
i

“Code Point” – Software Code Clone Analysis Visualizer

Prepared by

K.G.D.K.I. Seneviratna

(158775M)

Supervised by

Mr. Chaman Wijesiriwardana

Master of Science in Information Technology

University of Moratuwa, Sri Lanka

2019

ii

“Code Point” – Software Code Clone Analysis Visualizer

Prepared by

K.G.D.K.I. Seneviratna

(158775M)

Supervised by

Mr. Chaman Wijesiriwardana

Master of Science in Information Technology

University of Moratuwa, Sri Lanka

2019

iii

Declaration

Declaration We declare that this thesis is our own work and has not been submitted in any form

for another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been acknowledged in

the text and a list of references is given.

Full Name of the Student: Kavisha Seneviratna

Registration No: 158775M

Signature of Student: ..

Date: 15/05/2019

Supervised by;

Name of Supervisor: Mr. Chaman Wijesiriwardana

iv

Abstract

Code clone detection is a common practice in the software industry. In order to maintain quality

code, identify code clones and take relevant actions to remove duplicates. And also, that can use

to measure the quality of the work of the developer. Clone detection results are often voluminous

and difficult to present. Most clone presentations focus on the quantitative clone results but do not

relate them to the structure of the analyzed system. This relevant study implies the code clone

detection techniques and currently available visualization solution. The proposed system is to

fulfill the gaps between currently available code clone visualization techniques which can be used

in large-scale projects. Given system will deliver the code clone results to end user in an effective

and practical manner. “Code Point” has focused on more informative details and how that can be

used in the actual working environments.

v

Table of Contents

Abstract .. iv

Table of Contents .. v

List of Figures .. viii

List of Tables ... ix

2. Introduction ... 1

1.1 Prolegomena ... 1

1.2 Objectives ... 1

1.3 Background and Motivation ... 1

1.4 Problem in brief .. 3

1.5 Proposed Solution .. 3

1.6 Resource Requirements .. 3

1.7 Structure of the thesis. .. 4

1.8 Summary .. 4

2. State of the art in software code clone analysis visualization ... 5

2.1 Introduction .. 5

2.2 Background and Fundamentals .. 5

2.2.1 Code clone definition .. 5

2.2.2 Clone Types .. 6

2.2.3 Clone Relations ... 10

2.3 Code Clone Detection .. 11

2.3.1 Code Clone Detection Approaches ... 11

2.3.2 Code Clone Detection Tools ... 17

2.3.3 Overview of Clone Detection Tools ... 20

vi

2.4 Code Clone Visualization... 21

2.4.1 Visualization Techniques .. 22

2.4.2 Visualization Tools ... 22

2.4.3 Overview of Visualizations... 23

2.5 Summary .. 24

3. Technology .. 26

3.1 Introduction .. 26

3.2 Frontend Technologies ... 26

3.3 Backend Technologies ... 27

3.4 Web Services .. 27

3.5 Code Clone Detection Technologies .. 27

3.6 Summary .. 28

4. Approach ... 29

4.1 Introduction .. 29

4.2 Hypothesis .. 29

4.3 Input ... 29

4.4 Output ... 30

4.5 Process .. 30

4.6 Features .. 30

4.7 Summary .. 31

5 Analysis and Design .. 32

5.1 Introduction .. 32

5.2 High level design .. 32

5.3 Architecture .. 33

5.4 System Process ... 34

5.5 Summary .. 35

6 Implementation .. 36

vii

6.1 Introduction .. 36

6.2 “Code Point” Solution .. 36

6.3 Project Analyzer ... 38

6.4 Result Analyzer .. 38

6.5 Dashboard... 39

6.6 Result file processing module .. 40

6.7 Code Clone Detection .. 42

6.8 Summary .. 43

7 Testing And Evaluation ... 44

7.1 Introduction .. 44

7.2 Testing .. 44

7.2.1 Testing Methods ... 44

7.2.2 Testing Levels... 45

7.2.3 Testing Modules ... 45

7.3 Evaluation... 48

7.3.1 Evaluation against objectives ... 49

7.4 Summary .. 50

8. Conclusions and Further Work .. 51

8.1 Introduction .. 51

8.2 Overview of the Research .. 51

8.3 Challenges .. 52

8.4 Limitations of the proposed solution .. 52

8.5 Future Work ... 53

8.6 Summary .. 53

References ... 54

Appendixes ... 58

Appendix A ... 58

viii

List of Figures

Figure 2.1: Classification of Code Clones [5] ... 6

Figure 2.2: Type 1 Code Clone .. 7

Figure 2.3: Type 2 Code Clone .. 8

Figure 2.4: Type 3 Code Clone .. 9

Figure 2.5: Type 4 Code Clone .. 10

Figure 2.6: Types of Code Clone Properties [5] ... 11

Figure 2.7: Data Dependency Logic [12] .. 14

Figure 2.8: Control Dependency Logic [12].. 15

Figure 5.1: High-Level Design Diagram .. 32

Figure 5.2: Code Point - Solution Architecture .. 33

Figure 5.3: Code Point - Use Case Diagram ... 34

Figure 6.1: Solution Structure .. 37

Figure 6.2: Home Page ... 38

Figure 6.3: Result Analysing Page .. 39

Figure 6.4: Dashboard .. 40

Figure 6.5: XML Mapper ... 41

Figure 6.6: Detail Model Structure .. 41

Figure 6.7: Extraction core logic ... 41

ix

List of Tables

Table 2.1: Summary of clone taxonomy [5] .. 10

Table 2.2: Summary of CCD Tools .. 21

Table 2.3: Categorization of clone presentation techniques [22] .. 24

Table 7.1: Analyzer Module – Testing Results ... 47

Table 7.2: Dashboard Module - Testing Results .. 48

1

Chapter 1

2. Introduction

1.1 Prolegomena

This chapter provides the main objectives of this research and then briefly explains the

background and the motivation factors to this research. It also defines the problem statement

and purpose of the research.

1.2 Objectives

 Conduct a study on code clone types and currently available code clone detection

algorithms and tools.

 Analyze currently available data visualization techniques and tools.

 Analyze code clone data.

 Present Analysed data in a useful manner.

 Provide clone analysis among solution repository versions.

 Evaluate the novel solution.

 Prepare thesis

 Prepare a review paper based on the problem domain and present in a conference.

1.3 Background and Motivation

Quality of a software matters a lot in the field as it's a measure to maintain the standards of a

product. Because of that, there are different kinds of applications introduced to maintain the

quality of a software. When comes to software maintenance, code clones play a major role

2

affecting to performance of the project. According to previous studies as the code base

increases, the results of a clone detection tool can be huge; making it exceedingly difficult to

identify the critical clones that need to be removed or fixed. It has been observed by many

researchers, [1,8] that 5% to 20% of large software systems are clones, thus validating the

reason for a large number of instances of code clones in the reports. Therefore, these software

systems contain a significant amount of code clones. With the importance of clones, Detection

of them takes more attention in the field of software maintenance.

For example, cloning is often used as an informal reuse strategy [2]. To uncover this practice,

quantitative clone results are not sufficient. By relating the structure of the code in the clone

interpretation directly, identifying cohering clones is easier. Furthermore, it helps to uncover

misconfigurations of clone detection. Having the knowledge that some clone classes are, for

example, locally restricted makes it easier to identify generated code which can then be

excluded from the analysis. Additionally, during inspections of industrial software systems [3],

noticed that in some cases the code base accidentally contained the same files in different,

mostly outdated, versions. Knowing at first glance that some system parts are strongly cloned

with others helps to exclude these special cases code from the analysis.

As a result of that, a number of clone detection techniques and tools have been proposed and

implemented by many researchers [4]. But due to ineffective visualization of data could not be

able to get the maximum use out of code clone detection. Currently, most of the systems

provide the text-based representations that can be used in a limited scope. When it comes to

association with other code quality calculate matrix [5] could not be able to use code clone

data in an effective manner. Another drawback of textual representation is when comes to a

higher level of data, will take a considerable amount of time to analyze the code. That will be

not practical to analyze each and every occurrence.

Separating the code clones of importance from a large number of clones is a major problem

because of the following reasons.

 Real-world software projects almost always run short of time and resources. There

is a need to meet the project release deadlines and also fix the issues identified by

code assessment and clone detection tools before each release. Given these

3

constraints, in case of code bases of large sizes, fixing all clones in such a scenario

is not a practical solution.

 Each project has specific needs and requirements and no project will ever need to

fix each instance of code clones reported by clone detection tools.

None of the existing tools have attempted to facilitate maintenance of these clones in terms of

the order in which the remedial actions could be taken [6]. And not many of these have

attempted to provide a unifying framework towards the maintenance of code clones. What is

typically required for clone management is a tool that has the ability to prioritize the clones for

fixing and if possible, provide hints towards fixing. Also, such a method or criterion should be

suitable to all industrial software, irrespective of size, programming language, or domain.

Towards this direction, there is a lack of holistic view or framework for addressing code clones

and their effective management [7].

1.4 Problem in brief

Lack of tools which represent the code clone results in an effective manner and since then

missing out the chances of improving code quality due to gaps between code analysis data.

1.5 Proposed Solution

Provide a solution to detect code clones in the different stages of the project and implement a

system to visualize code clone results in a friendly manner.

1.6 Resource Requirements

Hardware

 Laptop / PC

4

 Intel Core i3 or Above

 4GB RAM or Above

 Windows 7/8/10

Software

 Visual Studio 2010 (ASP.NET MVC 5, Web API 2, & C#)

 Data visualization tools

1.7 Structure of the thesis.

The documentation of this thesis is outlined in the following way. Chapter 1 provides the

background to this research and briefly describes the context of this research. It also defines

the problem statement and the purpose of this research. Chapter 2 provides a survey of

literature and explains the main phases involved in building a model. Chapter 3 specifies the

technology adopted for this research work while the fourth chapter provides the details on the

research approaches. The analysis and design part is specified in Chapter 5. The next Chapter

explains on the implementation phase. The last Chapter provides a discussion on the proposed

methodology.

1.8 Summary

This chapter mainly provides an overview of this research with an explanation of the research

background and the problem definition. The next chapter will describe and summarize the

existing research work carried out related to this domain.

5

Chapter 2

2. State of the art in software code clone analysis

visualization

2.1 Introduction

Chapter 1 set the background for this thesis by highlighting the research problem,

hypothesis, objectives and the solution for code clone result visualization. This chapter

reviews the literature findings in code clone detection visualization and defines the

research problem for this project. It analyzes various technologies used in code clone

detection and discusses the identified possible technologies to address the research

problem. The material in this chapter is presented under 5 headings, namely, early

development of gestation of code clone visualization, latest development,

breakthroughs, future trends and research challenges in code clone visualizations. The

findings are summarized at the end of this chapter.

2.2 Background and Fundamentals

2.2.1 Code clone definition

A code clone can be defined as a segment or a portion of a code that is similar or

identical to another segment or portion of code [13]

Code clones are classified under 3 categories based on; I) the similarities between

two code segments, ii) clone instance position in program and iii) refactoring

6

opportunities with the replicated code. This classification is graphically depicted in

Figure 2.1 for more clarity. [5]

Figure 2.1: Classification of Code Clones [5]

2.2.2 Clone Types

Considering the first of the three classifications mentioned under chapter 1.2.1.,

two code fragments can be considered as similar based on the program content or

based on the functionality. Functional similarity codes are also known as semantic

codes. There are four widely recognized clone types out of which the first three

types are based on textual similarity and the fourth type the on functional similarity.

Type 1 (Exact Clones)

This type of clones are an exact copy of the original code except for a few variances

in whitespace, comments and code layout. These variances are insignificant when

7

considering the language definition. Hence, they are considered as identical clones.

Figure ‘A’ shows an example of this type of clones. [3, 5, 7, 13]

Figure 2.2: Type 1 Code Clone

Type 2 (Parameter Substituted Clones)

Two identical code fragments can be considered as a Type 2 clone where there are

variations in certain parameters such as variables, functional identifiers, literals,

and types. These may also have changes in comments and layout. However, the

syntactic structures of both codes will be similar. [3, 5, 7, 13]

8

Figure 2.3: Type 2 Code Clone

Type 3 (Near-miss Clones)

In this type of clones, the copied code fragment is further modified by adding,

removing or changing some statements. Type 3 clones may include changes done

in Type 2 clones as well. [3, 5, 7, 13]

9

Figure 2.4: Type 3 Code Clone

Type 4 (Similar Functionality Clones)

Two or more code segments that may not be copied, but performs the same

computation or functionality are considered as Type 4 clones. These code

fragments may be developed by different teams, however as they are implementing

the same logic, they are semantically similar to each other. [5, 7, 13]

10

Figure 2.5: Type 4 Code Clone

Table 2.1: Summary of clone taxonomy [5]

2.2.3 Clone Relations

It is easier to understand the cloning status of a code base by considering code clone

relations in groups opposed to individual clone fragments. Code clone relations can

be described as the method in which clones are reported. This identifies clones as

clone classes, clone pairs, and clone sets.

Clone classes and clone pairs describe similarities between different code

fragments. If there is some similar sequence in the code, it is identified that a clone-

relation exists between the code fragments. These terms are explained further

below. [7]

 Code Fragment: A code fragment can be defined as any sequence of code

lines with similarities in its content. It may or may not have comments.

11

 Clone Pair: A pair of code fragments that has similarities between them

can be defined as a clone pair.

 Clone Set: Clone set consists of all the identical or similar code fragments

in a code base.

 Clone Class: A clone set where any two code fragments form a clone pair.

2.3 Code Clone Detection

Sometimes engineers use code cloning in order to save time where similar functionalities

or methods are used in different sections of the same code base. Although it may seem

harmless, while impacting the quality of the code adversely, it also makes code

maintenance a very tedious task. For example, if an error was identified in one code

segment, the correction has to be applied in the clones as well. Due to such issues, code

clone detection has become a popular area of research and many tools, techniques and

approaches have been identified and developed to detect code clones.

2.3.1 Code Clone Detection Approaches

This section discusses some of the clone detection approaches that are widely used

and reported by researches.

Figure 2.6: Types of Code Clone Properties [5]

12

Gautam & Saini analyses code clone detection techniques on the basis of code clone

properties which are depicted in Figure 2.6. They describe each property as follows

[5];

 Normalization: applying refinements before the actual comparison (e.g.

removing white space and comments)

 Source Representation: refers to the result after transformation

 Comparison Granularity: granularities are used for particular techniques

in the comparison phase

 Comparison Algorithm: used to detect dissimilar code clones

 Computational Complexity: complexity is based on types of comparison

algorithms and transformations

 Clone Similarity: different kinds of clones can be identified by various

techniques

 Clone Granularity: granularity can be fixed for free

 Language Independency: verifies the language sustainability of a

detection tool

 Output/Groups of Clones: shows the types of outputs as clone pairs or

clone classes or as both

 Clone Refactoring: codes that have been restructured without changing its

external behavior

 Language Paradigm: the programming language targeted for the particular

method of interest

Some of the above properties are discussed further in the section below.

2.3.1.1 Text-based Approach

In the text-based approach, the source fragments are analyzed as a subsequence of

text. The two segments are compared textually with each other based on different

transformations like white space, newline and removing comments, etc. to locate

sequences of same strings [5]. This approach uses little or no transformation or

13

normalization on the source code before the comparison. Sometimes in software

clone detection, the source code is directly used [6].

Within this approach, there are several techniques used to achieve results. One of

the leading text-based clone detection approaches proposed by Ducasse et al, has

used string-based Dynamic Pattern Matching (DPM) to textually compare whole

lines that have been normalized to ignore whitespace and comments. [6]

Another approach by Marcus & Maletic uses latent semantic indexing (LSI) for

finding code segments that are similar. However, the use of LSI limits the

comparison to comments and identifiers [6].

The text-based technique is more efficient compared to other approaches. The

drawback is, it can identify Type I, Type II and Type III code clones only. This

cannot identify clones which has the same logic but in different coding (Type IV).

2.3.1.2 Lexical Approaches (Token-based Approach)

In the token-based technique, it is required to create the sequence of the tokens first,

based on the code that is compared. In order to generate tokens, Lexer is required.

The purpose of Lexer is to convert the source code into tokens after which various

transformations are performed by adding, changing or deleting any tokens. The

token sequence is then scanned in order to find the duplicated code or duplicated

subsequence of tokens and the code fragment identified as the duplicated code is

returned as clones. Kamiya et al. has broken the above-explained process into four

steps for clarity. [13]

i. Lexical Analysis: dividing each line of the source file into tokens as per

lexical rules and forming a sequence of tokens

ii. Transformation: replacing the identifiers with customized tokens using

transformation rules

iii. Match Detection: comparing the token sequence of lines and reporting

similar lines as code pairs

14

iv. Formatting: converting each location of clone pair into line numbers on the

original

Efficient token-based techniques are generally based on suffix trees [3]. Originally

it was used to search strings efficiently. Brenda Baker [8] initiated using suffix trees

for token-based code clone detection. This technique is suitable for very large

programs as it is linear in time and space to the program length. In Brenda’s

technique, consistently parameterized code clones are abstracted from concrete

names and values of parameters but they are not identified from their order.

Token-based or Lexical approaches detect Type I and Type II code clones only.

2.3.1.3 Graph-based Approaches

Graph-based approaches use program static analysis to develop a Control Flow

Graph (CFG) or a Program Dependence Graph (PDG) for each code segment [14].

PDG is used as an intermediate source to identify subgraphs to detect code clones.

This technique uses a program slicing based approach to detect clones because of

which it is capable of detecting non-contiguous code clones, unlike other clone

detection techniques [10]. However, PDG techniques have a lower performance for

detecting contiguous code clones.

Two types of dependencies are considered in PGD;

 Data Dependency

The logic of data dependency is described in Figure 2.7

Figure 2.7: Data Dependency Logic [12]

15

 Control Dependency

The logic of control dependency is elaborated in Figure 2.8

Figure 2.8: Control Dependency Logic [12]

2.3.1.4 Syntax-Tree based Approaches

In syntax-tree based approaches, the source code is transformed into a parse tree or

an abstract syntax tree which is then processed using tree matching algorithms or

structural metrics to identify code clones.

Researchers report that the results from comparison using syntax-tree based

approaches are quite efficient [9]. Further, abstract syntax tree clone analysis is said

to be more accurate than a line by line analysis or token-based approach because it

builds an abstract syntax tree (AST). The general sequence of steps used by AST

to identify code clones is as follows;

i. Hashing each subtree in the AST

ii. Placing each subsequence of the same length in similar buckets (groups)

based on the similarity of the hash

iii. Compare the subtrees and subsequences in a bucket against the similarity

threshold

This algorithm is used on the basis that code fragments are considered clones if

they exceed the similarity threshold at each particular AST node in the hierarchy

[1].

16

Having above mentioned pros, syntax-tree based approaches also has its cons, in

that, it is very difficult and complex to create an abstract syntax tree and the

scalability is not up to satisfactory level. [9]

2.3.1.5 Metric-based Approaches

Metric-based techniques follow an approach where different types of metrics such

as the number of functions, number of lines, etc. are assembled from code

fragments and evaluated without comparing the direct source code [5]. Several

types of software metrics are used in this technique to find the code clones. In most

cases, the source code is converted into the abstract syntax tree (AST) or program

data graph (PDG) in order to calculate the metrics. The name, layout, control flow

and expression of the functions are used to calculate metrics [7]. One of the popular

metric-based techniques uses fingerprinting functions to calculate metrics for

syntactic units such as a class, function, method or statement. The resulting values

are compared to find clones of the syntactic units [6].

Following are few of the techniques various researchers have built on top of the

metric-based approach;

Mayrand et al.: Functions with similar metrics values are identified as code clones

using several metrics that are calculated from names, layout, expressions and

control flow functions. [6]

Kontogiannis: Two approaches are used to detect clones. [6]

i. Directly compares the metric values as an alternative for similarity at the

granularity of begin-end blocks

ii. Compare begin-end blocks on a statement-by-statement basis using

dynamic programming (DP) technique

Davey et al.: certain features of code blocks are computed first, and neural

networks are then trained to find similar blocks based on the features. This

technique can detect clones of Type I, Type II and Type III. [6]

17

2.3.1.6 Hybrid Approaches (Semantic)

There are numerous hybrid methods that have been presented for code clone

detection. The hybrid approach is a collection of several approaches and it can be

classified on the basis of preceding techniques [5]. Koschke et al.[23] has

presented a hybrid approach for finding Type I and Type II clones which are based

on both tree and token methods. In this approach, it generates a suffix tree for

serialized AST nodes which is placed in a sequential manner. Then by using the

suffix tree-based algorithm, comparisons are performed on the tokens of the AST

nodes. Another approach has been used in Microsoft’s new Phoenix framework

[24]. It can detect exact function clone as well as a parameterized clone with

identifier renaming, but not data type changes. Greenan [5] has proposed the

sequence matching algorithm for identifying clones in method level which is known

as Analogous approach. A dynamic pattern matching as well as characteristics-

based hybrid approach is proposed by Balazinska [5] in which method of each body

are computed with quality metrics and then evaluated identified clusters by using

Patenaude’s metric-based approach.

=

2.3.2 Code Clone Detection Tools

Sometimes engineers use code cloning in order to save time where similar

functionalities or methods are used in different sections of the same code base.

Although it may seem harmless, while impacting the quality of the code adversely,

it also makes code maintenance a very tedious task. For example, if an error was

identified in one code segment, the correction has to be applied in the clones as

well. Due to such issues, code clone detection has become a popular area of research

and many tools, techniques[25] and approaches have been identified and developed

to detect code clones.

18

There are many clone detection tools that are discussed in the literature. Described

below are some of them.

 SolidSDD

This tool performs both extraction and visual analysis of code clones. It

simplifies the clone extraction process and visual analysis of the extracted

results, which in turn makes it possible to complete the whole process in

less time. This can be used with code bases written in C, C++, Java, and C#.

SolidSDD tool has the capability to identify subsystems that have high

clone percentages, types of clones contained in a given file, files that are

affected by a particular clone, etc. [15]. It uses a token-based approach to

detect the clones.

SolidSDD tool can be configured to detect clones with various set

parameters such as clone length in statements, whether identifier renaming

is allowed, gap size of modifications made to a clone (such as inserting or

deleting code fragments), filtering of whitespace and comments, etc. Once

the clones are extracted, a compound duplication graph is created and stored

in an SQLite database. The nodes of the graph represent cloned code

fragments and the edges represent clone relations. The structure is added by

default from the code directory data. If not, a syntax-based code hierarchy

can be used to obtain the structure. Metrics are computed on nodes (code

location) and edges (cloned code percentage, number of distinct clones, and

if a clone uses identifier renaming).

 Duplo

This is an open source tool. In order to detect clones, Duplo uses hashed

string matching of lines of code. This tool has the capability to compare two

or more files to find blocks of matched code. A block can be determined

using two parameters. These are the minimum number of characters in a

line and minimum consecutive matched lines in a block. In the default

19

settings of the tool, parameters are set as 3 characters and 4 lines

respectively. Before the tool initiates the clone detection process, it is

programmed to remove whitespace and comments. [17]

 Simian

Simian, short for similarity analyzer is a text-based clone detection tool.

Simian can run on almost any hardware and operating system. It runs

natively in .NET 1.1 or higher platforms and on any Java 5 or higher virtual

machines. Apart from these, it can identify and extract clones from codes

written in multiple programming languages such as Java, C#, C, C++,

COBOL, Ruby, JSP, ASP, HTML, XML, Visual Basic, Groovy source code

and text files. Simian can also read ini files and deployment descriptors.

This tool can be used during development as part of the build process and

as a guide when refactoring. It helps to raise the quality of the software

program [18]. Simian can process and complete clone detection utilizing

less memory and less time due to its line-based technique. It further allows

the user to configure settings for clone detection. [19]

 CCFinderX

Two main versions have been released of this tool and both use a token-

based approach in detecting code clones. The version that was released first

was known as ‘CCFinder’. Before comparing code fragments, this tool

replaces user-defined identifiers like variable names or function names with

special tokens. This enables the CCFinder to identify Type II clones where

the variables have been changed in the duplicate code. Researchers report

that this tool can identify all code clones from a code base with millions of

lines of code within an hour. Further, like ‘Simian’ tool, CCFinder also can

20

handle multiple programming languages such as C/C++, Java, and COBOL.

[19]

The next version released, ‘CCFinderX’ is considered as a major version up

from CCFinder as it can handle more programming languages (apart from

ones mentioned earlier, Visual Basic and C#) and it also effectively uses

resources of multi-core CPUs using multi-threading for faster code clone

detection. Further, the detection algorithm of CCFinderX was changed from

bucket sort suffix tree which has enabled more coverage (of types of clones)

and more accurate results. [19]

 Continuous Quality Assessment Engine

Also known as ‘Continuous Quality Assessment Toolkit (ConQAT)’ is a

toolkit used for software quality analysis and control. ConQAT is available

as an open-source tool and it supports the development and execution of

software quality analysis rapidly. ConQAT is based on a pipes-and-filters

architecture and offers a dataflow language for the specification and

parameterization of the clone detection pipeline.

ConQAT uses its own engine and offers treemap, clone visualizer and

family visualizer views for analysis. Clone Visualizer and family visualizer

views can group related clone files and visualize. However, they cannot

show cloning dependency among subsystems. [21]

2.3.3 Overview of Clone Detection Tools

Approac

h

Tool Clone Type Support Languages License Is

API/Engin

e Available

Reference

1 2 3 4

21

Text

Based

Duplo X X C, C++, Java, C#,

VB.Net

Free No [17]

Simian

(Similarity

Analyzer)

 Java, C#, C, C++,

COBOL, Ruby, JSP,

ASP, HTML, XML,

Visual Basic, Groovy

source code, text files

Free No [18]

Token

Based

SolidSDD X X C, C++, Java, C# Paid No [15]

CCFinderX X X X Java, C, C++,

COBOL, Visual Basic,

C#

 [19],[20]

Graph-

Based

Duplex X X X [12]

Komondoor X X X [10]

Syntax-

Tree

Based

CloneDR X X [9]

Ccdiml C, C++ [5]

Metric

Based

CLAN X X X N/A N/A [10]

Davey et al X X X N/A N/A

Hybrid

ConQAT X X X Java, C/C++, C#, ABAP,

Python, PL/SQL

Free Yes [21]

Atomiq X X X C#, Java Paid No [21]

Table 2.2: Summary of CCD Tools

2.4 Code Clone Visualization

22

2.4.1 Visualization Techniques

Scatter Plot

This is a two-dimensional data visualization technique that uses the same logic as

line graphs for plotting data points, the difference being, scatter plot uses dots to

represent values of two different variables. It shows the relationship between the

two sets of data.

TreeMap

a is a visualization technique used to display hierarchical data. It uses a series of

clustered rectangles to represent branches of a tree diagram and it depicts the values

or quantities for each category in the area size of the rectangle. The division and

ordering of rectangles into sub-rectangles is based on the tiling algorithm used.

Pie Charts

A pie chart is a circular graph of which the full circle represents 100% of the whole

and any slices represent portions of the whole. The size of each slice is relative to

the value of the category is represents in the group as a whole.

2.4.2 Visualization Tools

 SolidSDD Visualization

SolidSDD can be considered as a combination of many scalable visualization

techniques such as hierarchical edge bundles, table lenses, annotated text views,

and linked views. This tool uses many information visualization techniques as

well for analysis. Some of these techniques are as follows [15];

23

 Annotated Text: shows clones in their file context and allows

navigating between all pairs of a clone

 Bundled Graphs: show clones vs system structure

 Table Lenses: show clone and file metrics

 Linked Views: enables navigating between text, clones, and system

structure

 ClonEvol

ClonEvol is a visual analysis tool which can be used to obtain insight into the

state and the evolution of a C/C++/Java source code base on project, file and

scope level. The information extracted from the software versioning system is

combined with the contents of files that change between versions in order to do

a proper analysis. ClonEvol uses Subversion (SVN) in order to obtain the code

history, Doxygen to analyze the data and Simian to detect code duplicates or

code clones.

The information consolidated through acquisition, analysis, and clone detection

is presented in an interactive manner to the user. The focus of ClonEvol is on

scalability (in time and space) with regards to data acquisition, data processing,

and visualization. It also focuses on ease of use. ClonEvol uses a mirrored radial

tree to show the file and scope structures and hierarchically bundled edges to

show clone relations. [16]

2.4.3 Overview of Visualizations

The table below summarizes available visualization or clone presentation

techniques, details of coverage and clone relation details.

Visualization Technique Entity Clone Relation

24

Scatter Plot File, Subsystem Clone Pair

Hasse Diagram File Clone Class

Metric Graph Code Segment Clone Class

Hyper-Linked Web Page Code Segment Clone Class

Dependency Graph Subsystem Clone Pair

Duplication Web File Clone Pair

Duplication Aggregation Tree

Map

File, Subsystem Clone Class

System Model View File, Subsystem Clone Pair

Clone Class Family

Enumeration

File Clone Class

Clone Coupling and Cohesion Subsystem Super Clone

Clone System Hierarchy Graph File, Subsystem Clone Pair, Clone

Class

Clone Visualizer View Code Segment,

File

Clone Class

Stacked Bar Chart Code Segment,

File

Clone Class

Line Graph Code Segment,

File

Clone Cluster View Code Segment Clone Class

Table 2.3: Categorization of clone presentation techniques [22]

2.5 Summary

In this chapter, we have provided further motivation for this thesis along with

background material and related work. After defining the terminology of clones, we

explained various reasons behind cloning. Next, we briefly described various effects of

clones that can negatively impact development activities. We reviewed techniques for

25

clone detection, analysis, and visualization. We then explained the terminology of

clone evolution followed by a brief overview of clone evolution analysis. Finally, we

reviewed studies of software and clone evolution visualization.

26

Chapter 3

3. Technology

3.1 Introduction

The previous chapter contains a critical analysis of the existing code clone detection

techniques, tools, and visualizations. It also includes the positive and negative aspects

of each tool and item.

This chapter focuses mainly on the technological aspects of the research. There are

several components of the project that uses various technologies to achieve the

expected results out of it.

3.2 Frontend Technologies

The frontend technologies considered for the implementation of the proposed solution

are given below;

 ASP.NET MVC

Currently, this is the most famous Microsoft web development platform which

follows the model-view-controller pattern. It has rich features for handling the

presentation layer and communicates with the backend. It supports various UI

frameworks like bootstrap and helps to increase the usability of the tool.

 jQuery and AJAX

AJAX is a web technique which uses to communicate between the client side

and server side. It has the ability to communicate within UI and controller

without affecting the behavior of the frontend. We can make asynchronous

calls to retrieve and send data

27

3.3 Backend Technologies

 XML

Extensible Markup Language is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable.

This will be useful when it comes to dynamic mapping which we can do very

effectively.

 SQL Server

Microsoft SQL Server is a relational database management system developed by

Microsoft. As a database server, it serves the primary function of storing and

retrieving data as requested by other software applications that run either on the

same computer or on another computer across a network. This DBMS works well

with ASP .NET solutions.

3.4 Web Services

 WebAPI

This is a type of web service which is an application programming interface for a

web server or a web browser. Web API helps for the decoupling of the program

which will give more flexibility to grow and expose internal data to the third parties.

3.5 Code Clone Detection Technologies

As presented in the previous chapter there are several types of methods to identify code

clones such as Text-based, Token-based, Graph-based, Syntax-Tree based approaches,

etc. Each method has own advantage and disadvantages which provides motivation for

the research. When deciding the code clone detection method for the project it should

consider main factors like accuracy, efficiency, usability, etc.

28

3.6 Summary

This chapter briefs the front end, back end and web services that can be used to

implement the proposed solution. It also discusses the code clone detection

technologies that the author will be able to refer during implementation.

29

Chapter 4

4. Approach

4.1 Introduction

Chapter 3 described the technology to be used to solve the research problem. This

chapter presents our approach to addressing the methodology of code clone results

visualization. For this purpose, we describe our hypothesis, inputs, outputs, processes,

users, and features in our approach.

4.2 Hypothesis

Our hypothesis is that properly structured code clone visualization can lead to a quality

software output. For the stakeholders of software development projects, will be able to

do a proper evaluation of the quality of the product. By providing user-friendly

visualization and summarized data will help to save a considerable amount of time

when analyzing the quality of source code. And also it helps for the developers as well

as managers when making decisions of the quality improvements of the work

4.3 Input

Configure the source code repository to identify code duplications. User will be able to

configure it as per own preference. Since the application is facilitating to compare code

clones within the releases need to configure the repository (TFS or GIT) as well. The

application will provide user-friendly interfaces for the inputs.

30

4.4 Output

There will be two major output elements. One will be text-based representation which

will be used by developers to identify code clones. Other Application will be a web

portal which includes dashboard will mainly be focused on analytics. There will be

graphical representations that will be created based on user preferences. Ex: - Version

wise type 2 code clone counts

4.5 Process

Once user request for a clone detection will consider the relevant change set the existing

codes. By using a code clone detection algorithm will extract the required data. That

will cover all types of code clones. After the data extraction, they will be sent to the

data visualization module that will generate relevant graphs. Data visualization

methodology will be decided based on the literature review findings.

Code clone analysis data visualization will be presented to the user based on the user

type which will be in a useful manner. As an example, a developer needs different types

of data which will help him to improve the code quality. He would prefer more

technical oriented results from the proposed solution. Aspects of managerial levels are

different from the developers. They would prefer more strategical representations. With

this proposed solution will be able to cater more personalized results to the end user.

All the results will be saved to the DB which will be able to revise the history based on

a person and that will help to provide more detailed reports to the relevant personnel.

And same time will be able to help to identify how things have improved in a timely

manner.

4.6 Features

 Configure repositories and allow compression between commit versions.

 Code analysis between given project files.

 Code comparison results (Text and Visual based).

31

 Friendly GUI to resolve code clones.

 YouTube and Forum support on clone types and solutions.

4.7 Summary

This chapter describes the high-level solution approach of this research work. It also

lists down the list of features for the proposed solution. The next chapter will explain

this with more details.

32

Chapter 5

5 Analysis and Design

5.1 Introduction

Chapter 4 described the approach of the research problem. According to that research

will proceed and this chapter presents the design of the project. The chapter will contain

several design diagrams like high-level diagrams, class diagrams and etc. These will

be used for the prototype of the project

5.2 High-level design

Figure 5.1: High-Level Design Diagram

33

5.3 Architecture

For the “Code Point” intended architecture to use is service based 3 tire architecture.

User will be able to access the ‘Result Analyzer’ setup module and data will be

transmitted to the business layer using web service. Advantage of having web service

in the middle will provide a facility to expose data different platforms and

devices.XML configurations will be used to process data files. From the business layer,

it will access the database through the data access layer and returns structured processed

data to the dashboard.

Figure 5.2: Code Point - Solution Architecture

34

5.4 System Process

Use case diagrams are used to demonstrate a user's interaction with the system. Below

figure 5.3 represents the use case diagram of the proposed solution.

Figure 5.3: Code Point - Use Case Diagram

35

5.5 Summary

The system architecture, processes, and workflows were designed in this chapter using

various designing approaches such as High-Level Design diagrams, Architecture

model, and Use case diagrams. These design components will serve as a foundation for

the implementation stage.

36

Chapter 6

6 Implementation

6.1 Introduction

The design techniques for each of the components of the proposed system are

comprehensively discussed in the previous chapter.

This chapter examines the techniques and methodologies used and the steps taken in

implementing the design of the proposed system. This project has several

implementation segments as like user interfaces, code clone identification, processing

and visualization

6.2 “Code Point” Solution

When considering the structure of the project, implementation is done by using mainly

.Net based technologies. For the frontend has used ASP.NET MVC which provides

rich features for the development. As client-side scripting used jQuery and for data

exchange have used AJAX.

All the data pushes and retrievals are happening through web API which will provide

more flexibility to the program. Since the presentation layer and the business layer is

connected via Web API it has become more independent. As the web service

mechanism have used WEB API 2.

As figure 6.1 given below have followed 3 tire architecture. Once the user makes a

request trough MVC controller/Web API controller it calls the relevant method in the

business layer which is responsible for the process of the request. After required

37

processing business layer will call the data access layer which will handle the database

transactions.

Figure 6.1: Solution Structure

There are 3 main UI components of the code point solution. There are 2 main analysis

methods. One method is analyzing the file or projects from scratch. And the other way

is analyzing the result files. User will be able to pick as prefers. The final feature is

the dashboard which visualizes the extracted and processed code clone related data

38

Figure 6.2: Home Page

6.3 Project Analyzer

This application segment will be used to analyze the existing files or projects. There

are two ways to do the analysis of the source cord. One way is selecting a project source

code/file from a physical path and the other way is setting up a repository. The

application will proceed based on the user input for each type and code clone detection

engine will process the files. Extracted data will save in the MSSQL database.

6.4 Result Analyzer

Result analyzer is the core component of the research and the main target of this is to

integrate different types of code clone detection results extractions with the dashboard.

User will be able to save templates of the analysis that he conducts. Basically, the user

will have to insert XML file or XML folder path which includes the results of code

clone detections. And also user will be able to schedule result file reader which will

trigger in a given time period

39

Figure 6.3: Result Analyzing Page

6.5 Dashboard

Dashboard is the visualization component of the project. Dashboard contains several

types of graph items which indicates various types of data. When comes to code clone

analysis visualization takes a major part. Dashboards should design in a way that users

should be able to able to get as much as information. And also it helps to make decisions

based on the categories visualizations.

40

Figure 6.4: Dashboard

6.6 Result file processing module

For dynamic result file processing, we need to have a mapping with the application

structure. To achieve that goal have used following common XML which contains the

mapping of result file and application DB structure.

41

Figure 6.5: XML Mapper

In the proposed solution has given a common model to initialize values from the

results file. User can define the values a need to be taken from the results files and

based on that model will be filled with the respective data. The current structure is

capable of handling up to 3 factors. (Figure 6.6)

Figure 6.6: Detail Model Structure

Based on the configuration file application will extract data from the result XML and

process to map with the current backend structure. Following figure 6.7 indicates the

core logic has used to extract details from the configured XML structure.

42

Figure 6.7: Extraction core logic

6.7 Code Clone Detection

Once user request for a code clone review web service will consider the relevant

change set the existing codes. By using a code clone detection algorithm will extract

the required data. That will cover all the types of code clones.

43

Among Text-based Approaches, Lexical Approaches (Token-based Approach),

Graph-based Approaches, Syntax-Tree based Approaches will be using the required

algorithm based on the scenario.

All the results will be saved to the DB which will be able to revise the history based

on a particular person and that will help to provide more detailed reports to the relevant

personnel. And same time will be able to help to identify how things have improved

in a timely manner.

6.8 Summary

This chapter includes the implementation approaches and techniques that were used to

implement the proposed solution. Next chapter details the test scenarios and the results.

44

Chapter 7

7 Testing And Evaluation

7.1 Introduction

The testing phase, though sometimes not given much attention, is one of the most

important phases in the software development life cycle. It is through testing that we

can ensure the quality of the final outcome of the application. Therefore, this chapter

focuses on developer testing and evaluation of the proposed solution against the

objectives that we had set initially.

7.2 Testing

Testing was done using different approaches to make sure the quality of the end product

is high. Following are the different testing approaches used.

7.2.1 Testing Methods

According to the IEEE (1990, 74) testing is defined as,” The process of operating

a system or component under specified conditions, observing or recording the

results, and making an evaluation of some aspect of the system or component”.

There are several types of testing strategies available to use. In this solution, mainly

two types of testing strategies have been used in order to check the quality and to

ensure that project objective and the coding standards are met. Following testing

strategies have been used in the application:

Black box testing:- According to Mohan K.K, Verma A.K and Srividya A.(2010),

black box testing refers to the technique of testing a system with no knowledge of

45

the internals of the system. Black Box testers do not have access to the source code

and are oblivious of the system architecture.

White box testing:- White Box Testing refers to the technique of testing a system

with knowledge of the internals of the system. White Box testers have access to the

source code and are aware of the system architecture. A White Box tester typically

analyses source code, derives test cases from knowledge about the source code, and

finally targets specific code paths to achieve a certain level of code coverage.

7.2.2 Testing Levels

Unit Testing - According to the Burback R (1998), unit testing is used to test the

individual units of the source code, sets of one or more program modules. Type of

the testing will be white box testing.

Functional Testing – It is a form of black box testing that focuses on the

specifications or the functions of the application under test. The functional testing

is carried out by feeding in inputs to the system and assessing the output.

User Acceptance Testing - UAT which the last step of testing phase performed

prior to its delivery is also a type of black box testing carried out to ensure that the

requirements of a specification are met. Usually, this is carried out with the business

user in order to get their confirmation that what is built is what is required.

Considering 'Code Point’ is a program developed, based on research outcomes, as

an opensource product to be used by anyone, only unit and functional testing are

applicable here.

7.2.3 Testing Modules

All the modules have been tested as unit testing and have included test data below.

46

7.2.3.1 Testing Result Analyzer Module

No

.

Test Case

Name

Description Inputs Actual Output Expected

Output

01 Tool Name

Dropdown

User gets an option to

select the type of tool based

on what they have

uploaded in the master

screen

Click on Tool

name selection

dropdown list

Displays names

of all the tool

mappers

uploaded

through the

master screen

Displays names

of all the tool

mappers

uploaded

through the

master screen

02 Tool Name

Selection

Based on the tool selected

by the user, relevant

mapper is loaded

Select a tool

from the

dropdown list

Code picks the

relevant mapper

for analyzing

the results

Code picks the

relevant

mapper for

analyzing the

results

03 Choose Local

Path

User is given an option to

give a file path in the local

machine for selecting a

single file for analysis

Click on

‘Choose File’

button against

‘Local Path’

field

Allows to select

a single XML

file

Allows to

select a single

XML file

04 Choose Local

Folder

User is given an option to

give a folder path in the

local machine for selecting

a folder with multiple files

for analysis

Click on

‘Choose File’

button against

‘Local Folder’

field

Allows to select

a folder

Allows to

select a folder

05 Repeat

Scheduler

User is given an option to

set up a scheduled job run

to pick data from a selected

local folder and update the

database so that whenever

the user logs in and view

the graph, the user will be

able to see the latest results.

Check the

‘Repeat’

checkbox.

Input the time

to start the

schedule.

Data extraction

from folder to

database runs at

the scheduled

time and

frequency. The

database

reflects data

Data extraction

from folder to

database runs at

the scheduled

time and

frequency. The

database

reflects data

47

Input the

frequency in

hours

extracted from

the latest

updated file.

extracted from

the latest

updated file.

06 Remove repeat

scheduler

A user who has initially set

up a scheduled job to pick

data from a folder is given

the option to update the

analyzer to run one time.

Select the job

submitted to

analyze code

clone results.

Uncheck the

‘Repeat’

Checkbox and

update the job.

When the

‘Repeat’

checkbox is

unchecked,

clear the

scheduled time

and frequency

automatically.

When the

‘Repeat’

checkbox is

unchecked,

clear the

scheduled time

and frequency

automatically

Table 7.1: Analyzer Module – Testing Results

7.2.3.2 Testing View Dashboard Module

No. Test Case

Name

Description Inputs Actual Output Expected

Output

01 Select Job

Dropdown

User gets an option to

select the analyze job

submitted for which s/he

wants to see the dashboard

Click on

‘Select Job’

dropdown list

Displays names

of all the

‘Result

Analyzer’ jobs

submitted by

the user.

Displays

names of all the

‘Result

Analyzer’ jobs

submitted by

the user.

02 Dashboard

Generation

Dashboard will be

generated according to the

job selected by the user

Select a result

analyzer job

from the

dropdown list

Update the

graphs and data

tables showing

details of the

job selected

Update the

graphs and data

tables showing

details of the

job selected

03 Dashboard

Comparison

Allows the user to view 2

dashboards generated with

Select the split

view.

Update the

graphs and data

tables showing

Update the

graphs and data

tables showing

48

different jobs on the same

screen for comparison

Select the 2

result analyzer

jobs to be

compared

from the

dropdown lists

displayed in

both panes

details of the

jobs selected in

the 2 panes and

display table

with

comparison

results

details of the

jobs selected in

the 2 panes and

display table

with

comparison

results

Table 7.2: Dashboard Module - Testing Results

7.3 Evaluation

This research presents an integrated solution for code clone visualization. As the major

contribution of the author, this has presented a Metamodel for user-friendly

visualization which has major components of clone results, visualizations and user

guidance/support.

During the literature review and evaluation of existing tools, the author identified

several code clone tools that analyze the code using different techniques and

considering different views. However, one thing that most of these tools lack is the

dashboard visualization that provides the user with a graphical view of code clone

results that the user can easily read and understand. This led the author to focus on the

visualization side rather than code clone detection itself.

Further reading and research showed that with time, different researchers and

developers have put effort into developing much-improved code clone detection

engines. Although most tools cover Type I, II and II clone types and have not yet

developed a tool that analyses Type IV clones, it is only fair to think that as per the

current trend, it will happen sooner. However, depending on a developer’s focus,

different tools have their own pros and cons. It is up to the end user to identify the tool

that best matches his/her requirements.

49

Considering the above, “Code Point” was developed with the flexibility of using any

engine available in the market for code clone detection. The output from any of these

engines can be uploaded to Code Point and it generates a dashboard view that is simple,

user-friendly and easy to understand. This will enable the users to remove clones and

help to maintain proper coding standards.

7.3.1 Evaluation against objectives

The final outcome of this research was largely influenced by the comprehensive

research done by the author before arriving at a viable solution for the problem

defined in the first chapter. The literature review given in chapter two provides the

outcome of the first two objectives the author had set at the initial stages of the

research. These two objectives are, ‘Conduct a study on code clone types and

currently available code clone detection algorithms and tools’ and ‘Analyze

currently available data visualization techniques and tools.

As described in detail in the previous chapters, the key functionality of Code Point

involves analyzing code clone data and visualizing them in a graphical dashboard.

Through the unit tests and integration tests conducted after development, the

author has verified and validated that the developed tool meets the third and fourth

objectives of this project.

Due to time limitations, the author was not able to meet the fifth objective where

the intention was to provide clone analysis among solution repository versions as

well. Hence this will be considered as future development. The last two objectives

set are achieved through this documentation.

50

7.4 Summary

This chapter discussed in general different testing methods available and used in this

project, the testing levels and how the proposed system was tested accordingly using

test cases. Further the project as a whole was evaluated in general and against the

objectives set at the beginning of the project.

51

Chapter 8

8. Conclusions and Further Work

8.1 Introduction

The previous chapter emphasizes on the testing methods used and the evaluation of the

proposed solution against the project objectives that have been achieved.

This chapter summarizes what was discussed in the previous chapters. Further, through

an evaluation of the proposed solution against what is requested by users, this chapter

briefs the limitations of the solution and the improvements that can be done as future

developments.

8.2 Overview of the Research

The main objective of this research was to address a major concern that most software

development organizations and the programmers have. That is the lack of tools that

represent the code clone results in an effective manner. Managers in IT projects, often

lack the required governance on code quality as they do not get the statistics required

to monitor the same. Sometimes, even though they see the statistics, it is not in a

graphical format that helps them to easily grasp the current status and immediately

focus on the key problem areas.

Due to the above reasons, the author has carried out a comprehensive research on the

gestation of code clone visualization, type of code clones, techniques available to detect

various types of code clones, and applications and tools available today to detect and

visualize code clones. Taking the findings from the research also into consideration,

the author has proposed a solution for detecting code clones in different stages of the

project and implementing a system to visualize code clone results in a friendly manner.

52

Chapter three discusses the technologies that the author has considered for the proposed

solution. Chapters four to six provide details on the approach used and the architecture

of the tool. They explain in detail how the implementation was done. While discussing

various methods of testing, chapter seven lists some of the major test cases and their

respective results. In summary, this research presents an integrated solution for code

clone visualizations.

In addition to the research, the author has presented a review paper “Trends in Code

Clone Detection ” based on the past research papers which have presented in

conferences previously. It has considered past 3 years major IT/CSE related

conferences like European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), International Conference on Software

Maintenance and Evolution (ICSME), Mining Software Repositories (MSR), International

Conference on Software Engineering (ICSE) and reviewed the work which has been done

related to code clone detection. Results of it imply that code clone detection has a major

effect on current software engineering.

8.3 Challenges

 Internet bandwidth Limitations – Some analysis files contains a large amount of

data. Due to that size of the files are considerably large. If we are dealing with slow

internet speeds need to pay attention to reduce the object transactions between the

server and clients.

 Lack of resources - For some areas, there are very limited resources and

documentation. Especially when comes to code clone detection engines very

limited no of resources are there. Few engines have been discontinued as well

8.4 Limitations of the proposed solution

 There are few limitations in the proposed solution. The main limitation is that there

is no way to identify Type 4 code clones. That will need a strong and trained code

clone detection engine.

53

 To configure the XML structure there should be at least basic programming

knowledge. But it wasn't much of concern since this product is used by the

developers and other IT professionals.

 Currently, no code clone detection engine is integrated into the application. Since

the main focus is to integrate different types of tools this has been less priority.

8.5 Future Work

 Code point should be able to integrate with IDEs (ex:- Visual Studio)

 Use deep learning for type 4 code clone detection

 Use none relational database for more customizable behavior

 Various other software engineering data analytics tools that have been proposed in

the literature [26, 27, 28] could be easily extended to conduct a systematic code

clone detection research.

8.6 Summary

This chapter contains a summary of what was discussed in the report and the challenges

faced by the author in implementing the proposed solution. Further, it discusses the

limitations of ‘Code Point’, the solution proposed and implemented. Building on this

discussion, the author also briefs what improvements can be made in order to provide

a better and more user-friendly solution to the users.

54

References

[1] F.-M. Lazar and O. Banias, “Clone detection algorithm based on the Abstract Syntax Tree

approach,” in 2014 IEEE 9th IEEE International Symposium on Applied Computational

Intelligence and Informatics (SACI), Timisoara, Romania, 2014, pp. 73–78. Available:

http://ieeexplore.ieee.org/document/6840038/

[2] H. A. Basit and S. Jarzabek, “A Data Mining Approach for Detecting Higher-Level Clones in

Software,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 497–514, Jul. 2009.

Available: http://ieeexplore.ieee.org/document/4796208/

[3] N. Göde and R. Koschke, “Incremental Clone Detection,” in 2009 13th European Conference

on Software Maintenance and Reengineering, Kaiserslautern, Germany, 2009, pp. 219–228.

Available: http://ieeexplore.ieee.org/document/4812755/

[4] F. Deissenboeck, B. Hummel, and E. Juergens, “Code clone detection in practice,” in

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE

’10, Cape Town, South Africa, 2010, vol. 2, p. 499. Available:

https://ieeexplore.ieee.org/document/6062267/

[5] P. Gautam and H. Saini, “Various Code Clone Detection Techniques and Tools: A

Comprehensive Survey,” in Smart Trends in Information Technology and Computer

Communications, vol. 628, A. Unal, M. Nayak, D. K. Mishra, D. Singh, and A. Joshi, Eds.

Singapore: Springer Singapore, 2016, pp. 655–667. Available:

http://link.springer.com/10.1007/978-981-10-3433-6_79

[6] C. K. Roy and J. R. Cordy, “Scenario-Based Comparison of Clone Detection Techniques,” in

2008 16th IEEE International Conference on Program Comprehension, Amsterdam, 2008, pp.

153–162. Available: http://ieeexplore.ieee.org/document/4556127/

[7] K. Kaur, “A Comprehensive Review of Code Clone Detection Techniques,” p. 5, 2015.

[8] B. S. Baker, "On finding duplication and near-duplication in large software systems," in 2nd

Working Conference on Reverse Engineering, 1995.

http://ieeexplore.ieee.org/document/6840038/
http://ieeexplore.ieee.org/document/4796208/
http://ieeexplore.ieee.org/document/4812755/
https://ieeexplore.ieee.org/document/6062267/
http://link.springer.com/10.1007/978-981-10-3433-6_79
http://ieeexplore.ieee.org/document/4556127/

55

[9] H. Kaur and R. Kaur, “Clone Detection in Web Application Using Clone Metrics,”

International Journal of Advanced Research in Computer Science and Software Engineering, p.

9, 2014.

[10] C. M. Kamalpriya and P. Singh, “Enhancing program dependency graph based clone detection

using approximate subgraph matching,” in 2017 IEEE 11th International Workshop on Software

Clones (IWSC), Klagenfurt, Austria, 2017, pp. 1–7. Available:

http://ieeexplore.ieee.org/document/7880511/

[11] J. Kaur, R. Kumar, and S. Kaur, “Design Code Clone Detection System uses Optimal and

Intelligence Technique based on Software Engineering,” International Journal of Advanced

Research in Computer Science, p. 7, 2017.

[12] Y. Sabi, Y. Higo, and S. Kusumoto, “Rearranging the order of program statements for code

clone detection,” in 2017 IEEE 11th International Workshop on Software Clones (IWSC),

Klagenfurt, Austria, 2017, pp. 1–7. Available: http://ieeexplore.ieee.org/document/7880503/

[13] H. Kaur and R. Maini, “Performance Evaluation and Comparative Analysis of Code-Clone-

Detection Techniques and Tools,” International Journal of Software Engineering and Its

Applications, vol. 11, no. 3, pp. 31–50, Mar. 2017. Available:

http://www.sersc.org/journals/IJSEIA/vol11_no3_2017/4.pdf

[14] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A Deep Learning-Based

Clone Detection Approach,” in 2017 IEEE International Conference on Software Maintenance

and Evolution (ICSME), Shanghai, 2017, pp. 249–260. Available:

http://ieeexplore.ieee.org/document/8094426/

[15] L. Voinea and A. C. Telea, “Visual Clone Analysis with SolidSDD,” in 2014 Second IEEE

Working Conference on Software Visualization, Victoria, BC, Canada, 2014, pp. 79–82. Available:

http://ieeexplore.ieee.org/document/6980217/

[16] A. Hanjalic, “ClonEvol: Visualizing software evolution with code clones,” in 2013 First IEEE

Working Conference on Software Visualization (VISSOFT), Eindhoven, Netherlands, 2013, pp. 1–

4. Available: http://ieeexplore.ieee.org/document/6650525/

http://ieeexplore.ieee.org/document/7880511/
http://ieeexplore.ieee.org/document/7880503/
http://www.sersc.org/journals/IJSEIA/vol11_no3_2017/4.pdf
http://ieeexplore.ieee.org/document/8094426/
http://ieeexplore.ieee.org/document/6980217/
http://ieeexplore.ieee.org/document/6650525/

56

[17] Green, P., Lane, P. C. R., Rainer, A. and Scholz, S. B. “Unscrambling Code Clones for One-

to-One Matching of Duplicated Code”, Technical Report 502, School of Computer Science,

University of Hertfordshire, 2010. [Online]. Available:

https://core.ac.uk/download/pdf/1641752.pdf

[18] S. Harris, "Simian: Similarity analyser," 2011. [Online]. Available:

http://www.harukizaemon.com/simian/.

[19] K. Hotta, Y. Sasaki, Y. Sano, Y. Higo, and S. Kusumoto, “An Empirical Study on the Impact

of Duplicate Code,” Advances in Software Engineering, vol. 2012, pp. 1–22, 2012.

https://www.hindawi.com/archive/2012/938296/

[20]"The Archive of CCFinder Official Site," 2015. [Online]. Available:

http://www.ccfinder.net/doc/10.2/en/whats.html

[21] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Paar, “On the Relationship of Inconsistent

Software Clones and Faults: An Empirical Study,” in 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), Suita, 2016, pp. 79–89.

http://ieeexplore.ieee.org/document/7476632/

[22] Asaduzzaman, M. “Visualization and Analysis of Software Clones”, MSc Thesis, University

of Saskatchewan, Saskatoon, 2012. [Online]. Available:

https://www.cs.usask.ca/~croy/Theses/Thesis_Asaduzzaman_January2012.pdf

[23] Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix trees. In:

Proceedings of the 13th IEEE Working Conference on Reverse Engineering, Italy, pp. 253–262,

October 2006

[24] Tairas, R., Gray, J.: Phoenix-based clone detection using suffix trees. In: Proceedings of the

44th ACM Annual Southeast Regional Conference (ACM-SE 2006), Melbourne, pp. 679– 684,

March 2006

[25] Wijesiriwardana, C. and Wimalaratne, P., 2017, November. Component-based experimental

testbed to faciltiate code clone detection research. In 2017 8th IEEE International Conference on

Software Engineering and Service Science (ICSESS) (pp. 165-168). IEEE.

https://core.ac.uk/download/pdf/1641752.pdf
http://www.harukizaemon.com/simian/
https://www.hindawi.com/archive/2012/938296/
http://www.ccfinder.net/doc/10.2/en/whats.html
http://ieeexplore.ieee.org/document/7476632/
https://www.cs.usask.ca/~croy/Theses/Thesis_Asaduzzaman_January2012.pdf

57

[26] Wijesiriwardana, C. and Wimalaratne, P., 2018. Fostering Real-Time Software Analysis by

Leveraging Heterogeneous and Autonomous Software Repositories. IEICE TRANSACTIONS on

Information and Systems, 101(11), pp.2730-2743.

[27] Wijesiriwardana, C., Ghezzi, G. and Gall, H., 2012, December. A guided mashup framework

for rapid software analysis service composition. In 2012 19th Asia-Pacific Software Engineering

Conference (Vol. 1, pp. 725-728). IEEE.

[28] Wijesiriwardana, C. and Wimalaratne, P., 2019. Software Engineering Data Analytics: A

Framework Based on a Multi-Layered Abstraction Mechanism. IEICE Transactions on

Information and Systems, 102(3), pp.637-639.

58

Appendixes

Appendix A

Generic code clone detection model

