calculation for the similarity between Alex and Bob can be derived from Formula 1 

by putting the corresponding values into the formula as follows: sim(Alex, Bob) = (4 * 5 

+ 2 * 3 + 4 * 3) / [sqrt(4²+ 2²+ 4²) * sqrt(5² + 3² + 3²)] = 0.97. The similarity value 

between Alex and Tom can be obtained by following the same way, which is 1. 

o Step 2: Predict the ratings of movies that are rated by Alex 

In this example, Formula 2-(b) is used as the prediction function. First of all, k value 

needs to be calculated by injecting the similarity values calculated at Step 1, which is k = 

1/(0.97+1) = 0.51. Now, the movie Thor unrated by Alex can be worked out by the 

following calculation: R(Alex, Thor) = k * [sim(Alex, Bob) * R(Bob, Thor)+ sim(Alex, 

Tom) * R(Tom, Thor)]= 0.51 * (0.97 * 4 + 1 * 4) = 4.02. The final table with the ratings 

on all movies from Alex is shown in Table 2. 

o Step 3: Select top-2 rated movies 

Since the ratings of movies that are not rated by Alex have been predicted, it is 

straightforward to find the top-2 movies, which are Spider-man and Thor. 

✓ Item-Based Collaborative Filtering 

o Step 1: transpose the user-item matrix to the item-user matrix 

As the item similarity is required by IBCF, the item-user matrix shown in Table 3, 

transposed from the corresponding user-item matrix, makes it more clear by viewing 

each row as an item vector during the similarity calculation. 

 

o Step 2: Calculate the similarity between any two items and fill up the 

item-item similarity matrix 
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First of all, an example of calculating the item similarity between Avenger and Star wars 

is demonstrated here. According to Formula 3, the specific calculation of the similarity 

between Avenger and Star wars is as follows: sim(Avengers, Star wars) = (4 * 2 + 5 * 3) 

/ [sqrt(4² + 5²) * sqrt(2² + 3²)] = 0.99624059. By following the similar way, the item-

item similarity matrix can be filled as Table 4, where 0 means the similarity between the 

two movies cannot be calculated due to data sparsity. 

o Step 3: Predict  the ratings of movies that are rated by Alex 

After successfully building the item-item similarity matrix, the calculation of the rating 

of movies that are not rated by Alex can be done by injecting the values to Formula 4: 

R(Alex, Thor) = (sim(Thor,Avengers) * R(Alex,Avengers) + sim(Thor, Iron man) * 

R(Alex, Iron man)) / (sim(Thor, Avengers) + sim(Thor, Iron man)) = 4. 

o Step 4: Select top-2 rated movies for Alex 

The final predicted rating of the movie Thor rated by Alex is listed in Table 5 along with 

the other ratings made by Alex. It is obvious that three movies tie for second place, so 

the top-2 rated movies by Alex is comprised of Spider-man and one of the three tied 

movies — Avengers, Thor and Iron man. 

✓ Computational Cost Comparison Item based vs User based Collaborative 

Filtering 

The computational cost for UBCF in the worst case is O(NM) because it requires 

examining N customers and up to M items for each customer; However, due to the 

sparsity of the user-item matrix, the actual computational cost would be close to O(N + 

M) because for most customers, they only rated a small number of movies which results 

in a computational cost of O(N), and for a handful customers who rated a significant 

amount of movies, the computational cost is close to O(M). 

In terms of the computational cost for IBCF, there are two parts — building the item-item 

similarity matrix and predicting the ratings. For building the item-item matrix, O(N²M) 

is required in the worst Case, and O(NM) is the computational cost in reality due to the 
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sparsity in the user-item matrix. In regard to the prediction, the computational cost only 

depends on the movies that the user has rated, which is usually very little. 

By comparing the computational cost of these two methods, it seems that IBCF requires 

more expensive computational cost, but building the item-item similarity matrix are 

calculated offline and the online prediction needs very little computational cost; 

However, for UBCF, there is no offline calculation, so all of the computational cost is 

online, which turns out that the predictions are literally very slow even for middle-size 

datasets due to the heavy online computational cost. 

o Why not move online computation offline for User-Based Collaborative 

Filtering 

On most of the websites, e.g. Amazon.com, the number of users is much larger than the 

number of movies. As shown in Table 6, there are seven users and two movies. When 

the rating of Avenger by Alex changed from 1 to 4, the similarity between Alex with 

other users are affected drastically as one of the two values in the row/user vector has 

been changed; while, since the change only takes place in one of the seven values in the 

column/item vector, it has little impact on the similarity value between Avenger and Star 

wars. As a result, calculating the similarity between users cannot be moved offline. 

o Sparsity issue for User-Based Collaborative Filtering 

As most of the users on a website only rated a few of the movies, the data usually are 

sparse, which could be similar to the user-item matrix in Table 7. Taking the prediction 

of Bob’s rating on Spider-man as an example, IBCF can be easily applied on this task as 

the item-item similarity can be calculated between Spider-man with any other movies; 

However, it is hard to achieve an accurate prediction by UBCF because the only 

similarity value is possible to be calculated between Alex and Bob, and it is impossible 

for UBCF to produce a decent prediction by using only one similar user’s rating. 

In proposed system Item based collaborative filtering (3.1) used as the personalization 

mechanism. User search history in a particular community (based on communities 
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identified by above community detection module)  and according to the frequency of any 

article viewed or downloaded, article would be given a preference value. These inferred 

preference values are stored with the search results and they are used to derive a final 

composite score, on which ultimate search results are based on.  

         (3.1) 

3.5. Search Optimization Module 

This module is responsible for integrating above modules to search engine, build 

indexing, rank files, execute the query and find best search results (Figure 3.2). Lucene-

lda is used to internalize the topics and topic memberships while building the index and 

executing the queries. Here used Payloads to cleverly encode the topics in each 

document at index time. We ignore the actual relevancy returned by Lucene, and instead 

use the contents of the Payload to compute the relevancy ourselves, and re-rank the 

results. 

 

Figure 3.2 - Lucene in a search system 
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3.6. Summary 

Chapter 3 described about the technologies used in discovering hidden topics using topic 

modeling, community detection and collaborative filtering techniques. Chapter 4 will 

discuss about the approach taken. 
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CHAPTER 4 

4. APPROACH 

4.1. Introduction 

Chapter 3 presented a broad overview of technology that have been used for solving 

semantic information retrieval system. In this chapter we provide our novel approach to 

semantic information retrieval with the use of semantic web and collaborative filtering. 

As such we have structure the chapter with subsections namely hypothesis, input, output 

and overall features. In the description, the section of the process gives over all 

functionality of the system together with the relevant technologies.  

4.2. Hypothesis 

Proper identification of topics in a corpus, identification of shared interests in a 

community based on topic-driven approach and recommending items based on item-

based collaborative filtering will improve providing more relevant search results to user 

in a semantic information retrieval platform in a web application. 

Proposed solution is to provide a semantic information retrieval platform for internal 

searching of a software application. Information retrieval would be based on semantics 

of data, based on topic-based community detection, based on applying personalization 

and collaborative filtering on top of detected communities for providing more 

meaningful search results to user. To provide semantically rich search results, 

application will look into latent Dirichlet allocation and topic-driven community 

detection methods integrating with collaborative filtering. 

The system contains five modules called  

1. UI module which provide user interface for uploading documents and entering 

search query. Here user can create documents and folders also. User can view, edit, 

delete uploaded files. User can configure the settings related to their company.  
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2. Discover topics Module which discover hidden topics in user uploaded 

documents. First the documents are preprocessed and then train LDA model and by 

using LDA model do topic extraction. These extracted topics are used to define 

communities and indexing search engine. 

3. Community extraction module which is detecting communities based on topic-

driven approach and community detection algorithms. Here by using LDA topic-model 

which returned user-topic distributions and by using Jensen-Shannon Divergence 

algorithm, the topic distances between two users are calculated. Then using the 

calculated distances, community graph has been constructed. Then to construct use 

communities used an adapted approach of Girvan-Newman which is based on divisive 

classification. 

4. Item based collaborative filtering Module which uses the detected communities 

and user history to find more relevant articles. Item based collaborative filtering consider 

about the user search history in a particular community (based on communities identified 

by above community detection module) and according to the frequency of any article 

viewed or downloaded, article would be given a preference value. These inferred 

preference values are stored with the search results and they are used to derive a final 

composite score, on which ultimate search results are based on. 

5. Search optimization Module which is responsible for integrating above modules 

to search engine, build indexing, rank files, execute the query and find best search 

results. Lucene is used to internalize the topics and topic memberships while building 

the index and executing the queries. Here used Payloads to cleverly encode the topics in 

each document at index time. When user has entered the query, determine which topics 

are in the query, based on the terms in the query. Then create a Payload query based on 

these topics. Lucene will then find all documents that contain these topics. We ignore the 

actual relevancy returned by Lucene, and instead use the contents of the Payload to 

compute the relevancy ourselves, and re-rank the results. 
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4.3. Process 

Search engines or localized software systems developed for information searching, play 

an important role in knowledge discovery. Proliferation of data in the web and social 

media has posed significant challenges in finding relevant information efficiently even 

using those search engines or other software systems. Moreover, those systems or 

engines tend to collect massive number of data, which could be useful for humans in 

various ways but overlook the meaning of the search phrases, hence generate irrelevant 

search results. A unit level searching i.e. searching information within a website or page 

is also not effective as they follow exact keyword matching techniques and ignore the 

semantic level matching of search phrases. In order to address those deficiencies, this 

research proposes a hybrid approach which use the semantics of data, community 

preferences as well as collaborative filtering techniques for semantic information 

retrieval. More specifically, Topic modeling based on Latent Dirichlet Allocation 

together with topic-driven based community detection methods are applied for 

identifying personalized search results and hence improve the relatedness of the research 

results. Based on the proposed hybrid approach a framework for semantic search that 

can easily be integrated to a software application has been implemented. The evaluation 

results confirm the effectiveness of search results which outperform benchmark 

approaches that follow traditional keyword search algorithms. 

The process of the system behaves like finding the needle inside hay. The system uses 

topic modeling to detect most relevant topics for given corpus, uses topic-driven 

community detection algorithm to detect communities and provides most relevant search 

results based on community interests and item-based collaborative filtering. 

1. User login and authentication 

2. User upload files 

3. Train the model with given corpus 

4. Discover communities 

5. Analyze user uploaded files and community interests 
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6. Detect most relevant files for user given query 

The top-level architecture of our proposed MAS system is shown figure 4.1 

 

Figure 4.1 - Design diagram (Top level architecture) 

4.4. Input and Output 

Files uploaded by the users, user identity (unique user-id), search query entered by user 

are the main inputs to the system. Recommended search results for user-entered query 

with suggested document list are the main output of the system. 

User has to sigh-up first and after sign in user can upload files, create files, edit files. 

Based on users context he will be assign to communities dynamically and when user 

search for particular thing, results will display based on user community preferences. 

4.5. Users 

The people who are using the internal web applications can search their queries using 

this application. Also any person can use this system and can searched for particular 

article. 
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4.6. Features 

Provide semantic search results based on semantic meaning, recommend files based on 

detected hidden communities are the key features of this system. The system is an online 

application which can access from any location. User can configure their own settings 

and can use the system.  

4.7. Summary 

Chapter 4 described about the approach used in semantic metadata extraction and 

collaborative filtering techniques. Chapter 5 will discuss about the design of the internal 

web application including information retrieval system.        
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CHAPTER 5 

5. DESIGN 

5.1. Introduction 

Chapter 4 discuss about the approach taken for the development of research. This 

chapter presents top level architecture of semantic information retrieval of internal web 

application.  It contains four different modules which altogether perform the semantic 

searching. The file server would be located in a separate location. The framework is 

responsible of handling searching functionality.   

 

Figure 5.1 - High level architecture of semantic information retrieval 

Semantic information retrieval platform has five main modules (Figure 5.1).  

Proposed solution is to provide a semantic information retrieval platform for internal 

searching of a web application. Information retrieval would be based on identifying 

hidden topics of the articles, based on identifying hidden communities using topic-driven 

approach and based on applying personalization and collaborative filtering for providing 

more meaningful search results to user. To provide semantically rich search results, 
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application will look into latent Dirichlet allocation and Jensen-Shannon-Divergence for 

community extraction integrating with collaborative filtering. 

5.2. Discover Topics Module based on Optimized LDA Model 

Topic modeling is a model which uses generative statistical models and analyze the 

words in a collection of documents to discover the hidden semantic structure in these 

documents. The proposed system use, is the well-known statistical topic model, Latent 

Dirichlet Allocation (LDA) [15,16]. In LDA model (Figure 5.2), the hidden semantic 

structure includes:  

 

Figure 5.2 - LDA model 

1. a list of topics, i.e., the topics occurring in the collection of documents 

2. the per-topic word distribution ϕ for a specific topic, i.e., the list of words in a topic 

and the probability of a word appearing in a topic  

3. the per-document topic distribution θ for a specific document, i.e., the probability 

that a document covers each topic, 

4. the per-document per-word topic word assignments z, i.e., the topic for a word in a 

document.  

In other words, LDA represents documents as random mixtures over latent topics that 

generate words with certain probabilities.  
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 Assuming this generative model for a collection of documents, the central computing 

problem for LDA is to inspect the observed collection to find the hidden topic structure 

that is most likely to generate the collection, that is, to figure out the latent variables ϕ, θ, 

and z. In addition, the above LDA model is conditioned on three parameters, α and β, 

and k, where α is the parameter of the Dirichlet prior on the per-document topic 

distribution, β is the parameter of the Dirichlet prior on the per-topic word distribution, 

and k is the number of topics covered by the collection of documents. 

 

 

 

 

 

 

Figure 5.3 illustrate the process of discovering hidden topics from the set of articles. The 

application will iterate through all the documents in document server and preprocess the 

data by removing unnecessary words. Then the preprocessed articles will be sent to LDA 

model for training purpose. The LDA model will discover the hidden topics of the 

articles. 

5.3. Community Extraction Module based on Topic-Driven Model 

 

 

 

 

                                                                                                         

 

 

Figure 5.4 – Topic-driven community detection module 

Figure 5.3 - Process of discovering hidden topics from the set of articles 
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Figure 5.4 describes the process of topic-driven community detection module. Following 

steps have been followed in this process. 

• Calculate distance between users 

The researchers, in [23], define the distance between user i and user j as the Jensen-

Shannon Divergence between the topics distributions on users presented by the 

following (5.1). 

       (5.1) 

where DJS(i,j) : the Jensen-Shannon Divergence between the two topic distributions DTi 

and DTj. It is defined as (5.2). 

     (5.2) 

where M: the average of the two probability distributions. DKL: the Kullback-Leibler 

Divergence which defines the divergence from distribution Q to distribution P as (5.3). 

        (5.3) 

In the first measure (domains), we calculate the distance between users as the Jensen-

Shannon Divergence between domains distributions over users as in formula 1 and 2. – 

The second measure (topics-domains) combines the two previous measures (Topics, 

Domains). This new measure allows decreasing the distance between users who do not 

treat only same topics but also same domains. The distance between users in this 

measure is computed by using (5.4). 

     (5.4) 
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• Construct graph 

Here nodes and edges represent users and topic distance between users respectively. In 

the topic graph, we create an edge from the user i to the user j, if the user j is the closest 

to the user i for the topic k, the weight of this link is calculated as the distance between 

them for this selected topic k. Moreover, if there is another edge from the user i to the 

user j for another topic, it is enough to choose the minimal distance between these two 

users i and j (Figure 5.5). 

 

Figure 5.5 - Graph representation 

• Construct user communities 

Used an adapted approach of Girvan-Newman which is based on divisive classification. 

Girvan-Newman Algorithm is as follows. 

a. Start all nodes as only one community 

b. Calculate betweenness scores for all edges 

c. Find edge with highest score and remove it from network 

d. Recalculate betweenness for all remaining edges 

e. Remove until get communities 

Anthropologist Dunbar [24] suggests that the size of communities with strong ties in 

both traditional social networks and Internet-based social networks should be limited to 

150 (called Dunbar’s number) because of human’s cognitive constraints and time 

constraints. Large communities of size over 150 people contain weak connections 
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among their members and are therefore not stable. Therefore, the community size was 

limited to 150 users. 

5.4. Item-based Collaborative Filtering Module 

 

 

 

 

 

Figure 5.6 shows how files have been ranked according to users’ interest in a 

community. Here item based collaborative filtering is used. 

Item based collaborative filtering consider about the user search history in a particular 

community (based on communities identified by above community detection module)  

and according to the frequency of any article viewed or downloaded, article would be 

given a preference value. These inferred preference values are stored with the search 

results and they are used to derive a final composite score, on which ultimate search 

results are based on.  

Here pairwise similarities of the columns of the rating matrix using some similarity 

measure is computed and store top 20 to 50 most similar items per item in the item-

similarity matrix. Prediction: use a weighted sum over all items similar to the unknown 

item that have been rated by the current user (5.5). The output of this module is list of 

recommended articles for particular user 

      (5.5) 

Figure 5.6 – Process of ranking files according to dynamically defined community preferences 

User belongs 

community 

Item based collaborative 

filtering 

Ranked files according to 

community preference 
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5.5. Search Optimization Module 

This module is responsible for integrating above modules to search engine via build 

indexing, rank files, execute the query and find best search results (Figure 5.7). 

Lucene is used to internalize the topics and topic memberships while building the index 

and executing the queries [25]. List of terms in the corpus (term list), matrix that 

specifies the membership of each word in each topic. (topic-word distribution), matrix 

that lists the original file names that LDA was executed on and matrix that specifies the 

topic membership of each file in each topic. (document-topic distribution) are the input 

files to system. 

Here used Payloads to cleverly encode the topics in each document at index time. When 

user has entered the query, determine which topics are in the query, based on the terms 

in the query. Then create a Payload query based on these topics. Lucene will then find 

all documents that contain these topics. We ignore the actual relevancy returned by 

Lucene, and instead use the contents of the Payload to compute the relevancy ourselves, 

and re-rank the results. 

 

 

 

 

5.6. Summary 

Chapter 5 discuss about the design of the semantic information retrieval system. Chapter 

6 will discuss about how the implementation of the semantic information retrieval 

system has done for internal web application. 

Figure 5.7 – Process of indexing articles 

LDA model 
User-topic, topic-word distributions 

Term list, file name list 

Customize 

Lucene 

Search 

engine 
Build index Indexed files 
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CHAPTER 6 

6. IMPLEMENTATION 

6.1. Introduction 

In this chapter we are discussing detail about how each module described in chapter 4 

has been implemented. Semantic Information Retrieval Platform has been designed to 

run on any Hardware platform since it is a web application. The overall software has 

been developed as an ASP .Net web application. However different modules inside the 

system have been implemented with different technologies such as Python programming 

language using large number of libraries like Gensim, NLTK, MALLET etc, 

ANACONDA platform for easy source code maintenance and Lucene has used as 

Search Engine platform for indexing and integrating other modules. 

Following Figure 6.1 describes the entire flow of the system. 
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Figure 6.11 - Semantic Information Retrieval System 
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6.2. Data Preprocessing 

The training module uses XML parsing of Wiki Dump with 70,000 articles for training 

LDA model. Before passing articles to train the model, those Wiki articles are 

preprocessed by the removal of stop words, URLs, articles, file attachments, XML 

labels, special characters, digits, spaces, new lines, punctuations etc. It Uses 

lemmatization for further filtering of necessary data. Lemmatization is nothing but 

converting a word to its root word. For example: the lemma of the word ‘machines’ is 

‘machine’. Likewise, ‘walking’ –> ‘walk’, ‘mice’ –> ‘mouse’ and so on. Keep only 

articles with more than 150 characters and it considers English characters only. It 

produces a corpus as a list of document id, word id, word frequency -dictionary (Figure 

6.2) and a list of words with their ids. All the tokens(words) in the dictionary which 

either have occurred in less than 4 articles or have occurred in more than 40% of the 

articles are removed from the dictionary. Further removed content neutral words and 

finally Prepare document-term matrix. For more optimization created Bigram and 

Trigram Models. The technologies used here is NLTK package comes with Gensim 

library in Python (Appendix A). 

 

Figure 6.2 - Word frequency dictionary 
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6.3. Discover Topics Based on Topic Modeling 

The module uses the Latent Dirichlet Allocation (LDA) from Gensim package along 

with the Mallet’s implementation (via Gensim). Mallet has an efficient implementation 

of the LDA. It is known to run faster and gives better topics segregation. Figure 6.3 

demonstrated the inputs and outputs of LDA model. As per the technology, here used 

Python 2.7 as programming language and Python core packages used - re, gensim, 

spacy, pyLDAvis, matplotlib, numpy and pandas. 

 

Figure 6.3 - LDA Model 

• Optimize LDA model 

Computed Model Perplexity and Coherence Score which provides a convenient measure 

to judge how good a given topic model is. Perplexity lower is the better and coherence 

higher is the better. Further used MALLET to optimize LDA model. Build many LDA 

models with different values of number of topics (k) and pick the one that gives the 

highest coherence value.  

7.  

8. #Creating the object for LDA model using gensim library & Training LDA 

model on the document term matrix. 

9. ldamodel = Lda(doc_term_matrix, num_topics=50, id2word = dictionary, 

passes=50, iterations=500) 



44 

 

10. ldafile = open('lda_model_sym_wiki.pkl','wb') 

11. cPickle.dump(ldamodel,ldafile) 

12. ldafile.close() 

13.  

14. #Print all the 50 topics 

15. for topic in ldamodel.print_topics(num_topics=50, num_words=10): 

16.     print topic[0]+1, " ", topic[1],"\n" 

When build the LDA model, following parameters need to be passed. 

# Build LDA model 

lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, 

                                           id2word=id2word, 

                                           num_topics=50,  

                                           random_state=100, 

                                           update_every=1, 

                                           chunksize=100, 

                                           passes=10, 

                                           alpha='auto', 

                                           per_word_topics=True) 

 

• Key factors to obtain good segregation topics 

1. The quality of text processing. 

2. The variety of topics the text talks about. 

3. The choice of topic modeling algorithm. 

4. The number of topics fed to the algorithm. 

5. The algorithms tuning parameters. 

 

6.3. Community Detection Based on Topic-Driven Approach 

For the community detection following steps have been followed.  

1. Calculate the distance between users. 
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Here used Jensen-Shannon-Divergence in order to calculate the distances between users 

according to topic distributions. As per the technology used Python programming 

language with necessary python libraries (Appendix B) 

2. Construct the graph  

Here nodes and edges represent users and topic distance between users respectively. In 

the topic graph, we create an edge from the user i to the user j, if the user j is the closest 

to the user i for the topic k, the weight of this link is calculated as the distance between 

them for this selected topic k. Moreover, if there is another edge from the user i to the 

user j for another topic, it is enough to choose the minimal distance between these two 

users i and j.  

This graph construction was implemented by writing algorithm based on user-topic 

distributions discovered from LDA model. 

 

Figure 6.4 - Sample Graph.text file content 

The weighted graph “graph.txt” (Figure 6.4), it's a CSV file where each line has the 

following format: u,v,w. Above line specifies that there is an edge between node u and v 

with positive weight w. 
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3. Construct communities 

Following code describes the community construction once we input above constructed 

graph structure from the file (Appendix C). 

Output of this module is a list of communities with their belonging users. For an 

example in Figure 6.5 dictates that users 1,2,3 belongs to one community and users 

9,10,11 belongs to another community. 

 

Figure 6.5 - Constructed communities 

6.4. Item-Based Collaborative Filtering Module 

Item based collaborative filtering consider about the user search history in a particular 

community (based on communities identified by above module) and according to the 

frequency of any article viewed or downloaded, article would be ranked. Here the 

python implementation interacts with the database search history (Appendix D). 

The output of this module is list of recommended articles for particular user. 
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6.5. Search Optimization Module 

This module is responsible for integrating above modules to search engine, build 

indexing, rank files, execute the query and find best search results. Lucene-lda is used to 

internalize the topics and topic memberships while building the index and executing the 

queries. 

Specifically, need to specify four files, for each parameter LDA parameter combination 

1. vocab.dat: a Vx1 list of terms in the corpus (term list) 

2. words.dat: a KxV matrix (white-space delimited) that specifies the membership 

of each word in each topic. (topic-word distribution) 

3. files.dat: A Dx3 matrix (white-space) that lists the original file names that LDA 

was executed on. The first and third columns are ignored; the second column 

should contain the file name. (document name list) 

4. theta.dat: A DxK matrix (white-space) that specifies the topic membership of 

each file in each topic. (document-topic distribution) –pass only user’s 

community DxK only, if search result is empty, then only pass all DxK 

V is the number of terms; K is the number of topics; and D is the number of documents. 

The order of the terms in vocab.dat should match the order in words.dat; the same is true 

for the filenames in files.dat and theta.dat. 

Here used Payloads to cleverly encode the topics in each document at index time. When 

user has entered the query, determine which topics are in the query, based on the terms 

in the query. Then create a Payload query based on these topics. Lucene will then find 

all documents that contain these topics. We ignore the actual relevancy returned by 

Lucene, and instead use the contents of the Payload to compute the relevancy ourselves, 

and re-rank the results. In order to provide more better results, recommended files 

returned from item-based collaborative filtering module is integrated when provide 

search results to user. Following C# code snippet describes how LDA model has 

integrated to Lucene search engine (Appendix E). 
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Figure 6.6 - User Sign-up page 

 

Figure 6.7 - User sign-in page 
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Figure 6.7 - List of user uploaded files and user can edit uploaded files 

 

Figure 6.8 - File up loader 
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Figure 6.9 - Create new file 

 

Figure 6.10 - Search results for text “carrom” 

 

Figure 6.11 - Search results for text “mom” 
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Figure 6.12 - Search results for text “county” 

 

Figure 6.13 - Configuration set-up page 



52 

 

 

Figure 6.14 - Uploaded file content 

6.6. Summary  

Chapter 6 discuss about the implementation of the semantic information retrieval system 

explaining in detail how each module has implemented. Chapter 7 will discuss 

evaluation of the semantic information retrieval system has done for internal web 

application. 
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CHAPTER 7 

7. EVALUATION 

7.1. Introduction 

This section presents the observations on the discovered topic accuracy and topic 

similarities of users in dynamically defined communities. Here explained the 

Experimental Setup, Participants, Test Cases, Testing strategies. In detail explain about 

the collected training corpus, quality of trained LDA model and further more compare 

the topic similarity among users in an actual group versus, users in a dynamically 

detected community. Hence this chapter presents the quality of entire proposed model 

for obtaining semantic information with community interests. 

7.2. Experimental Setup 

Experiment done in personal computers, which installed python libraries. 

7.3. Participants 

The participants are cooperative 20 web application users which are employees of 

QualitApps Asia Pvt Ltd. Experiment done in personal computers, which installed 

python libraries. Users have given their own user name and passwords to login to the 

system. 

7.4. Test Cases 

Input - Group of users has to note down what topics they suggest for given set of 

documents. User has to save set of files inside the user specific folder. User has to define 

his particular interested area. User enters query to search for articles. 

Output – Topics identified for given set of articles by the system. Constructed user 

communities with user belonginess. Recommended articles for user entered query based 

on community interests. 
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7.5. Testing Strategies 

Install the application to run on Linux, Apple and Windows environment.  

7.6. Training Data 

The corpus used to train an LDA model is collection of articles in English Wikipedia 

which was downloaded from [26] in September 2018. The collection contains over 5 

million articles. Articles are preprocessed by removal of unnecessary words. stop words, 

URLs, articles, file attachments, XML labels, special characters, digits, spaces, new 

lines, punctuations etc. It Uses lemmatization for further filtering of necessary data. 

Lemmatization is nothing but converting a word to its root word. For example: the 

lemma of the word ‘machines’ is ‘machine’. Likewise, ‘walking’ –> ‘walk’, ‘mice’ –> 

‘mouse’ and so on. Keep only articles with more than 150 characters and it considers 

English characters only. It produces a corpus as a list of document id, word id, word 

frequency -dictionary and a list of words with their ids. All the tokens(words) in the 

dictionary which either have occurred in less than 4 articles or have occurred in more 

than 40% of the articles are removed from the dictionary. 

7.7. LDA Model Performance 

LDA model is trained by setting the number of topics to 10, 20, and 40 respectively. Fig. 

7.1 illustrates computed coherence score when number of topics(K) equals to 10, 20 and 

40. In LDA model higher the coherence score means the trained topic model is more 

accurate. It can be justified when compare with Table 7.1. Table 7.1 interprets the actual 

topics defined for given articles for different K values along with human prediction. 

When comparing those two results we can interpret that the best LDA model creates 

when K=20 since it is closer to topics defined by human. 



55 

 

 

Table 7.1 - Evaluate the model basaed on different topic numbers 

A K = 10 K = 20 K = 40 
Human 

1 Government War Game War 

2 People Education_Research Literature_or_Study Education 

3 People Movie_TV_SHow Music Music 

4 Award_Ceremony Games People Sports 

5 Space_Astronomes Weather_or_Sport Natural Disaster Weather 

6 Unknown Engineering Engineering Computer 

7 LandScapes Nature Natural Species Biology 

8 Governing Finance Unknown Business 

9 Country Computer Software_Computer Engineering 

10 Relationships Food_Meals unknown Food 
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Figure 7.1 - Choosing optimal model with coherence scores 

 

Figures 7.2, 7.3 illustrates the interpretations have done over the trained LDA model. 

 

Figure 7.2 - Topic-word distribution 
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Figure 7.3 - Word count and importance of topic keywords 

7.8. Community Detection 

Calculate distance between users using Jensen Shannon Divergence (Table 7.2). 
 

Table 7.2 - Distance between users 

 User1 User2 User3 User4 User5 

User1 0.00000 1.260869 1.163385 10226157 1.243853 

User2 1.260869 0.00000 1.231731 1.264484 1.247072 

User3 1.163385 1.231731 0.00000 1.263051 1.142907 

User4 1.226157 1.264484 1.263051 0.00000 1.230949 

User5 1.243853 1.247072 1.142907 1.230949 0.00000 

 

Construct graph (Figure 7.4) based on closeness between users according to selected 
topic (Table 7.3). 
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Table 7.3 - Closeness between users for selected topic 

 Topic1 Topic2 Topic3 Topic4 Topic5 

User1 0.016541 0.001504 0.001504 0.978947 0.001504 

User2 0.001835 0.001835 0.992661 0.001835 0.001835 

User3 0.952838 0.000873 0.000873 0.044541 0.000873 

User4 0.000608 0.006687 0.000608 0.012766 0.979331 

User5 0.079154 0.906949 0.006647 0.000604 0006647 

 

 

Figure 7.5 - Constructed graph 

Fig. 7.5 illustrates first five most related topics in one community. Here the majority of 
users in this community treat topic "Music". When compare with actual group of users in 
this detected community, interest of actual community also closer to “Music”. 

 

Figure 7.6 - Topics treated in community1 
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Table Error! No text of specified style in document.4 - Evaluate the community detection based on 

different number of topics for trained model 
 

K=10 K=20 K=40 Human 

Person 1 Music Entertainment Travel Entertainment 

Person 2 Country Politics Ethics Political Science 

Person 3 Medicine Education Research Higher education 

Person 4 News Sport Gossips Games 

Person 5 Crimes Finance News Business 

Person 6 Education Computer Science Engineering IT 

Person 7 Politics Universal Explore Music News 

Person 8 Science Meditation Cultural Religious 

Person 9 Art Movies Gossips Movies 

Person 10 Dancing Entertainment Travel Entertainment 

Further Fig. 7.1 can be justified by considering data in above Table 7.4. Table 7.4 

interprets the communities defined for randomly selected 10 people in the test bed for 

different K values given for training LDA model. Also it presents actual communities 

defined by human for given person based on his preferred interests. When comparing 

those results we can further interpret that the best LDA model creates when K=20 since 

it is closer to topics defined by human. 
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7.9. Search Optimization 

1. Step 01 - Filter from User’s Documents 
Filter related top articles from user uploaded documents with probabilities for given 

search query (Table 7.5) 

 

Table 7.5 - Filter Articles User Uploaded Wise 

Article Probability Tag 

Article_1 0.09 UserUpload 

Article_2 0.085 UserUpload 

 

2. Step 02 – Filter using Item-based collaborative filtering (Table 7.6) 
Take top 3 user belonging clusters and consider users of those clusters. Consider 

above users’ search history and filter related articles from user uploaded documents with 
probabilities for given search query 

• User 1 - [Article_1, Article_2, Article_3] 

• User 2 - [Aticle_1, Article_2] 

• User 3 - [Aticle_1] 
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Table Error! No text of specified style in document..6 - Filter articles based on item based 

collaborative filtering 

Article Probability Tag 

Article_19 f(Article_19)/n(articles) = 

0.01 

Collaborative 

Article_29 f(Article_29)/n(articles) = 

0.06 

Collaborative 

Article_1 f(Article_1)/n(articles) = 

0.04 

Collaborative 

 

 

3. Step 04 – Prioritize articles (Table 7.7) 

 

Table 7.7 - Prioritize search results 

Priority Article Probability 

1 Article_1 0.09 + 0.04 

2 Article_2 0.085 

5 Article_29 0.06 

6 Article_19 0.01 
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CHAPTER 8 

8. CONCLUSION AND FURTHER WORK 

8.1. Introduction 

It is evident that this search engine framework can perform better in searching than a 

conventional search engine. It enables the users to identify the community preferences 

even there is no pre-established community topologies. Therefore, the users of internal 

web applications which does not have pre-defined communities, could access the 

relevant information which is hidden in large volumes of data without any usual hassle 

of searching. This makes searching a pleasant experience for users.  

This framework can be integrated to individual web sites and would remarkably improve 

relevant search results. Further integration of personalization based on dynamically 

defined communities will be useful for users. 

Search engines or localized software systems developed for information searching, play 

an important role in knowledge discovery. Proliferation of data in the web and social 

media has posed significant challenges in finding relevant information efficiently even 

using those search engines or other software systems. Moreover, those systems or 

engines tend to collect massive number of data, which could be useful for humans in 

various ways but overlook the meaning of the search phrases, hence generate irrelevant 

search results.  

A unit level searching i.e. searching information within a website or page is also not 

effective as they follow exact keyword matching techniques and ignore the semantic 

level matching of search phrases. In order to address those deficiencies, this research 

proposes a hybrid approach which use the semantics of data, community preferences as 

well as collaborative filtering techniques for semantic information retrieval. More 

specifically, Topic modeling based on Latent Dirichlet Allocation together with topic-

driven based community detection methods are applied for identifying personalized 
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search results and hence improve the relatedness of the research results. Based on the 

proposed hybrid approach a framework for semantic search that can easily be integrated 

to a software application has been implemented. The evaluation results confirm the 

effectiveness of search results which outperform benchmark approaches that follow 

traditional keyword search algorithms. 

8.2. Conclusion  

Proposed solution is to provide a semantic information retrieval platform for internal 

searching of a software application. Information retrieval would be based on semantics 

of data, based on topic-based community detection, based on applying personalization 

and collaborative filtering on top of detected communities for providing more 

meaningful search results to user. To provide semantically rich search results, 

application will look into latent Dirichlet allocation and topic-driven community 

detection methods integrating with collaborative filtering. 

The system contains five modules called  

1. UI module which provide user interface for uploading documents and entering 

search query. Here user can create documents and folders also. User can view, edit, 

delete uploaded files. User can configure the settings related to their company.  

2. Discover topics Module which discover hidden topics in user uploaded documents. 

First the documents are preprocessed and then train LDA model and by using LDA 

model do topic extraction. These extracted topics are used to define communities and 

indexing search engine. 

3. Community extraction module which is detecting communities based on topic-driven 

approach and community detection algorithms. Here by using LDA topic-model 

which returned user-topic distributions and by using Jensen-Shannon Divergence 

algorithm, the topic distances between two users are calculated. Then using the 

calculated distances, community graph has been constructed. Then to construct use 
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communities used an adapted approach of Girvan-Newman which is based on 

divisive classification. 

4. Item based collaborative filtering Module which uses the detected communities and 

user history to find more relevant articles. Item based collaborative filtering consider 

about the user search history in a particular community (based on communities 

identified by above community detection module) and according to the frequency of 

any article viewed or downloaded, article would be given a preference value. These 

inferred preference values are stored with the search results and they are used to 

derive a final composite score, on which ultimate search results are based on. 

5. Search optimization Module which is responsible for integrating above modules to 

search engine, build indexing, rank files, execute the query and find best search 

results. Lucene is used to internalize the topics and topic memberships while 

building the index and executing the queries. Here used Payloads to cleverly encode 

the topics in each document at index time. When user has entered the query, 

determine which topics are in the query, based on the terms in the query. Then create 

a Payload query based on these topics. Lucene will then find all documents that 

contain these topics. We ignore the actual relevancy returned by Lucene, and instead 

use the contents of the Payload to compute the relevancy ourselves, and re-rank the 

results. 

Achievement 01 – Objective “In-depth study of technology used for semantic meta data 

extraction” has been achieved by in-depth study of literature review shown in Chapter 2. 

We have reviewed 20 articles on semantic meta data extraction on latest. Identify 3 

problems and argued for 1.  

Achievement 02 – Objective “Critical review of analyzing topic-based community 

detection” has been achieved by in depth study of literature review shown in Chapter 2. 

We have reviewed 15 articles on community detection methods on latest. Identify 5 

problems and argued for 1.  



65 

 

Achievement 03 – Objective “Critical review of analyzing item based collaborative 

filtering” has been achieved by in depth study of literature review shown in Chapter 2. 

We have reviewed 10 articles on collaborative filtering methods on latest. Identify 4 

problems and argued for 1.  

Achievement 04 – Demonstrated in chapter 4,5,6. 

Achievement 05 – Demonstrated by chapter Evaluation. Here we reported test cases, 

participants etc. 

8.3. Further Work 

The system is performing well for defining topics for given articles and cluster user 

communities. The system only supports for PDF, Word, XML documents is one 

limitation of the system. The system supports only English language. Hence topic 

modeling and topic-driven to detect dynamic communities approach is able to provide 

rich semantic search engine framework to provide best search results with 

personalization for a given query. 
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Appendix A – Python Code for Data Preprocessing 

import xml.etree.ElementTree as ET 

import codecs 

import re 

 

def is_ascii(s): 

    return all(ord(c) < 128 for c in s) 

 

tree = ET.parse('simplewiki-20170201-pages-articles-multistream.xml') 

root = tree.getroot() 

 

dir_path = 'articles-corpus//' 

 

for i,page in 

enumerate(root.findall('{http://www.mediawiki.org/xml/export-

0.10/}page')): 

    for p in page:     

        if p.tag == "{http://www.mediawiki.org/xml/export-0.10/}revision": 

            for x in p: 

                if x.tag == "{http://www.mediawiki.org/xml/export-

0.10/}text":                     

                    article_txt = x.text 

                    if not article_txt == None:                                                 

                        article_txt = article_txt[ : 

article_txt.find("==")] 

                        article_txt = re.sub(r"{{.*}}","",article_txt) 

                        article_txt = 

re.sub(r"\[\[File:.*\]\]","",article_txt) 

                        article_txt = 

re.sub(r"\[\[Image:.*\]\]","",article_txt) 

                        article_txt = re.sub(r"\n: \'\'.*","",article_txt) 

                        article_txt = re.sub(r"\n!.*","",article_txt) 

                        article_txt = re.sub(r"^:\'\'.*","",article_txt) 

                        article_txt = re.sub(r"&nbsp","",article_txt) 

                        article_txt = re.sub(r"http\S+","",article_txt) 

                        article_txt = re.sub(r"\d+","",article_txt)    

                        article_txt = re.sub(r"\(.*\)","",article_txt) 

                        article_txt = 

re.sub(r"Category:.*","",article_txt) 

                        article_txt = re.sub(r"\| .*","",article_txt) 

                        article_txt = re.sub(r"\n\|.*","",article_txt) 
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                        article_txt = re.sub(r"\n \|.*","",article_txt) 

                        article_txt = re.sub(r".* \|\n","",article_txt) 

                        article_txt = re.sub(r".*\|\n","",article_txt) 

                        article_txt = 

re.sub(r"{{Infobox.*","",article_txt) 

                        article_txt = 

re.sub(r"{{infobox.*","",article_txt) 

                        article_txt = 

re.sub(r"{{taxobox.*","",article_txt) 

                        article_txt = 

re.sub(r"{{Taxobox.*","",article_txt) 

                        article_txt = re.sub(r"{{ 

Infobox.*","",article_txt) 

                        article_txt = re.sub(r"{{ 

infobox.*","",article_txt) 

                        article_txt = re.sub(r"{{ 

taxobox.*","",article_txt) 

                        article_txt = re.sub(r"{{ 

Taxobox.*","",article_txt) 

                        article_txt = re.sub(r"\* .*","",article_txt) 

                        article_txt = re.sub(r"<.*>","",article_txt) 

                        article_txt = re.sub(r"\n","",article_txt)   

                        article_txt = 

re.sub(r"\!|\"|\#|\$|\%|\&|\'|\(|\)|\*|\+|\,|\-

|\.|\/|\:|\;|\<|\=|\>|\?|\@|\[|\\|\]|\^|\_|\`|\{|\||\}|\~"," 

",article_txt) 

                        article_txt = re.sub(r" +"," ",article_txt) 

                        article_txt = article_txt.replace(u'\xa0', u' ') 

                        

                        if not article_txt == None and not article_txt == 

"" and len(article_txt) > 150 and is_ascii(article_txt): 

                            outfile = dir_path + str(i+1) +"_article.txt" 

                            f = codecs.open(outfile, "w", "utf-8") 

                            f.write(article_txt) 

                            f.close() 

                            print article_txt 

                            print 

'\n=================================================================\n' 

             

 

import os 
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import random 

import codecs 

import cPickle 

from gensim.models.ldamodel import LdaModel as Lda 

from gensim import corpora 

from nltk.corpus import stopwords  

from nltk.stem.wordnet import WordNetLemmatizer 

 

# Function to remove stop words from sentences & lemmatize verbs.  

def clean(doc): 

    stop_free = " ".join([i for i in doc.lower().split() if i not in 

stop]) 

    normalized = " ".join(lemma.lemmatize(word,'v') for word in 

stop_free.split()) 

    x = normalized.split() 

    y = [s for s in x if len(s) > 2] 

    return y 

 

corpus_path = "articles-corpus/" 

article_paths = [os.path.join(corpus_path,p) for p in 

os.listdir(corpus_path)] 

 

# Read contents of all the articles in a list "doc_complete" 

doc_complete = [] 

for path in article_paths: 

    fp = codecs.open(path,'r','utf-8') 

    doc_content = fp.read() 

    doc_complete.append(doc_content)   

 

# Randomly sample 70000 articles from the corpus created from the 1st 

blog-post (wiki_parser.py)       

docs_all = random.sample(doc_complete, 60000) 

docs = open("docs_wiki.pkl",'wb') 

cPickle.dump(docs_all,docs) 

 

# Use 60000 articles for training. 

docs_train = docs_all[:50000] 

 

# Cleaning all the 60,000 simplewiki articles 

stop = set(stopwords.words('english')) 

lemma = WordNetLemmatizer() 
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doc_clean = [clean(doc) for doc in docs_train] 

 

# Creating the term dictionary of our courpus, where every unique term is 

assigned an index.  

dictionary = corpora.Dictionary(doc_clean) 

 

# Filter the terms which have occured in less than 3 articles and more 

than 40% of the articles  

dictionary.filter_extremes(no_below=4, no_above=0.4) 

 

# List of some words which has to be removed from dictionary as they are 

content neutral words 

stoplist = set('also use make people know many call include part find 

become like mean often different \ 

                usually take wikt come give well get since type list say 

change see refer actually iii \ 

                aisne kinds pas ask would way something need things want 

every str'.split()) 

stop_ids = [dictionary.token2id[stopword] for stopword in stoplist if 

stopword in dictionary.token2id] 

dictionary.filter_tokens(stop_ids) 

 

#words,ids = dictionary.filter_n_most_frequent(50) 

#print words,"\n\n",ids 

 

# Converting list of documents (corpus) into Document Term Matrix using 

dictionary prepared above. 

doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean] 
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Appendix B – Calculate Distance between users Using Jensen 

Shannon Divergence 

import random 

import pandas as pd 

import json 

import os 

import ast 

import sys 

import argparse 

import argcomplete 

import scipy 

import tqdm 

from shutil import copyfile 

from scipy.linalg import norm 

from scipy.stats import entropy 

import multiprocessing 

from functools import partial 

import numpy as np 

import matplotlib.pyplot as plt 

from collections import defaultdict 

from gensim import corpora, models, matutils 

 

def calculate_distances(community): 

    ''' 

        for each user find the distance from every other user using their 

probability distribution vectors 

 

        Dictionary <k, v>(user_id, distribution_vector) 

 

    ''' 

    distance_dir = os.path.join(community, 'calculated_distances/') 

    if(os.path.exists(os.path.join(distance_dir, 

'median_community_distances'))): return  

    comm_doc_vecs = 

open_community_document_vectors_file(os.path.join(community, 

'community_doc_vecs.json')) 

    if(len(comm_doc_vecs) <= 1): return 

    if not os.path.exists(os.path.dirname(distance_dir)): 

        os.makedirs(os.path.dirname(distance_dir), 0o755) 
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    jen_shan_file = os.path.join(distance_dir, 'jensen_shannon') 

    if os.path.exists(jen_shan_file): os.remove(jen_shan_file) 

    with open(jen_shan_file, 'w') as out: 

        for key in sorted(comm_doc_vecs): 

            user = key 

            # only necessary to compare each user with any other user once 

            vec_1 = comm_doc_vecs.pop(key) 

 

            for key_2 in sorted(comm_doc_vecs): 

                vec_2 = comm_doc_vecs[key_2] 

                out.write('{}\t{}\t{}\n'.format(user, key_2, 

jensen_shannon_divergence(vec_1, vec_2))) 

 

def jensen_shannon_divergence(P, Q): 

    _P = np.array(P) / norm(np.array(P), ord=1) 

    _Q = np.array(Q) / norm(np.array(Q), ord=1) 

    _M = 0.5 * (_P + _Q) 

    return 0.5 * (entropy(_P, _M) + entropy(_Q, _M)) 

 

def individual_user_distance_graphs(internal, community): 

    ''' 

    creates graph displaying each user in the community comparing the 

jensen shannon divergences between 

    their probability distribution vectors against other users  

 

    x-axis: users in community, y-axis: distance from observed user  

    ''' 

    distance_dir = os.path.join(community, 'calculated_distances/') 

    if internal: 

        jsd_dists = os.path.join(distance_dir, 'jensen_shannon') 

        out_path = os.path.join(os.path.join(community, 

'internal_user_graphs/jensen_shannon/')) 

        out_file = os.path.join(distance_dir, 'community_distances') 

    else: 

        jsd_dists = os.path.join(distance_dir, 'jensen_shannon_ext') 

        out_path = os.path.join(os.path.join(community, 

'external_user_graphs/jensen_shannon/')) 

        out_file = os.path.join(distance_dir, 'ext_community_distances') 

    comm_doc_vecs = 

open_community_document_vectors_file(os.path.join(community, 

'community_doc_vecs.json')) 

    if(len(comm_doc_vecs) <= 1): return 
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    if not os.path.exists(os.path.dirname(out_path)): 

        os.makedirs(os.path.dirname(out_path), 0o755) 

    x_axis = np.arange(1, len(comm_doc_vecs)) 

    df = pd.read_csv(jsd_dists, sep='\t', header=None, names=['user_1', 

'user_2', 'distance']) 

    for user in comm_doc_vecs: 

        if not os.path.exists(os.path.join(out_path, user + '.png')): 

            new_df = df[(df.user_1 == int(user)) | (df.user_2 == 

int(user))] 

            new_df.to_csv(out_path + str(user), sep='\t', header=None, 

index=None) 

            y_axis = new_df['distance'].tolist() 

            draw_scatter_graph(user, 'Community Members', 'Jensen Shannon 

Divergence', x_axis, y_axis, 0, len(x_axis) + 1, 0, (np.log(2) + 0.1), 

os.path.join(out_path, user)) 

 

def draw_scatter_graph(title, x_label, y_label, x_axis, y_axis, min_x, 

max_x, min_y, max_y, output_path): 

    fig = plt.figure() 

    fig.suptitle(title, fontsize=14, fontweight='bold') 

    ax = fig.add_subplot(111) 

    ax.set_xlabel(x_label) 

    ax.set_ylabel(y_label) 

    ax.plot(x_axis, y_axis, 'o') 

    ax.axis([min_x, max_x, min_y, max_y]) 

    plt.margins(0.2) 

    plt.tick_params(labelsize=10) 

    fig.subplots_adjust(bottom=0.2) 

    plt.savefig(output_path) 

    plt.close(fig) 
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Appendix C – Construct the Communities using Girwan 

Newman Algorithm 

#!/usr/bin/env python 

import networkx as nx 

import math 

import csv 

import random as rand 

import sys 

 

_DEBUG_ = False 

 

#this method just reads the graph structure from the file 

def buildG(G, file_, delimiter_): 

    #construct the weighted version of the contact graph from cgraph.dat 

file 

    #reader = csv.reader(open("/home/kazem/Data/UCI/karate.txt"), 

delimiter=" ") 

    reader = csv.reader(open(file_), delimiter=delimiter_) 

    for line in reader: 

        if len(line) > 2: 

            if float(line[2]) != 0.0: 

                #line format: u,v,w 

                

G.add_edge(int(line[0]),int(line[1]),weight=float(line[2])) 

        else: 

            #line format: u,v 

            G.add_edge(int(line[0]),int(line[1]),weight=1.0) 

 

#keep removing edges from Graph until one of the connected components of 

Graph splits into two 

#compute the edge betweenness 

def CmtyGirvanNewmanStep(G): 

    if _DEBUG_: 

        print "Calling CmtyGirvanNewmanStep" 

    init_ncomp = nx.number_connected_components(G)    #no of components 

    ncomp = init_ncomp 

    while ncomp <= init_ncomp: 

        bw = nx.edge_betweenness_centrality(G, weight='weight')    #edge 

betweenness for G 

        #find the edge with max centrality 
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        max_ = max(bw.values()) 

        #find the edge with the highest centrality and remove all of them 

if there is more than one! 

        for k, v in bw.iteritems(): 

            if float(v) == max_: 

                G.remove_edge(k[0],k[1])    #remove the central edge 

        ncomp = nx.number_connected_components(G)    #recalculate the no 

of components 

 

#compute the modularity of current split 

def _GirvanNewmanGetModularity(G, deg_, m_): 

    New_A = nx.adj_matrix(G) 

    New_deg = {} 

    New_deg = UpdateDeg(New_A, G.nodes()) 

    #Let's compute the Q 

    comps = nx.connected_components(G)    #list of components     

    print 'No of communities in decomposed G: %d' % 

nx.number_connected_components(G) 

    Mod = 0    #Modularity of a given partitionning 

    for c in comps: 

        EWC = 0    #no of edges within a community 

        RE = 0    #no of random edges 

        for u in c: 

            EWC += New_deg[u] 

            RE += deg_[u]        #count the probability of a random edge 

        Mod += ( float(EWC) - float(RE*RE)/float(2*m_) ) 

    Mod = Mod/float(2*m_) 

    if _DEBUG_: 

        print "Modularity: %f" % Mod 

    return Mod 

 

def UpdateDeg(A, nodes): 

    deg_dict = {} 

    n = len(nodes)  #len(A) ---> some ppl get issues when trying len() on 

sparse matrixes! 

    B = A.sum(axis = 1) 

    for i in range(n): 

        deg_dict[nodes[i]] = B[i, 0] 

    return deg_dict 

 

#run GirvanNewman algorithm and find the best community split by 

maximizing modularity measure 
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def runGirvanNewman(G, Orig_deg, m_): 

    #let's find the best split of the graph 

    BestQ = 0.0 

    Q = 0.0 

    while True:     

        CmtyGirvanNewmanStep(G) 

        Q = _GirvanNewmanGetModularity(G, Orig_deg, m_); 

        print "Modularity of decomposed G: %f" % Q 

        if Q > BestQ: 

            BestQ = Q 

            Bestcomps = nx.connected_components(G)    #Best Split 

            print "Components:", Bestcomps 

        if G.number_of_edges() == 0: 

            break 

    if BestQ > 0.0: 

        print "Max modularity (Q): %f" % BestQ 

        print "Graph communities:", Bestcomps 

    else: 

        print "Max modularity (Q): %f" % BestQ 

 

def main(argv): 

    if len(argv) < 2: 

        sys.stderr.write("Usage: %s <input graph>\n" % (argv[0],)) 

        return 1 

    graph_fn = argv[1] 

    G = nx.Graph()  #let's create the graph first 

    buildG(G, graph_fn, ',') 

     

    if _DEBUG_: 

        print 'G nodes:', G.nodes() 

        print 'G no of nodes:', G.number_of_nodes() 

     

    n = G.number_of_nodes()    #|V| 

    A = nx.adj_matrix(G)    #adjacenct matrix 

 

    m_ = 0.0    #the weighted version for number of edges 

    for i in range(0,n): 

        for j in range(0,n): 

            m_ += A[i,j] 

    m_ = m_/2.0 

    if _DEBUG_: 

        print "m: %f" % m_ 
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    #calculate the weighted degree for each node 

    Orig_deg = {} 

    Orig_deg = UpdateDeg(A, G.nodes()) 

 

    #run Newman alg 

    runGirvanNewman(G, Orig_deg, m_) 

 

if __name__ == "__main__": 

    sys.exit(main(sys.argv)) 
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Appendix D – Item Based Collaborative Filtering which 

returns Recommended Articles for Particular User 

import numpy as np 

import scipy.stats 

import scipy.spatial 

from sklearn.cross_validation import KFold 

import random 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

import math 

import warnings 

import sys 

#from sklearn.utils.extmath import np.dot 

 

warnings.simplefilter("error") 

 

users = 6040 

items = 3952 

 

def readingFile(filename): 

    f = open(filename,"r") 

    data = [] 

    for row in f: 

        r = row.split(',') 

        e = [int(r[0]), int(r[1]), int(r[2])] 

        data.append(e) 

    return data 

 

def similarity_item(data): 

    print "Hello" 

    #f_i_d = open("sim_item_based.txt","w") 

    item_similarity_cosine = np.zeros((items,items)) 

    item_similarity_jaccard = np.zeros((items,items)) 

    item_similarity_pearson = np.zeros((items,items)) 

    for item1 in range(items): 

        print item1 

        for item2 in range(items): 

            if np.count_nonzero(data[:,item1]) and 

np.count_nonzero(data[:,item2]): 
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                item_similarity_cosine[item1][item2] = 1-

scipy.spatial.distance.cosine(data[:,item1],data[:,item2]) 

                item_similarity_jaccard[item1][item2] = 1-

scipy.spatial.distance.jaccard(data[:,item1],data[:,item2]) 

                try: 

                    if not 

math.isnan(scipy.stats.pearsonr(data[:,item1],data[:,item2])[0]): 

                        item_similarity_pearson[item1][item2] = 

scipy.stats.pearsonr(data[:,item1],data[:,item2])[0] 

                    else: 

                        item_similarity_pearson[item1][item2] = 0 

                except: 

                    item_similarity_pearson[item1][item2] = 0 

 

            #f_i_d.write(str(item1) + "," + str(item2) + "," + 

str(item_similarity_cosine[item1][item2]) + "," + 

str(item_similarity_jaccard[item1][item2]) + "," + 

str(item_similarity_pearson[item1][item2]) + "\n") 

    #f_i_d.close() 

    return item_similarity_cosine, item_similarity_jaccard, 

item_similarity_pearson 

 

def crossValidation(data): 

    k_fold = KFold(n=len(data), n_folds=10) 

 

    Mat = np.zeros((users,items)) 

    for e in data: 

        Mat[e[0]-1][e[1]-1] = e[2] 

 

    sim_item_cosine, sim_item_jaccard, sim_item_pearson = 

similarity_item(Mat) 

    #sim_item_cosine, sim_item_jaccard, sim_item_pearson = 

np.random.rand(items,items), np.random.rand(items,items), 

np.random.rand(items,items)  

 

    '''sim_item_cosine = np.zeros((items,items)) 

    sim_item_jaccard = np.zeros((items,items)) 

    sim_item_pearson = np.zeros((items,items)) 

    f_sim_i = open("sim_item_based.txt", "r") 

    for row in f_sim_i: 

        r = row.strip().split(',') 

        sim_item_cosine[int(r[0])][int(r[1])] = float(r[2]) 
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        sim_item_jaccard[int(r[0])][int(r[1])] = float(r[3]) 

        sim_item_pearson[int(r[0])][int(r[1])] = float(r[4]) 

    f_sim_i.close()''' 

 

    rmse_cosine = [] 

    rmse_jaccard = [] 

    rmse_pearson = [] 

 

    for train_indices, test_indices in k_fold: 

        train = [data[i] for i in train_indices] 

        test = [data[i] for i in test_indices] 

 

        M = np.zeros((users,items)) 

 

        for e in train: 

            M[e[0]-1][e[1]-1] = e[2] 

 

        true_rate = [] 

        pred_rate_cosine = [] 

        pred_rate_jaccard = [] 

        pred_rate_pearson = [] 

 

        for e in test: 

            user = e[0] 

            item = e[1] 

            true_rate.append(e[2]) 

 

            pred_cosine = 3.0 

            pred_jaccard = 3.0 

            pred_pearson = 3.0 

 

            #item-based 

            if np.count_nonzero(M[:,item-1]): 

                sim_cosine = sim_item_cosine[item-1] 

                sim_jaccard = sim_item_jaccard[item-1] 

                sim_pearson = sim_item_pearson[item-1] 

                ind = (M[user-1] > 0) 

                #ind[item-1] = False 

                normal_cosine = np.sum(np.absolute(sim_cosine[ind])) 

                normal_jaccard = np.sum(np.absolute(sim_jaccard[ind])) 

                normal_pearson = np.sum(np.absolute(sim_pearson[ind])) 

                if normal_cosine > 0: 
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                    pred_cosine = np.dot(sim_cosine,M[user-

1])/normal_cosine 

 

                if normal_jaccard > 0: 

                    pred_jaccard = np.dot(sim_jaccard,M[user-

1])/normal_jaccard 

 

                if normal_pearson > 0: 

                    pred_pearson = np.dot(sim_pearson,M[user-

1])/normal_pearson 

 

            if pred_cosine < 0: 

                pred_cosine = 0 

 

            if pred_cosine > 5: 

                pred_cosine = 5 

 

            if pred_jaccard < 0: 

                pred_jaccard = 0 

 

            if pred_jaccard > 5: 

                pred_jaccard = 5 

 

            if pred_pearson < 0: 

                pred_pearson = 0 

 

            if pred_pearson > 5: 

                pred_pearson = 5 

 

            print str(user) + "\t" + str(item) + "\t" + str(e[2]) + "\t" + 

str(pred_cosine) + "\t" + str(pred_jaccard) + "\t" + str(pred_pearson) 

            pred_rate_cosine.append(pred_cosine) 

            pred_rate_jaccard.append(pred_jaccard) 

            pred_rate_pearson.append(pred_pearson) 

 

        rmse_cosine.append(sqrt(mean_squared_error(true_rate, 

pred_rate_cosine))) 

        rmse_jaccard.append(sqrt(mean_squared_error(true_rate, 

pred_rate_jaccard))) 

        rmse_pearson.append(sqrt(mean_squared_error(true_rate, 

pred_rate_pearson))) 
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        print str(sqrt(mean_squared_error(true_rate, pred_rate_cosine))) + 

"\t" + str(sqrt(mean_squared_error(true_rate, pred_rate_jaccard))) + "\t" 

+ str(sqrt(mean_squared_error(true_rate, pred_rate_pearson))) 

        #raw_input() 

 

    #print sum(rms) / float(len(rms)) 

    rmse_cosine = sum(rmse_cosine) / float(len(rmse_cosine)) 

    rmse_pearson = sum(rmse_pearson) / float(len(rmse_pearson)) 

    rmse_jaccard = sum(rmse_jaccard) / float(len(rmse_jaccard)) 

 

    print str(rmse_cosine) + "\t" + str(rmse_jaccard) + "\t" + 

str(rmse_pearson) 

 

    f_rmse = open("rmse_item.txt","w") 

    f_rmse.write(str(rmse_cosine) + "\t" + str(rmse_jaccard) + "\t" + 

str(rmse_pearson) + "\n") 

 

    rmse = [rmse_cosine, rmse_jaccard, rmse_pearson] 

    req_sim = rmse.index(min(rmse)) 

 

    print req_sim 

    f_rmse.write(str(req_sim)) 

    f_rmse.close() 

 

    if req_sim == 0: 

        sim_mat_item = sim_item_cosine 

 

    if req_sim == 1: 

        sim_mat_item = sim_item_jaccard 

 

    if req_sim == 2: 

        sim_mat_item = sim_item_pearson 

 

    #predictRating(Mat, sim_mat_item) 

    return Mat, sim_mat_item 

 

def predictRating(recommend_data): 

 

    M, sim_item = crossValidation(recommend_data) 

 

    #f = open("toBeRated.csv","r") 
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    f = open(sys.argv[2],"r") 

    toBeRated = {"user":[], "item":[]} 

    for row in f: 

        r = row.split(',')   

        toBeRated["item"].append(int(r[1])) 

        toBeRated["user"].append(int(r[0])) 

 

    f.close() 

 

    pred_rate = [] 

 

    #fw = open('result2.csv','w') 

    fw_w = open('result2.csv','w') 

 

    l = len(toBeRated["user"]) 

    for e in range(l): 

        user = toBeRated["user"][e] 

        item = toBeRated["item"][e] 

 

        pred = 3.0 

 

        #item-based 

        if np.count_nonzero(M[:,item-1]): 

            sim = sim_item[item-1] 

            ind = (M[user-1] > 0) 

            #ind[item-1] = False 

            normal = np.sum(np.absolute(sim[ind])) 

            if normal > 0: 

                pred = np.dot(sim,M[user-1])/normal 

 

        if pred < 0: 

            pred = 0 

 

        if pred > 5: 

            pred = 5 

 

        pred_rate.append(pred) 

        print str(user) + "," + str(item) + "," + str(pred) 

        #fw.write(str(user) + "," + str(item) + "," + str(pred) + "\n") 

        fw_w.write(str(pred) + "\n") 

 

    #fw.close() 
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    fw_w.close() 

 

#recommend_data = readingFile("ratings.csv") 

recommend_data = readingFile(sys.argv[1]) 

#crossValidation(recommend_data) 

predictRating(recommend_data) 
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Appendix E – Integrate with Lucene 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.IOException; 

import java.io.Serializable; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.LinkedHashMap; 

import java.util.List; 

import java.util.Map; 

import java.util.TreeSet; 

 

import org.apache.log4j.Logger; 

import org.apache.lucene.document.Document; 

import org.apache.lucene.search.IndexSearcher; 

import org.apache.lucene.search.ScoreDoc; 

import org.apache.lucene.search.TopDocs; 

 

 

class LDAHelper : Serializable { 

 

    private static final long serialVersionUID = -5883161587870956703L; 

    private static final Logger logger = Logger.getRootLogger(); 

     

    // 'scens' (short for scenarios) holds all the LDAK objects: one for 

each K 

    // (The data structure is a simple class defined below) 

    public ArrayList<LDAK> scens; 

     

     

    // Used when LDA needs to be run on the given inDirName 

    LDAHelper(String inDirName) throws IOException{ 

    } 

     

    public void runLDA(int K, String inDirName){ 

        LDAK ldak = new LDAK(); 

        ldak.K = K; 
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        //TODO: run MALLET 

        //TODO: transform MALLET datastructures into LDAK datastructures 

    } 

 

    // Used when LDA has already been run by the user, and we just need to 

swallow up the data in the files 

    LDAHelper(){ 

        scens = new ArrayList<LDAK>(); 

    } 

     

    // Add a scenario from disk 

    public void addScenario(int K, String inDirName) throws IOException{ 

         

        logger.info("Adding LDA scenario: K="+K+", dir="+inDirName); 

 

        // First, check that the four files are present: 

        if (! (new File((inDirName + "/vocab.dat")).exists())){ 

            System.err.println("Error: " + inDirName + "/vocab.dat does 

not exist."); 

            return; 

        } 

        if (! (new File((inDirName + "/files.dat")).exists())){ 

            System.err.println("Error: " + inDirName + "/files.dat does 

not exist."); 

            return; 

        } 

        if (! (new File((inDirName + "/theta.dat")).exists())){ 

            System.err.println("Error: " + inDirName + "/theta.dat does 

not exist."); 

            return; 

        } 

        if (! (new File((inDirName + "/words.dat")).exists())){ 

            System.err.println("Error: " + inDirName + "/words.dat does 

not exist."); 

            return; 

        } 

         

        LDAK ldak = new LDAK(); 

        ldak.K = K; 

         

        // Read the term map 
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        BufferedReader br = new BufferedReader(new FileReader(inDirName +  

"/vocab.dat")); 

        int counter=0; 

        String line; 

        while ((line = br.readLine()) != null) { 

            ldak.termMap.put(line, counter); 

            ++counter; 

        } 

         

        // Read the file map 

        br = new BufferedReader(new FileReader(inDirName + "/files.dat")); 

        counter=0; 

        while ((line = br.readLine()) != null) { 

            String lineParts[] = line.split("\\s+"); 

            ldak.fileMap.put(lineParts[1], counter); 

            ++counter; 

        } 

         

        // Set the constants, that will be used later. 

        ldak.D = ldak.fileMap.size(); 

        ldak.W = ldak.termMap.size(); 

         

        // Read the theta and phi matrices 

        ldak.theta = readFileIntoMatrix(inDirName + "/theta.dat", ldak.D, 

ldak.K); 

        ldak.phi   = readFileIntoMatrix(inDirName + "/words.dat", ldak.K, 

ldak.W); 

         

        scens.add(ldak); 

    } 

     

     

    /** 

     *  

     * @param fileName 

     * @param numRows 

     * @param numCols 

     * @return 

     */ 

    private float[][] readFileIntoMatrix(String fileName, int numRows, int 

numCols) { 

        BufferedReader br = null; 
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        float[][] matrix = new float[numRows][numCols]; 

 

        try { 

            br = new BufferedReader(new FileReader(fileName)); 

            String line = null; 

            int x=0; 

            int y=0; 

            while ((line = br.readLine()) != null) { 

                String[] values = line.split("\\s+"); 

                y = 0; 

 

                // Special case: MALLET returns nans, for example if there 

were more topics 

                // than documents. In this case, just make a row of 0s 

                if (values[0].equals("nan")){ 

                    for (String str : values) { 

                        matrix[x][y++]=0; 

                    } 

                } else { 

                    // Normal case: everything went as expected (real 

valued numbers 

                    // in file) 

                    for (String str : values) { 

                        float str_double = Float.parseFloat(str); 

                        matrix[x][y++]=str_double; 

                    } 

                } 

                ++x; 

            } 

        } catch (Exception e){ 

            e.printStackTrace(); 

            return null; 

        } 

 

        return matrix; 

    } 

 

    public String encodeTopics(int docId, int K) { 

        String out = ""; 

        int idx = which(K); 
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        for (int i=0;i<scens.get(idx).K;++i){ 

            out += ("," + scens.get(idx).theta[docId][i]); 

        } 

        return out; 

    } 

     

     

    // Given an K value, this function returns the index of this K in the 

scens ArrayList. 

    public int which(int k) { 

         

        // Special case: if k==0, then the command line option was 

ommitted and we should return the 

        // index of the first k. 

        if (k==0){ 

            return 1; 

        } 

         

        for (int i = 0; i < scens.size(); ++i){ 

            if (k == scens.get(i).K){ 

                return i; 

            } 

        } 

         

        // Default: just return the index of the first K. 

        return 1; 

    } 

 

    public float[] decodeTopics(String encodedTopicString, int K) { 

        String[] parts = encodedTopicString.split(","); 

        int idx = which(K); 

        float result[] = new float[scens.get(idx).K]; 

        for (int i=1;i<parts.length;++i){ 

            result[i-1] = Float.parseFloat(parts[i]); 

        } 

        return result; 

    } 

 

    public String encodeTopicsPayLoad(int docId, int K) { 

        String out = ""; 

        int idx = which(K); 
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        for (int i=0;i<scens.get(idx).K;++i){ 

            if (scens.get(idx).theta[docId][i] > 0.05){ 

                out += (" p" + i + "$"  + scens.get(idx).theta[docId][i]); 

            } 

        } 

        return out; 

    } 

     

     

    /** 

     *  

     * @param searcher 

     * @param hits 

     * @param queryScore 

     * @param K 

     * @return 

     * @throws IOException 

     * @throws Exception 

     */ 

    public HashMap<String, Float> reRank(IndexSearcher searcher, TopDocs 

hits, float queryScore[], int K) throws IOException, Exception{ 

        ScoreDoc[] scoreDocs = hits.scoreDocs; 

         

        HashMap<String, Float> result = new HashMap<String, Float>(); 

 

        for (int n = 0; n < scoreDocs.length; ++n) { 

            ScoreDoc sd = scoreDocs[n]; 

            int docId = sd.doc; 

            Document d = searcher.doc(docId); 

            String fileName = d.get("file"); 

             

            String encodedTopicString = (d.get("topics" + K)); 

            float sim = computeSimilarity(encodedTopicString, queryScore, 

K); 

 

            //System.out.printf("%3d %4.5f %d %s\n", n, sim, docId, 

fileName); 

            result.put(fileName, sim); 

        } 

         

        return sortHashMap(result); 

    } 
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    /** 

     *  

     * @param input 

     * @return 

     */ 

    private HashMap<String, Float> sortHashMap(HashMap<String, Float> 

input){ 

        Map<String, Float> tempMap = new HashMap<String, Float>(); 

        for (String wsState : input.keySet()){ 

            tempMap.put(wsState,input.get(wsState)); 

        } 

 

        List<String> mapKeys = new ArrayList<String>(tempMap.keySet()); 

        List<Float> mapValues = new ArrayList<Float>(tempMap.values()); 

        HashMap<String, Float> sortedMap = new LinkedHashMap<String, 

Float>(); 

        TreeSet<Float> sortedSet = new TreeSet<Float>(mapValues); 

        Object[] sortedArray = sortedSet.descendingSet().toArray(); 

        int size = sortedArray.length; 

        for (int i=0; i<size; i++){ 

            sortedMap.put(mapKeys.get(mapValues.indexOf(sortedArray[i])),  

                          (Float)sortedArray[i]); 

        } 

        return sortedMap; 

    } 

     

    /** 

     *  

     * @param docId 

     * @param queryScore 

     * @return The conditional probability between the document and the 

query. 

     */ 

public float computeSimilarity(String encodedTopicString, float 

queryScore[], int K){ 

    float result = 0; 

    float[] topicVector = decodeTopics(encodedTopicString, K); 

    for (int i=0; i<topicVector.length;++i){ 

        result += topicVector[i]*queryScore[i]; 

    } 
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    return result; 

} 

 

// Data containers 

public class LDAK implements Serializable { 

    private static final long serialVersionUID = 2161745883533541761L; 

    public float phi[][]; // holds all the topics 

    public float theta[][]; // holds all the topic vectors 

    public int K = 0;   // The number of LDA topics 

    public int W = 0; // The number of terms 

    public int D = 0;   // number of documents 

    public HashMap<String, Integer> termMap = new HashMap<String, 

Integer>(); // Contains the ids of each term (for the topics) 

    public HashMap<String, Integer> fileMap = new HashMap<String, 

Integer>(); // Contains the file map 

} 

 

} 

 

 


