AN ASSESSMENT OF WIND LOADING AND WIND ENERGY POTENTIAL FOR SRI LANKA

Weihena Liyanage Sanjaya Maduranga

(168004K)

Degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

June 2019

AN ASSESSMENT OF WIND LOADING AND WIND ENERGY POTENTIAL FOR SRI LANKA

Weihena Liyanage Sanjaya Maduranga

(168004K)

Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

June 2019

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the MPhil dissertation under my supervision.

Signature of the supervisor: Date:

DEDICATION

I will dedicate this dissertation to Dr. C. S. Lewangamage, my supervisor and mentor, as the person who always encouraged me to complete this study successfully.

W. L. S. Maduranga,Department of Civil Engineering,University of Moratuwa.24.06.2019

ACKNOWLEDGEMENTS

There are number of people and institutions whom I need to pay my gratitude for their help towards the successful completion of this study.

I am especially indebted to **Dr. C. S. Lewangamage**, Senior Lecturer of the Department of Civil Engineering, University of Moratuwa, who supervised and guided me throughout the whole period of the study and who provided me the academic environment necessary to pursue my research goals. Also his guidance helped me to won Professor Raghu Chandrakeerthi award for the Best Paper (gold medal) in SSESL (Society of Structural Engineers, Sri Lanka) Annual Sessions, 2017. Furthermore, his endless efforts helped me to include the findings of this study in Sri Lankan National Annex for Euro Code 1 which is published by Sri Lankan Standard Institution.

This research work could not have been possible without the financial support provided by the SRC (Senate Research Council) of University of Moratuwa under the grant number SRC/LT/2016/01. Also I wish to thank the immense support given by the Department of Civil Engineering, University of Moratuwa and its academic and non-academic staff members. Prof. J. M. S. J. Bandara, the Head of the Department was always kind enough to give all the administrative support whenever necessary.

Further I would like to express my gratitude to my research progress committee members including **Prof. M. T. R. Jayasinghe** (Chairman of the panel), **Prof. A. A. D. A. J. Perera** (Research coordinator), **Prof. R. U. Halwatura** (Research coordinator), **Dr. K. S. Wanniarachchi** (External panel member), **Dr. W. D. A. S. Rodrigo** (Member from the Higher Degree Committee), who provided me an extensive personal and professional guidance to improve my research findings.

Dr. M. Narayana, Senior Lecturer, Department of Chemical Engineering, University of Moratuwa guided me by providing some basic knowledge in wind energy

forecasting. Also he gave the permission to use the licensed version of WAsP 11 software package available in the Department of Chemical Engineering.

I wish to express my special gratitude to the **Department of Meteorology of Sri** Lanka and its staff members who supported me to acquire the wind data required for this study free of charges, especially **Mrs. Anusha Warnasooriya**, **Mr. Vajira** Lokuhetty and **Mr. Asanga Priyadarshana**. Further I would like to express my gratitude to **SLSEA** (**Sri Lanka Sustainable Energy Authority**) for providing the guidance and wind data required for this study free of charges. Also the support given by **Prof. K. D. W. Nandalal** by providing some of the wind data is acknowledged. I would also like to thank **Mr. Lasith Wimalasena**, the chief operating officer of **WindForce (Pvt) Ltd.** for the support given by arranging several field visits in their operating wind farms and for providing the necessary details.

I am also grateful to all of those with whom I have had the pleasure to work during this study including **Mr. P. H. Alwis** and **Mr. P. A. A. Chathuranga** both who were final year undergraduate students during the period of 2016/2017.

Finally, I must thank to all the people who helped me in many ways throughout the period of the study.

W. L. S. Maduranga,Department of Civil Engineering,University of Moratuwa.24.06.2019

ABSTRACT

It was more than 40 years ago that Sri Lanka last established a wind loading map after the severe cyclone that struck the country in 1978. It is strongly believed that statistical methods had not been used in developing this wind loading map. Hence, the map can either overestimate or underestimate the wind speeds at least in some of the regions of the country. Therefore, an updated map which suits the changing climate patterns experienced in the country has become a necessity. In Sri Lanka, different wind codes are being used when structures are designed to withstand wind actions. Moreover, there is no suitable wind loading map that can be used with the Eurocode 1 or BS 6399-2.

The existing wind resource maps for Sri Lanka have been developed in macro scales with low resolutions which is not adequate for effective decision making in wind power generation. Moreover, most of them represents wind speed distributions except for wind power distribution. Therefore, the industry always uses expensive methods to identify the suitable regions for the establishment of wind turbines.

As the initial stage of this study a wind loading map for Sri Lanka was developed for different return periods (5, 10, 50, 100, 200, 500 and 1000 years) and for different averaging time periods (3-second gust, 10-minute average and hourly mean) using the wind data obtained from 24 weather stations. The data used were the monthly maximums of 3-minute average and instantaneous maximum wind speeds, recorded over a period of about 35 years. Extreme value distributions called Gringorten and Gumbel methods were tested to predict the extreme wind speeds. Finally, the Gringorten methods was adopted due to its unbiased nature. The generated wind contours for both 3-second gust and 10-minute average basic wind speeds were analyzed for defining the wind loading zones for Sri Lanka.

Altogether a new wind power distribution map was proposed for Jaffna Peninsula region in Sri Lanka which has been previously identified as a region with a higher wind energy potential. The required data was obtained from SLSEA (Sri Lanka Sustainable Energy Authority) and the Survey Department of Sri Lanka. Computational Fluid Dynamics based model has been used for the generation of wind power distribution map. The resolution of the map has been increased up to 150 m x 150 m (5" x 5"). Coastal regions such as Veravil, Pooneryn, Ampan, Punkudutivu, Kayts, Kankesanturai, Ponnalli Khadu, Karainagar, Mandaitivu and Alvai were identified as the regions which have the highest wind energy potential in Jaffna Peninsula.

Keywords: Wind loading map for Sri Lanka, Wind loading zones, Basic wind speed, Gringorten method, Wind energy forecasting, Wind power distribution, Siting of wind farms, Jaffna Peninsula

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor				i
Dedication				ii
Ack	nowle	dgement	S	iii
Abs	tract			v
Tab	le of C	ontents		vi
List	of Fig	ures		ix
List	of Tal	oles		xiii
List	of Ab	breviatio	ons	XV
List	of Syı	nbols		xvi
List	of Ap	pendices	3	xviii
1.	Introd	luction		1
	1.1	Backgr	ound	1
		1.1.1	Adequacy of existing wind loading map for Sri Lanka	1
		1.1.2	Adequacy of existing wind resource maps for Sri Lanka	4
	1.2	Scope of	of the Study	7
	1.3	Objecti	ves	8
	1.4	Outcom	nes	8
	1.5	Arrange	ement of the Dissertation	9
2.	Litera	ture Rev	view	10
	2.1	Differe	nt Standards Which are used to Calculate the Wind Actions	10
		on Stru	ctures	
	2.2	Attemp	ts towards Wind Zone Demarcation for Several Countries	11
		2.2.1	An attempt towards wind zone demarcation for Sri Lanka	11
		2.2.2	Maximum wind hazard map for Sri Lanka developed by	14
			DMC	
		2.2.3	Development of basic wind speed map for Oman	16
		2.2.4	Development of basic wind speed map for India	18
		2.2.5	Development of wind zone map for Germany	20
	2.3	Conver	sion between Gust Speeds for Different Averaging Periods	22

	2.4	Probab	ilistic Methods of Predicting Extreme Wind Speeds	26
		2.4.1	Gumbel distribution	26
		2.4.2	Gringorten distribution	27
		2.4.3	Generalized extreme value distribution	28
	2.5	Attemp	ots towards Demarcating Wind Energy Resource Atlases	29
		for Sri	Lanka	
		2.5.1	Wind energy resource atlas of Sri Lanka and the	29
			Maldives developed by NREL	
		2.5.2	Wind resource atlas of Sri Lanka developed by AWS	34
			Truepower, LLC	
		2.5.3	Wind resource atlas of Sri Lanka developed by Vortex	36
		2.5.4	Average wind hazard map of Sri Lanka developed by	38
			DMC	
		2.5.5	Solar and wind resource assessment in Sri Lanka by	40
			NERDC	
	2.6	WAsP	(Wind Atlas Analysis and Application Program)	40
	2.7	Several	Approaches Made towards Wind Energy Forecasting	41
	2.8	Some I	mportant Relationships in Wind Engineering	43
	2.9	Summa	ary of the Chapter	45
3.	Data	Collectio	n	48
	3.1	Wind I	Data Available in the Department of Meteorology, Sri	48
		Lanka		
	3.2	Wind I	Data Available in SLSEA	51
	3.3	Geogra	phical Maps Available in the Survey Department of Sri	54
		Lanka		
	3.4	Summa	ary of the Chapter	55
4.	Deve	lopment	of Wind Loading map	56
	4.1	Method	lology	56
	4.2	Kriging	g Interpolation for a Two Dimensional Spatial System	57
	4.3	Conver	sion between 3-Second Gust and the Other Averaging	57
		Periods	5	
	4.4	Determ	ination of Extreme Wind Speeds	60

	4.5	Gener	ating of the	Wind Loading Map	66
	4.6	Propos	sed Modific	ation to the Generated Map	73
	4.7	Summ	ary of the C	Chapter	74
5.	Deve	elopmen	t of Wind P	ower Distribution Map	76
	5.1	Metho	dology		76
	5.2	Identif	ying a Suit	able Region for the Study	77
	5.3	Procee	lure to Gene	erate the Wind Power Distribution Map Using	77
		WAsP			
		5.3.1	Basic prin	nciples and mathematical models used in WAsP	81
		5.3.2	Feeding t	he data to the software	82
		5.3.3	Defining	the coordinates	83
		5.3.4	Modellin	g the topography of the region	85
			5.3.4.1	Surface roughness	85
			5.3.4.2	Orography	86
			5.3.4.3	Sheltering effect	86
		5.3.5	Defining	roughness characteristics in WAsP	86
		5.3.6	Feeding t	he wind data to WAsP	88
	5.4	Genera	ation of Ma	ps	88
	5.5	Comp	arison of the	e Results	91
	5.6	Summ	ary of the C	Chapter	94
6.	Conc	clusions	and Recom	mendations	97
	6.1	Conclu	usions		97
	6.2	Recon	nmendation	s	98
Ref	erence	e List			100
Ap	pendix	a − A:	Positionin	g of Weather Measuring Instruments in the	103
			Wind Mas	ts	
Ap	pendix	a − B:	Graphs Ge	enerated by Applying the Gringorten and	106
			Gumbel M	lethods for the Weather Stations in Sri Lanka	
Ap	pendix	a − C:	Graphs Ge	enerated to Visualize the Monthly Variations in	130
			Wind for I	Northern Region in Sri Lanka	
Vit	a				132

LIST OF FIGURES

Page

Figure 1.1	Existing wind loading zones for Sri Lanka	2
Figure 2.1	Wind loading zones proposed by Nandalal and Abeyruwan	12
Figure 2.2	Tracks of past cyclones and storms through Sri Lanka	13
Figure 2.3	Maximum wind hazard map of Sri Lanka developed by DMC	15
Figure 2.4	Basic wind speeds for Oman which was determined by	17
	Alnuaimi et al.	
Figure 2.5	Basic wind speed map for India suggested by Lakshmanan et al.	19
Figure 2.6	Wind zone map for Germany proposed by Kasperski	21
Figure 2.7	Comparison between instantaneous maximum and 3-second	22
	gust	
Figure 2.8	Roughness lengths (Z_o) for different types of surfaces	24
Figure 2.9	Wind energy resource map of Sri Lanka developed by NREL	30
Figure 2.10	Wind electric potential of Sri Lanka based on districts (Areas	31
	with a wind power density more than 300 Wm ⁻² were	
	considered)	
Figure 2.11	Wind electric potential of Sri Lanka based on districts (Areas	33
	with a wind power density more than 400 Wm ⁻² were	
	considered)	
Figure 2.12	Wind resource map for Sri Lanka developed by AWS	35
	Truepower, LLC	
Figure 2.13	Wind resource atlas of Sri Lanka developed by Vortex	37
Figure 2.14	Average wind hazard map of Sri Lanka developed by DMC	39
Figure 3.1	Guidelines for measuring wind speeds using Beaufort scale	51
Figure 3.2	Wind and solar measuring stations in Sri Lanka	52
Figure 3.3	Index to 1:50000 maps of Sri Lanka	54
Figure 4.1	Application of Gringorten and Gumbel methods for	64
	Bandarawela station	

Figure 4.2	Application of Gringorten and Gumbel methods for	65
	Nuwara Eliya station	
Figure 4.3	Application of Gringorten and Gumbel methods for	65
	Hambantota station	
Figure 4.4	Basic wind speed contours for Sri Lanka in 3-second gust	67
	wind speeds	
Figure 4.5	Basic wind speed contours for Sri Lanka in 10-minute	68
	average wind speeds	
Figure 4.6	District based wind loading zones for Sri Lanka in 3-second	69
	gust wind speeds	
Figure 4.7	District based wind loading zones for Sri Lanka in 10-minute	70
	average wind speeds	
Figure 4.8	Proposed wind loading zones for Sri Lanka	72
Figure 5.1	Selected 1:50000 scaled survey maps and wind measuring	78
	stations for the analysis	
Figure 5.2	Wind atlas development procedure in WAsP	79
Figure 5.3	Conversion of GPS coordinates to Kandawala coordinate	84
	system using the World Coordinate Converter (online)	
Figure 5.4	Sample of coordinates defined map	84
Figure 5.5	Defining of surface roughness in WAsP	87
Figure 5.6	Digitized maps after defining the surface roughness values	88
Figure 5.7	Wind power distribution map generated by WAsP	89
Figure 5.8	Finalized wind power distribution map after increasing the	90
	resolutions using MATLAB software	
Figure 5.9	Wind roses to illustrate annul distribution of wind for	91
	Ponnalai and Pooneryn stations	
Figure 5.10	Comparison between the proposed and existing wind resource	92
	maps for Sri Lanka	
Figure A.1	Instrument installation on Ponnalai station by SLSEA	103
Figure A.2	Instrument installation on Pooneryn station by SLSEA	104
Figure A.3	Instrument installation on Kokkilai station by SLSEA	105

Figure B.1	Application of Gringorten method for Anuradhapura station	106
Figure B.2	Application of Gumbel method for Anuradhapura station	106
Figure B.3	Application of Gringorten method for Badulla station	107
Figure B.4	Application of Gumbel method for Badulla station	107
Figure B.5	Application of Gringorten method for Bandarawela station	108
Figure B.6	Application of Gumbel method for Bandarawela station	108
Figure B.7	Application of Gringorten method for Batticaloa station	109
Figure B.8	Application of Gumbel method for Batticaloa station	109
Figure B.9	Application of Gringorten method for Colombo station	110
Figure B.10	Application of Gumbel method for Colombo station	110
Figure B.11	Application of Gringorten method for Deniyaya station	111
Figure B.12	Application of Gumbel method for Deniyaya station	111
Figure B.13	Application of Gringorten method for Galle station	112
Figure B.14	Application of Gumbel method for Galle station	112
Figure B.15	Application of Gringorten method for Hambantota station	113
Figure B.16	Application of Gumbel method for Hambantota station	113
Figure B.17	Application of Gringorten method for Jaffna station	114
Figure B.18	Application of Gumbel method for Jaffna station	114
Figure B.19	Application of Gringorten method for Katugastota station	115
Figure B.20	Application of Gumbel method for Katugastota station	115
Figure B.21	Application of Gringorten method for Katunayake station	116
Figure B.22	Application of Gumbel method for Katunayake station	116
Figure B.23	Application of Gringorten method for Kurunegala station	117
Figure B.24	Application of Gumbel method for Kurunegala station	117
Figure B.25	Application of Gringorten method for Maha Iluppallama station	118
Figure B.26	Application of Gumbel method for Maha Iluppallama station	118
Figure B.27	Application of Gringorten method for Mannar station	119
Figure B.28	Application of Gumbel method for Mannar station	119
Figure B.29	Application of Gringorten method for Monaragala station	120
Figure B.30	Application of Gumbel method for Monaragala station	120
Figure B.31	Application of Gringorten method for Nuwara Eliya station	121
Figure B.32	Application of Gumbel method for Nuwara Eliya station	121

Figure B.33	Application of Gringorten method for Polonnaruwa station	122
Figure B.34	Application of Gumbel method for Polonnaruwa station	122
Figure B.35	Application of Gringorten method for Pottuvil station	123
Figure B.36	Application of Gumbel method for Pottuvil station	123
Figure B.37	Application of Gringorten method for Puttalam station	124
Figure B.38	Application of Gumbel method for Puttalam station	124
Figure B.39	Application of Gringorten method for Rathmalana station	125
Figure B.40	Application of Gumbel method for Rathmalana station	125
Figure B.41	Application of Gringorten method for Ratnapura station	126
Figure B.42	Application of Gumbel method for Ratnapura station	126
Figure B.43	Application of Gringorten method for Tawalama station	127
Figure B.44	Application of Gumbel method for Tawalama station	127
Figure B.45	Application of Gringorten method for Trincomalee station	128
Figure B.46	Application of Gumbel method for Trincomalee station	128
Figure B.47	Application of Gringorten method for Vavuniya station	129
Figure B.48	Application of Gumbel method for Vavuniya station	129
Figure C.1	Wind roses for Ponnalai station for each month of the year	130
Figure C.1	Wind roses for Pooneryn station for each month of the year	131

LIST OF TABLES

Page

Table 1.1	Basic wind speeds in different wind loading zones in Sri Lanka	3
Table 1.2	Different averaging time periods which have been used to	3
	define the basic wind speed in several codes of practice for	
	wind actions	
Table 2.1	Basic wind speed values proposed by Nandalal and Abeyruwan	14
Table 2.2	Reference wind speed values for Germany proposed by	21
	Kasperski	
Table 2.3	Comparison between measured and theoretical values between	23
	$U_{(3-sec)}$ and $U_{(max)}$ by Hsu at selected stations in USA	
Table 2.4	WMO recommendation for conversion between several	25
	averaging time periods for tropical cyclonic conditions	
Table 2.5	Wind energy potential of several regions in Sri Lanka	40
Table 2.6	Roughness coefficients for different surface characteristics	45
Table 2.7	Summary of the wind resource maps developed for Sri Lanka	47
Table 3.1	A sample AWS data sheet for Anuradhapura weather station	48
Table 3.2	Available wind data of major weather stations in Department	49
	of Meteorology, Sri Lanka	
Table 3.3	Available AWS wind data in Department of Meteorology, Sri	50
	Lanka	
Table 3.4	Available types of data records in SLSEA	53
Table 4.1	Assigned ' p' ' Values for each AWS	58
Table 4.2	Assigned gust conversion factors for each weather station based	60
	on WMO guidelines	
Table 4.3	Predicted extreme wind speeds using Gringorten method for each	61
	weather station and for several return periods	
Table 4.4	Predicted extreme wind speeds using Gumbel method for each	62
	weather station and for several return periods	

Table 4.5	RMSE ² values for each station for both Gringorten and Gumbel	
	Method	
Table 4.6	Proposed basic wind speeds for each wind loading zone	71
Table 5.1	Detailed comparison between the proposed and existing wind	94
	resource maps for Sri Lanka	

LIST OF ABBREVIATIONS

n
1

AWS	Automatic Weather Station
CEB	Ceylon Electricity Board
CFD	Computational Fluid Dynamics
DEM	Digital Elevation Model
DMC	Disaster Management Center
GEV	Generalized Extreme Value
LA	Louisiana
LKR	Sri Lankan Rupees
MS	Mississippi
NCAR	National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NERDC	National Engineering Research and Development Center
NREL	National Renewable Energy Laboratory
NWP	Numerical Weather Prediction
RMSE	Root Mean Square Error
ROB	Rough Observation Books
SLSEA	Sri Lanka Sustainable Energy Authority
TX	Texas
USD	United States Dollars
WAsP	Wind Atlas Analysis and Application Program
WMO	World Meteorological Organization
WPD	Wind Power Density
WRF	Weather Research and Forecasting

LIST OF SYMBOLS

Α		Scale parameter
A_{I}	Н	Average horizontal area of the object
е		The exponential constant (2.718)
F_U	$_{J}(U')$	Cumulative probability distribution function of the maximum wind
		speeds over a defined period, for an example one year
g		The acceleration of gravity (9.8 ms ⁻²)
G_k	$_{k}(\alpha)$	1/k times the incomplete gamma function of the two arguments $1/k$
		and α^k
h		Height of the object
k		Shape factor
т	Ļ	Rank
n		Number of records in the averaging interval
Ν		Size of the data set
p		Exponent of the power law of wind profile
Р		Air pressure
P_0)	Atmospheric pressure at the standard sea level (101 325 Pa), or the actual
		sea level adjusted pressure reading from a local airport
p'	,	Probability of non-exceedance
P	(<i>u</i>)	Power curve
P_i		Power at the i^{th} node
P_i	+1	Power at the $(i + 1)$ th node
Р1	r(u)	Probability density function of u
R'	1	The specific gas constant of air (287 $Jkg^{-1}K^{-1}$)
R		Return period
у		Reduced variant
S		Cross sectional area of the object facing the wind direction
Т		Air temperature in Kelvins
u		Wind speed at hub height
U		Unknown wind speed at height z above ground

U ₀	Known wind speed at a reference height z_0
<i>U</i> ′	Wind speed
$U_{(1-min)}$	1-Minute average wind speed
$U_{(3-sec)}$	3-Second gust wind speed
$U_{(max)}$	Instantaneous maximum wind speed
U _{extreme}	Predicted extreme wind speed for a return period of R
u _i	Wind speed at the i^{th} node
u_{i+1}	Wind speed at the $(i + 1)$ th node
v_i	Wind speed
WPD	Unknown wind power density at height z above ground
WPD ₀	Known wind power density at a reference height z_0
Ζ	Site elevation above sea level
Ζ	Height of wind measurement
<i>z</i> ₀	Roughness length
Z_0	Aerodynamic roughness length
α	Power law exponent (For well exposed areas with low surface
	Roughness a value of 0.143 can be used)
ρ	Air density

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	Positioning of Weather Measuring Instruments in the	103
	Wind Masts	
Appendix – B	Graphs Generated by Applying the Gringorten and	106
	Gumbel Methods for the Weather Stations in Sri Lanka	
Appendix – C	Graphs Generated to Visualize the Monthly Variations	130
	in Wind for Northern Region in Sri La	