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Abstract 

Design of advanced space structures like solar sails and reflectors are limited 

by the volume and payload capacity of launch vehicles. Thus, there is a trend to utilize 

deployable structures made of ultra-thin fibre composite materials over traditional 

mechanical hinges.  Use of thin woven fibre composites enables them to self-deploy 

using stored strain energy and hence unfolds several benefits such as high strength to 

weight ratio, less complexity, negligible frictional effects during deployment. 

Booms made of thin fibre composite with epoxy matrix have been widely used 

in space structures since 1980s. Even though the deformable booms with ultra-thin 

composites conquer the aforementioned limitations, folding of such structures are 

limited to their elastic regime. Once the folding is extended beyond the elastic region, 

these composites are either subjected to fibre failure or to plastic deformation of 

matrix. Thus, now scientists are investigating the possibility of using more flexible 

elastomers, i.e. silicone which allows the fibres to micro-buckle and hence survive 

under extreme curvatures. 

However, use of soft elastomers in space structures can lead to poor structural 

performance after deployment. Also the composites like Carbon Fibre Reinforced 

Silicone (CFRS) are unable to store enough strain energy to provide required force for 

self-deployment when released. 

Dual matrix fibre composites were invented to solve that problem. Dual matrix 

fibre composites contain a continuous fibre reinforcement with soft elastomeric matrix 

like silicon in specified hinge regions and traditional epoxy matrix elsewhere to 

stabilize the deploying behaviour. Thus, the dual-matrix composites can entertain the 

high curvatures up to 1800 without failures in the deployable structures. As this matrix 

medium allows the fibres to micro-buckle (stress relief mechanism for the fibres in the 

compression zone) that enhance the folding mechanism to achieve higher curvatures 

without showing significant damage to the fibres in nonlinear region. 

It has been observed that these woven fibre-silicone composites have a highly 

non-linear moment-curvature relationship while there is no significant variation in 
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axial stiffness. Further it has been shown that the classical lamination theory is over 

predicting the bending stiffness by 2 – 4 times when it comes to woven composites 

made of one to three plies.  

This research is focussed on understanding the influence of varying bending 

stiffness with the degree of deformation in predicting quasi-static deployment 

behaviour of dual-matrix composite booms. A case-study of a three-ply dual-matrix 

composite boom made of thin woven glass fibre has been selected and simulated with 

a commercial finite element package. It has been shown that bending stiffness of the 

soft-elastomer region needs to be varied with the degree of deformation for accurate 

predictions.  

Change of bending stiffness is attempted in three different methods. First the 

analysis has been performed with a series of independent simulations with specified 

bending stiffness for each model. Secondly the possibility of using import analysis 

where stress and material state is imported from a previous step. Finally an attempt is 

made to develop user-subroutine where the bending stiffness properties of the structure 

can be concurrently updated with degree of deformation.  

Key Words: deployable booms, dual-matrix composites, moment-rotation response, 

user-subroutine 
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CHAPTER I 

1. Background 

Increased range and power requirements in space exploration require structures 

with a larger surface area, like solar sails, reflectors and sunshields. Limited space 

available on launch vehicles has become the main bottleneck in designing such 

applications. Hence the concept of deployable structures, where a larger structure can 

be folded into a compact configuration during transportation, is at supreme interest at 

present [1], [2]. 

1.1. Self-Deployable Structures  

Use of rigid assemblies with mechanical hinges that are associated with motors 

and springs for actuation lead to higher weight and increased complexity. Elastically 

deformable thin fibre composites that are capable of deploying with stored energy has 

been introduced in deployable structures as a feasible alternative for these weight 

sensitive applications [3], [4].  Some examples for these wide range of applications are 

solar sails, solar panels. antennae and booms (see Figure 1.1).  

 

Figure 1.1: Deployment of Ørsted satellite (courtesy: DNSC) 
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Even though the deformable booms with ultrathin composites conquer the 

aforementioned limitations, folding of such structures are limited to their elastic 

regime. Once the folding is extended beyond the elastic region, these composites are 

either subjected to fibre failure or to plastic deformation of matrix [5]. Composites 

made with soft elastomeric matrix like silicone is capable of complete recovery of 

deformation after subjecting to extreme curvatures by eliminating these issues through 

fibre micro-buckling [6]. Dual-matrix fibre composites, where traditional epoxy 

matrix is replaced with a soft-elastomer (silicone) in highly deformable regions, were 

invented to drastically improve the performance of elastically deformable deployable 

structures. Thus the structures made of dual-matrix composites can entertain high 

curvatures up to 1800  fold without any fibre or matrix failure [7]. However it has been 

reported that dual-matrix composites demonstrate a significant reduction in bending 

stiffness under extreme curvatures and presently being under investigation.  

1.2. Physical Testing of Deployable Structures  

Deployment behaviour of a deployable structure can be significantly affected 

when tested on Earth due to gravitational acceleration which is not present in space.  

Often gravity offload systems are used to reduce the gravitational effects when testing 

motorized structures. However, when it comes to ultrathin fibre composite booms 

which are designed to self-deploy using the stored energy is far more challenging. 

Effects like gravity, friction and air drag can simply prevent a structure from 

deploying. Drop towers and reduced gravity flights are two more advanced testing 

facilities that are being used to simulate reduced gravity environment for small 

structures with very short deployment time (seconds). Drop tower test is used when 

the devices are rough enough to survive weightlessness free fall or inexpensive to 

replace every time after a fall [5], [6]. For large space structures, which have longer 

deployment period, zero-gravity flights are being used. As shown in Figure 1.2 an 

airplane flying in a parabolic path experiencing zero-gravity condition for a duration 

about 25 seconds. However it should be noted that still the air drag is present inside 

the airplane and that can change the real deployment behaviour of the structure.  
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Figure 1.2:  Reduced gravity flight (courtesy: NASA) 

 

1.3. Analytical models and Virtual Simulations  

Apart from the above mentioned drawbacks, physical testing is very expensive 

and time consuming. Considering these factors, two alternative methods are available 

for design optimization using several design cycles before the final physical testing as 

described below.  

The first method is to make an analytical model of the structure. Calladine [7] 

has shown the ability to capture bending energy of a coiled boom using a purely 

analytical model. However, analytical approaches impose issues in capturing contacts, 

resulting in snapping and large deformations in the geometry under dynamic 

conditions which are critical for deployable booms.  

The second approach is to create numerical models to simulate deployment 

behaviour using finite element analysis. High performance computers and robust 

solver algorithms in commercially available finite element software packages have 

made it possible to create virtual models capturing dynamic snapping and advanced 

contact behaviour.  
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1.4. Objective and Scope 

As described above it is essential to have virtual simulation techniques which 

can predict folding/deployment behaviour of dual-matrix composites for the 

optimization of future space structures. This research focuses on predicting 

deployment behaviour of dual-matrix booms made of thin fibre composite using 

virtual simulations. Effect of nonlinear bending stiffness variation with degree of 

deformation of the fibre-elastomer is studied via modifying the shell section definition 

in Abaqus/explicit finite element package. The study is limited to deployable booms 

made of three-ply plain-woven fibre composites.  

1.5. Layout of Thesis 

This thesis comprises of 6 chapters, including the first introductory chapter. 

Chapter 2 gives a brief review of the composite and past studies on self-

deployable booms. The first part of the chapter explains analytical methods of 

predicting mechanical properties and micro buckling in large strain composites. Next, 

characterization of tape-springs and booms using moment-rotation response is 

discussed. The last part of the chapter reviews the case study experiment used for the 

verification.  

Chapter 3 describes the finite element model and simulation technique 

developed to predict quasi-static deployment behaviour. An introduction for the 

commercially available Abaqus/Explicit finite element package with available 

features, key parameters to investigate and necessary checks is presented. A series of 

independent folding and deployment simulations with predefine constant bending 

stiffness properties was analysed to predict the effect on moment-rotation 

characteristics of a boom. 

Chapter 4 presents the results of the simulation for dual-matrix composite 

boom made of thin fibre composite. Comparison of moment-rotation response for 

quasi-static simulation with different bending stiffness is highlighted. 

Chapter 5 explains the simulation techniques to account for variable bending 

stiffness using import analysis. Three different analyses were performed to investigate 

the possibility of changing bending stiffness at predefined stages of the analysis. 
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Chapter 6 presents the basics of user subroutine which is used to change the 

bending properties during an analysis.  Sensitivity analysis was performed to predict 

membrane stresses for a solid model using user subroutines. Further a method to 

simulate shell behaviour of a plate using subroutine is investigated. 

Chapter 7 concludes the thesis and suggests recommendations for future work. 
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CHAPTER II 

2. Literature Review 

This chapter presents general overview on composite material and 

characterization of deployment behaviour. The chapter starts with an introduction to 

composite material and focuses on fibre composite material with analytical prediction 

of stiffness matrix. The second section focuses on characterization of booms and tape 

springs using moment-rotation curve to understand deployment behaviour. In the final 

section the dual-matrix composite boom with quasi-static experiment and simulation 

to characterize behaviour of boom are explained.   

2.1. Composite Material 

The word composite in the composite material expresses the idea of combining 

two or more materials in order to produce a new type of material. This combination is 

performed in macroscopic scale wherein the components can be distinguished by 

naked eye. If composites are well designed, they possess the best qualities of parent 

materials and often some qualities that neither of them shows. Constituent materials 

can be significantly different resulting composites to be heterogeneous at microscopic 

scale. But in macroscopic scale material is statically homogeneous. Some of the 

characteristics that can be improved in composite materials are strength, stiffness, 

corrosion resistance, wear resistance, fatigue life, thermal insulation and acoustic 

insulation. 

Not all these properties can be improved at the same time. Most cases, the 

objective is developing the perfect material for one unique task. That purpose can be 

achieved with composites. 

Fabrication of composites runs to the prehistoric era and it is considered as one 

of the oldest engineering methods. At first composites like straw reinforced mud and 

plywood were used by earliest civilization once they realized the improvement of 

physical properties of these. Present day composites can be found everywhere around 

us.   Range of usage run through the day to day utensils to the aerospace and military 

applications.  
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There are four commonly accepted types of composites materials. This 

categorization is characterized by the method of combining materials [8]. 

1. Fibrous composites – consist of fibres in a matrix (Ex. Fibre glass) 

2. Laminated composites – consists of layers of various materials (Ex. Bi-metals) 

3. Particulate composite – composed of particles in a matrix (Ex. Concrete) 

4. Combination of some or all of the above types (Ex. Woven fibre composites) 

2.1.1. Fibre Reinforced Composites 

From these categories, fibre-reinforced composites (FRC) are the most 

demanding type in aerospace and military industries due to its lightweight, high 

stiffness to mass ratio, high strength to mass ratio and the ability to tailor to achieve 

required material properties. Due to the increasing popularity of FRC, it is needed to 

understand the micro mechanical behaviour of such composites clearly.  

A FRC is manufactured by stacking a certain number of anisotropic layers 

which are called as lamina or ply. FRC lamina can be made of unidirectional or woven 

fibres with different fibre orientations depending on design and draping requirement.  

Unidirectional ply has continuous fibres that majorly run in one direction only. 

But small amount of fibre or other material may run in other direction, mainly to hold 

primary fibres in position.  

Woven composites are produced by weaving tows or yarns of a particular fibre 

and impregnating it in a resin matrix. This resin system holds the woven fabric together 

and transfers mechanical loads through the fibres. As the name implies woven 

composites differ with each other based on their weave pattern such as plain weave, 

satin weave, twill weave, etc. (see Figure 2.2) Laminates can be made with several 

layers of unidirectional in different orientations or woven plies as shown in Figure 2.1. 
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Figure 2.1: Laminate made of unidirectional lamina placed at different orientations 

 

Figure 2.2: Woven plies 

 

2.1.2. Analytical Prediction of ABD Matrix 

Characterization of mechanical behaviour in laminates are done by studying 

micro-mechanical models of individual plies. Since the fibre composites are formed 

with several anisotropic layers to achieve the desired material properties, Classical 

lamination theory (CLT) is commonly utilized to obtain the effective properties of the 

laminate. This constitutive relationship is presented in terms of 6x6 matrix called as 

ABD matrix [9]. The ABD stiffness matrix defines the relationship between in-plane 

forces (Nx, Ny, Nxy) and out-of-plane moment resultants (Mx, My, Mxy) (see Figure 2.3) 

with mid-plane strains (εx, εy, γxy) and out-of-plane curvatures (κx, κy, κxy) as given in 

the equation 1.  

 

Plain weave Twill weave Satin weave 
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Figure 2.3:  Notation for resultant directions of forces and moments 
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The sub 3x3 matrices denoted by A, B and D for a laminate of n plies can be 

determined in terms of the ply stiffness,𝑄̅, which includes details about orientation of 

the fibre in the ply [10], [11].  

 A =  ∑ 𝑄̅𝑖(𝑧𝑖+1 − 𝑧𝑖)
𝑛
𝑖=1       (2) 

 B= 
1

2
∑ 𝑄̅𝑖(𝑧

2
𝑖+1 − 𝑧

2
𝑖)

𝑛
𝑖=1       (3) 

 D= 
1

3
∑ 𝑄̅𝑖(𝑧

3
𝑖+1 − 𝑧

3
𝑖)

𝑛
𝑖=1       (4) 

Even though the in-plane properties of woven composites can be accurately 

predicted [12], the bending property estimations shows errors up to 200% in the 

bending strains and up to 400% in bending stiffness. Researchers have shown that the 

CLT, which assume ply is orthotropic in fibre direction and homogeneous through 

thickness can significantly overpredict the bending stiffness when it comes to ultra-

thin weave laminates, since ply is not homogeneous through thickness. 
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Due to the aforementioned reasons, determination of micro mechanical 

behaviour is troublesome using the available theories and methods. Using of Classical 

Lamination Theory (CLT), which is used to analyse the mechanical behaviour of 

laminates, shows very high error margins in bending stiffness for thin fibre composites 

which are made up of single to two plies. Therefore recently researchers tend to go for 

micromechanical modelling using representative unit cell in order to obtain the ABD 

stiffness matrix coefficients by using virtual work principles. A model with a 

modification to CLT is proposed by the MOSAIC model [12] in order to account for 

thin plain-weave laminates. Figure 2.4 shows the proposed model, where each lamina 

is modelled as a repeating unit cell with two layers of tiles of weft yarns and warp 

alternatively [13]–[17].  

 

Figure 2.4: Mosaic unit cell model with plain – weave approximation 

For the unit cell, ABD stiffness matrices can be calculated using following equations, 

 A= ∑  
1

2
(𝑄̅𝑖

00

+𝑄̅𝑖
900
)(𝑧𝑖+1 − 𝑧𝑖)

𝑛
𝑖=1     (5) 

 B= 0        (6)

 D= 
1

3
∑  

1

2
(𝑄̅𝑖

00

+𝑄̅𝑖
900
)(𝑧3𝑖+1 − 𝑧

3
𝑖)

𝑛
𝑖=1     (7) 
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Where B sub matrix is equal to zero due to symmetry. In equations 5-7, it is 

visible that for lamina stiffness, 𝑄̅ is given as an average of warp and weft tile 

stiffnesses.  

 It has been found that, usually this theory is able to approximate in-plane 

stiffness in laminates. But in thicker layups, this method can give errors up to 100% 

when estimating bending stiffness due to introducing discontinuities in fibres by 

neglecting undulation in the yarns [12].  

2.1.3. Large-Strain Fibre Composites 

Especially in aerospace industry, use of rigid assemblies with mechanical 

hinges that are associated with motors and springs for actuation lead to higher weight 

and increased complexity [18], [19]. Elastically deformable thin fibre composites that 

are capable of deploying with stored energy has been introduced as a feasible 

alternative for these weight sensitive applications [3], [20]. Even though the 

deformable structures with ultrathin composites conquer the aforementioned 

limitations, folding of such structures are limited to their elastic regime. Once the 

folding is extended beyond the elastic region, these composites are either subjected to 

fibre failure or to plastic deformation of matrix [21], [22]. For fibre composites made 

of traditional epoxy, the failure radius is in between 5 mm – 10mm.  

However, after conducting many researches, large-strain composites with 

continuous reinforcement fibres embedded in soft matrix have been proposed as an 

alternative composite material softer than epoxies. Composites made with soft 

elastomeric matrix like silicone is capable of complete recovery of deformation 

without permanent damage after subjecting to extreme curvatures by eliminating 

above mentioned issues through fibre micro-buckling [23]–[25]. 

 Figure 2.5 [26] demonstrate the micro-buckling of fibres on compression side 

in a highly deformed elastic memory composite. Furthermore, Murphey et al. [25] 

describes this stress relieving mechanism in micro-buckling (See Figure 2.6). When 

folding starts, for small bending curvatures, extensional stiffness will remain uniform 

through thickness prior to buckling and hence neutral axis lies in the laminate mid-

plane. As the critical buckling load is reached by fibres on the compression side of the 
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laminate, their stiffness drastically reduced in the post-buckling range which produces 

a bilinear constitutive model that shifts the neutral axis towards the tensile side from 

the middle plane of the laminate. This results in a reduction of the maximum tensile 

and maximum compressive strain in the fibres allowing them to withstand high 

curvatures by remaining elastic than if the fibres had remained unbuckled. 

Figure 2.5: Micro-buckling of fibres on compression side in a highly deformed 

elastic memory composite [26] 

 

 

Figure 2.6: Fibre micro-buckling and stress profile in a highly bend UD laminate 

[25] 
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2.1.4. Dual-Matrix Composite 

Self-deployable booms made of thin fibre composites with rigid matrix like 

traditional epoxy, cannot undergo high curvatures with typical failure radius between 

5 mm to 10 mm. This has limited the compacting ability of structures to fit into 

launching vehicles with very small degree of compaction as in Figure 2.7.  

 

 

 

 

 

 

Figure 2.7:  MARSIS antenna boom structure (courtesy: Astro Aerospace) 

Researches have been carried out to find a solution for that and booms with 

open cross-sections have been studied [27]–[33]. But these booms are weak in torsion 

and hugely reduce structural performance of structures.  

 

Figure 2.8:  Carbon fibre lightweight boom with longitudinal slots [29] 
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Another proposed method is connecting two tape-springs with an adhesive to 

make a closed-cross section boom as in figure 2.9 [34]–[36]. Here, it is needed to 

control boom deployment very carefully to stop chaotic deployment due to stored 

excessive strain energy and the use of adhesive to glue tape-springs make 

manufacturing process complicated.  

 

 

 

 

 

 

Figure 2.9: CFRP composite boom (courtesy: DLR) 

With new advancement of technology, it is possible to fold soft elastomers into 

very high curvatures without damaging material. However, use of soft elastomeric 

matrix composites such as Carbon Fibre Reinforced Silicone (CFRS) for deployable 

structures in space applications are limited due to stability issues in deployed structural 

performance and inability to store enough strain energy to self-deployment when 

released. New composite material for thin-walled deployable structures with two 

matrices has been introduced by Karl [26] increasing the structural efficiency while 

allowing deformation for high curvatures. 

Dual-matrix fibre composites, where traditional epoxy matrix is replaced with 

a soft-elastomer (silicone) in highly deformable regions, were invented to drastically 

improve the performance of elastically deformable deployable structures. Thus, the 

structures made of dual-matrix composites can entertain high curvatures up to 1800 

folds without any fibre or matrix failure. Fibre damage during folding is prevented as 

the fibres on the compression side of the fold undergo micro buckling [26].  However 

the mechanical properties of the dual-matrix composites have not been studied in detail 

and it is extremely important to understand the behaviour under high curvatures.  
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2.2. Characterizing Tape Spring Hinges 

Research has shown that behaviour of a tape spring can be characterised by a 

moment-rotation relationship M (θ), (see figure 2.10) to understand the folding and 

deployment response in a particular structure [37], [38].  Typical tape-spring has a 

geometry shown in figure 2.11. The initial unfolded configuration is denoted by O at 

the origin. A single tape-spring can be bent in opposite-sense bending or equal-sense 

bending, as illustrated in figure 2.12. In opposite-sense bending figure 2.12 (a), 

positive bending moment induces tension along the edges of the tape spring.  

 

Figure 2.10: Moment-rotation relationship of a tape-spring  

At the beginning, for small rotation angles, moment-rotation relationship of 

tape-spring shows a linear behaviour from O to A until the tape spring suddenly snaps 

at A and buckles into two approximately straight sections connected by a localized 

fold. From B to C arc length of localised fold increases but its radius shows no change, 

while the bending moment is constant. During unfolding process, from C to D the tape-

spring follows the constant moment path until suddenly snaps at E. For negative 

moments in equal-sense bending (see Figure 2.12 (b)), which induce compressive 

stresses along the edges of the tape-spring, moment-rotation response is linear but end 

sooner compared to opposite-sense bending because of sudden bifurcation occurring 

at F, corresponding to a flexural-torsional deformation of the whole tape spring. 
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Figure 2.11:  Single tape spring geometry  

 

Figure 2.12: Bending of tape-spring s (a) opposite-sense (b) equal-sense 

 For a self-deployable closed cross section boom, similar characterization can 

be done using moment-rotation relationship, where two tape-springs are connected in 

opposite orientation. In this case one tape-spring undergoes equal-sense bending while 

the other one undergoes opposite-sense bending and behaviour can be predicted using 

superposition of two separate cases described above [39].  

However during folding, the folding angle of the outer tape-spring is smaller 

than the inner tape-spring due to assembly between tape-springs. This can lead to two 

different moment peaks with the buckling of inner tape-spring at first, upon folding. 
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For the bending in opposite direction, moment-rotation graph shows identical response 

as a result of symmetry with two distinct moment peaks (see Figure 2.13).  

When rotation angle θ < θ1, two tape-springs show a linear behaviour. After 

moment reaching to M1
+ boom suddenly snaps and drop the moment to M+ while 

starting to make a localized elastic bend. Then, as the rotation is increased, the moment 

shows a small rise with the buckling of outer tape-spring to reach smaller peak M2
+ 

and again drop to M* with further rotation.  For further increase in rotation, localized 

fold remains unchanged and the steady state moment remains constant which is 

approximately equal to M*. 

 

Figure 2.13: Predicted Moment-rotation relationship two tape-springs 
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2.3. Dual-Matrix Composite Boom 

Quasi-static deployment behaviour of dual-matrix composites was studied by 

Sakovsky et al. [40]  using a closed cross-section dual-matrix composite boom made 

of 3-ply plain weave glass fibres, which is 250 mm long and 25.4 mm in diameter. The 

symmetric [45/0/45] p-w layup had a thickness of 0.3 mm and was fabricated using 

Astroquartz (AQ) II plain-weave (p-w) fabric. Loctite 5055 UV-cure silicone as the 

elastomer matrix in the hinge region and PMT-F4B epoxy elsewhere were used as 

shown in figure 2.14. 

Figure 2.14: Dual matrix composite boom 

2.3.1. Quasi-Static Deployment Experiment 

Figure 2.15 shows the experimental setup that has been used by Sakovsky et 

al. [40] to measure moment-rotation response to characterize dual-matrix boom. Two 

strips at both ends of the boom were rigidly connected to two holders, whose rotation 

can be controlled using gears, allowing ovalization of cross-section during folding. 

Right arm was restrained in translation while the left arm was free to slide in a linear 

path by a guide bearing to simulate pure-bending behaviour. Strain gauges attached to 

rigid holders were used to measure the moment response. 

Boom was first pinched by hand at the centre to avoid any damage to the fibre 

and folded to θ = 1000 by rotating the handles attached to two gears on either end. 

Once the required folding configuration has been achieved, both gears were rotated 

250 mm 
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back in small steps while recording the moment on either end. Figure 2.16 shows the 

measured moment–rotation response of the boom. Note that the deployment angle is 

defined as the angle between the two axes of straight portions of the boom. The 

measured steady state moment was 34 Nmm, which is the average moment for 

400  <  θ   < 1000. The peak moment was recorded as 634 Nmm at θ = 70. 

 

Figure 2.15:  Experimental setup used by Sokovsky to measure moment response of 

dual-matrix composite boom during deployment [40] 

 

 

 

 

 

 

 

 

Figure 2.16:  Experimental Moment-rotation response of dual-matrix composite 

boom [40]  
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2.3.2. Quasi Static Deployment Simulation 

An attempt was made by Sakovsky et al. [40] to simulate deployment 

behaviour of dual-matrix composite boom using finite element analysis. Three 

different idealizations were tried where, the silicon hinge modelled with M3D3 

membrane elements without a bending stiffness, as a perfect hinge and using S4 shell 

elements specifying ABD stiffness matrix corresponding to silicone. Generally, all 

three approaches showed huge variation when comparing simulated moment-rotation 

response with experimental observations. Only the third approach agreed with 

experimental results for some extent, capturing overall deformed configuration with 

an acceptable accuracy.    

Following Sakovsky et al. [40], Ubamanyu et al. [41] have made an attempt to 

simulate dual-matrix composite boom. When the bending stiffness of silicon region is 

reduced to 10% of the initial value, simulation is capable of capturing localized hinge 

deform configuration and steady-state moment for, 400 < θ < 1000 with a good 

agreement (see Figure 2.17). But results show a weaker response in the moment, for 

deployment angle, 00 < θ < 400. Also the peak moment when snapping is not captured 

accurately.  

It was decided to follow similar simulation approach modifying key parameters 

by understanding limitations to increase accuracy of moment-rotation response. Since 

the behaviour of dual-matrix composite boom depends on the change of bending 

stiffness in elastomer due to micro-buckling, detail investigation was done to 

understand the effect of variable bending stiffness for different curvature in simulation 

results.  Furthermore, development of a simulation technique to incorporate variable 

bending stiffness rather than using a constant stiffness value throughout the simulation 

has been proposed in the subsequent chapters.   
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Figure 2.17: Comparison of simulated moment-rotation curve [41] 
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CHAPTER III 

3. Dual Matrix Hinge  

In this chapter, finite element technique adopted to simulate deployment 

behaviour of closed cross-section dual-matrix composite boom is discussed. The 

experimental study carried out by Sakovsky et al. [40] which was explained in detail 

under Chapter 2 was used as a case study for the simulation. The quasi-static 

deployment behaviour was predicted using Abaqus/Explicit, commercially available 

finite element software which uses robust algorithm including many other features.  

At the beginning of the chapter, detailed description of finite element model of 

dual-matrix composite boom is provided. Then, the chapter explains different 

simulation parameters and checks that are necessary to achieve numerically accurate 

simulation technique. Finally, sequence of the simulation process for folding and 

deployment with selected key parameters is explained.  

3.1. Finite element model 

Figure 3.1 shows the finite element model of the dual-matrix composite boom 

used to simulate quasi-static response of folding and deployment behaviour which was 

created using commercial finite element software package Abaqus/Explicit.  

Boom was partitioned to separate the silicon region from epoxy. 8 mm wide 

silicon region was meshed with a finer mesh towards the middle of the boom, where 

it is subjected to high curvatures. The epoxy region was meshed finer towards the 

centre and much coarser towards the ends to be compatible with the mesh in the 

silicone region while reducing the computational cost. The finite element model 

consisted of 10577 nodes and 10536 four-node doubly curved shell elements with full 

integration (S4) with minimum element size of 0.75 mm as shown in Figure 3.1. S4 

elements were used to model the boom instead of quadrilateral elements with reduced 

integration (S4R) to avoid build-up of artificial energy due to hourglassing. However, 

as described in the next section fully integrated first order elements can create the 

numerical problem called shear locking. To prevent that, model was created using S4 

second order elements for better accuracy.  
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The material properties of the ABD stiffness matrices for Epoxy and Silicon 

shell elements were defined with *Shell General Section keyword in Abaqus with the 

material orientations x and y (longitudinal and circumferential respectively) as defined 

in Figure 3.1. Equations 8 and 9 give the constitutive relationships of AQ/Epoxy and 

AQ/Silicon under small deformations, respectively.  

Figure 3.1:  Finite element model 

 

𝐴𝐵𝐷𝐸 =

(

 
 
 
 

2569 972 0 | 0 0 0
972 2569 0 | 0 0 0
0 0 1128 | 0 0 0
− − − − −− − − −− −− −−
0 0 0 | 4.3 2.4 0
0 0 0 | 2.4 4.3 0
0 0 0 | 0 0 2.7 )

 
 
 
 

     (8) 
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𝐴𝐵𝐷𝑠 = 

(

 
 
 
 

1809 945 0 | 0 0 0
945 1809 0 | 0 0 0
0 0 945 | 0 0 0
− − − − −− − − −− −− −−
0 0 0 | 6.2 5.8 0
0 0 0 | 5.8 6.2 0
0 0 0 | 0 0 5.8 )

 
 
 
 

       (9) 

Units are in N and mm for both matrices. 

In the experimental study carried out by Sakovsky et al.[40], it was observed 

that there is an ovalization of cross-section during folding at the end of the boom closer 

to two holders. Therefore, it was required to impose similar boundary conditions in 

finite element model to achieve accurate simulation results. If rigid constraints were 

used, it would have prevented any deformation of the cross-section and may lead to 

significantly varied results. To avoid this coupling constraints were defined using 

*Coupling Abaqus key word at both ends of the boom, allowing cross-section to freely 

deform into oval shape during folding. 10 mm strips at either end of the boom were 

connected to two reference nodes A and B using *Kinematic 4, 4 Coupling constraints 

to couple the rotations about X-axis which is represented by fourth degree of freedom 

(θX).  

These reference points were then connected to a dummy node C to simulate 

pure bending behaviour through an *Equation constraint command as shown in 

equation 10 to induce equal end moment conditions. Except for rotation about X-axis, 

all degrees of freedom at node A are prevented. Node B is allowed to translate along 

Z-axis following the experimental setup along with rotation about X-axis while 

restraining other degrees of freedom.  

θX
A − θX

B = θX
C       (10) 

Where θX represent rotation about the global X-axis  

The *General contact feature in Abaqus/Explicit, which automatically detects 

the potential contact surfaces around the whole hinge surface was used to define the 

frictionless contact behaviour between interacting bodies to the entire model using 

Contact Inclusions, All Exterior.   
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3.2. Abaqus/Explicit Simulation Techniques 

The initial purpose of developing explicit solver was to model high speed 

dynamic events with high inertia forces. Explicit solver uses forward Euler integration 

method combining diagonal or lumped mass matrices M, to solve equation of motion 

by calculating acceleration easily at any given time t, using following equation.  

Ü(𝑡) = |𝑀
−1(𝑃 − 𝐼)|(𝑡)                (11) 

Where P and I are external load vector and internal load vector respectively. 

Apart from the main purpose of Abaqus/Explicit to solve for true dynamic 

equilibrium, nowadays it has been used to solve highly nonlinear static problems. 

Explicit has proven the suitability for Quasi-Static simulations by using fewer 

computational cost compared to implicit solver, when very large deformations and 

complicated contacts are present in models. 

Folding and deployment simulations of dual-matrix composite-booms involve 

very large non-linear geometric changes with dynamic snapping and extensive contact 

between surfaces, which is better simulated by explicit solver than implicit. However 

above mentioned phenomena could result in numerical instabilities and convergence 

issues due to singularity in stiffness matrix. To avoid the limitations, different 

approach of explicit procedure which advances the kinematic state of each degree of 

freedom in calculation of stiffness matrix is adapted by direct integration of its 

equation of motion.  

Special focus was given to control three independent techniques for stability of 

explicit solution, time increment, loading rate and numerical damping. Shear locking 

phenomena was also addressed for the model to be free from any numerical instability. 

Optimization of model parameters was done after studying effects and limitations of 

those key factors. 

3.2.1. Stable Time Increment 

In explicit procedure every problem is solved as a wave propagation problem 

where out-of-balance forces are propagated as stress waves between contiguous 

elements.  
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It is convenient to have large integration time increment to reduce the number 

of increments needed to complete the simulation. However, in order to capture stress 

waves between neighbour elements the Courant stability condition should be satisfied 

[42]. It indicates that, the time increment should not exceed the time for a wave to 

travel across adjacent nodes in explicit analysis. Central difference operator is 

conditionally stable, but the magnitude of numerical damping will influence the stable 

time increment and it can be seen that increasing damping will reduce the stable time 

increment. When the damping is used to control high oscillations in the system, the 

stability limit can be specified in terms of the highest eigenvalue in the system as given 

below.  

∆t ≤
2

𝜔𝑚𝑎𝑥
(√1 − 𝜉2 − ξ)  (12) 

This condition can be considered as an approximate relationship for minimum 

stable time increment as, 

∆t =∝ (√1 − 𝜉2 − ξ)
𝑙𝑚𝑖𝑛

𝑐𝑑
  (13) 

where ∝, ξ, lmin and cd denotes time scaling factor, fraction of critical damping 

in the fundamental frequency mode, the shortest length of finite element and the 

dilatational wave speed, respectively. Dilatation wave speed can be represented as, 

𝑐𝑑 ≈ √
𝐸

𝜌
 (14) 

Where E and ρ denotes Modulus of elasticity and material density, 

respectively. 

3.2.2. Loading Rate 

The purpose of this method is to reduce number of increments needed to 

complete the analysis using loading rate high as possible. However, high loading rate 

will create significant internal effects which leads to dynamic responses. Hence, loads 

should be applied as smooth as possible to maintain quasi-static condition. In the 

simulation, the smoothness of the applied loads or displacements was maintained 

through a fifth order polynomial function of time with first and second time derivatives 

equal to zero at the beginning and end of the time interval using the Abaqus/Explicit 
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keyword *Amplitude,  Definition = Smooth Step. Use of smooth step will ensure not 

to cause any accelerations enforced on the structure at the start and the end of a 

particular step.  

It is important to identify smallest simulation time without any dynamic 

response throughout the entire time period. Only an estimation can be taken using 

fundamental natural mode of the whole structure since frequency and mode shapes 

will change during simulation period. Abaqus [43] recommends to use a time scale of 

10 times the fundamental natural period of the structure as an initial estimate, which 

can be easily obtained by an eigenvalue analysis of the structure for its initial 

configuration.  However, this will be a trial and error process using a sensitivity 

analysis to find out the suitable simulation time minimizing the dynamic behaviour of 

structure.  

3.2.3. Numerical Damping 

Numerical damping is used to damp out unwanted high oscillations chatter in 

the structure, to avoid sudden failure of elements due to large out of balance forces. 

Vibrations will lead to building up of high kinetic energy in the model. To dissipate 

build-up energy at high frequencies, numerical damping act as an efficient tool to 

maintain quasi-static behaviour. The amount of damping should be as small as required 

to prevent inaccurate results in simulation. Large values of ξ will result in an over-

damped response that is not accurate, and decrease the stable time increment given by 

equation 12 (∆t decreases when ξ is increased), which leads to increased use of 

computational resources.  

Bulk viscosity and viscous pressure, two methods available in Abaqus/Explicit 

for numerical damping are explained next. 

Bulk viscosity involves in damping associated with volumetric straining in 

elements. There are two types of bulk viscosity, linear bulk viscosity and quadratic 

bulk viscosity. Linear bulk viscosity is used to damp out oscillations in all elements.  

Quadratic bulk viscosity smears the shock over several elements, but it is only 

applicable in solid continuum elements.  
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The linear and quadratic forms which generates a bulk viscosity pressure given 

as follows respectively,  

 Linear bulk viscosity   pb = b1ρcdle𝜖𝑣̇𝑜𝑙               (15) 

Quadratic bulk viscosity  pb=ρ(b2le𝜖𝑣̇𝑜𝑙)2              (16) 

Where b1,b2 are damping coefficient, le is an element characteristic length, and 

𝜖𝑣̇𝑜𝑙 is the volumetric strain rate. 

Second type of stabilization is achieved using viscous pressure loading. It is a 

very effective way to damp out dynamic effects to reach quasi-static equilibrium in a 

minimal number of increments. Viscous pressure introduces a velocity-dependent 

pressure on surface which is normal to shell elements. This pressure is given by, 

𝑝 = −𝑐𝑣𝑣. 𝑛                        (17) 

Where cv is the damping coefficient, v is the velocity and n is the normal vector. 

The pressure waves crossing the free surface will be absorbed by viscous 

pressure load and there will not be any reflection of energy back to the interior of 

model. Unlike bulk viscosity, viscous damping will not affect stable time increment 

given in Equation 6. However, if the cv value is high, it will overdamp the model and 

produce inaccurate results. Usually, cv  is set equal to very small percentage of ρCd  as 

given below,    

 𝜌𝐶𝑑 = 𝜌√
𝐸(1−𝑣)

𝜌(1+𝑣)(1−2𝑣)
               (18) 

Where ρ, E, v are material density, Young’s modulus and Poisson’s ratio 

respectively. 

3.2.4. Shear locking in fully integrated elements 

First order fully integrated elements in finite element analysis software such as 

solid elements, Timoshenko beam elements, Mindlin plate elements can be overly stiff 

in bending applications. This numerical problem is called shear locking and it can 

create inaccurate results in simulation.  
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In an ideal scenario, an element will experience curved shape change under 

pure bending moment. Figure 3.2 illustrates a block of material with straight dotted 

lines on the surface and how the horizontal dotted lines and edges bend to curves while 

vertical dotted lines and edges remain straight under pure bending. The angle A, 

between horizontal and vertical dotted lines remain at 90 degrees as predicted by 

classical beam theory [44]. 

However, the edges of fully integrated first order elements are unable to bend 

to curves. Figure 3.3 shows the shape change of those elements under pure bending 

moment where all dotted lines are remaining straight while angle A is no longer 90 

degrees.  When the angle is not 90 degrees, an incorrect artificial shear stress is 

generated through shear deformation instead of bending deformation to maintain 

change in angle. This will result linear fully integrated elements to be locked or stiffed 

under the bending moment and show spurious results because of the locking.                                                                                                          

 

 

 

 

Figure 3.2: Shape change under pure bending moment in an ideal scenario 

 

 

 

 

Figure 3.3: Shape change of fully integrated first order elements under pure bending 

moment  

To overcome the above mentioned problems, fully integrated second order 

elements can be used. Edges of these type of elements have ability to bend to curves 

under a bending moment. It will correctly demonstrate real shape change of the 
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element and angle A will remain at 90 degrees as in an ideal situation as in Figure 3.4. 

No artificial shear stress is introduced and there will not be shear locking with 2nd order 

this type of elements. 

 

 

 

 

 

Figure 3.4: Shape change of fully integrated second order elements under pure 

bending moment 

3.2.5. Energy Balance in quasi-static analysis 

Results in Abaqus/Explicit solver is conditionally stable. Therefore, it is 

needed to carry out certain checks to ensure consistency and accuracy of the 

simulation.  

The main method to verify robustness of a particular analysis is to investigate 

energy history. It helps to evaluate whether explicit simulation is providing an 

appropriate response. Mainly, the total energy stored and/or dissipated Etot in the 

system should be equal to the work of external forces Ewk. According to 

Abaqus/Explicit energy balance equation can be written as,  

   Etot = Ei + Evd + Eke – Ewk              (19) 

Where, Ei is summation of internal energy consisting of elastic, inelastic strain 

energy and artificial strain energy due to hourglassing, Evd is the viscous dissipation 

and Eke is the kinetic energy. 

In order to maintain quasi-static behaviour, inertia forces should be negligible. 

For that, kinetic energy in the system should be a very small fraction (1-5%) of its 

internal energy throughout the majority of simulation (Abaqus [43]).  If the energy 

balance shows discrepancy, that indicates problems in the model with convergence 
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issues. When numerical instabilities are present, necessary changes should be done to 

maintain the quasi-static state. Artificial energy in structure has to be less than 1-2% 

of internal energy  to ensure that simulation is free from excessive artificial effects like 

hour glassing and shear locking in Abaqus [43]. Therefore, it is necessary to check 

energy balance before coming to a conclusion from an explicit simulation output.  

3.3. Simulation process of dual-matrix composite boom 

The simulation sequence included three steps, folding, stabilization and 

deployment to follow the experiment discussed in Chapter 2. It is important to 

accurately capture initial stable folded configuration of boom to study quasi-static 

deployment behaviour. Simulation is started from unstressed fully deployed state as in 

Figure 3.6 (a). To fold the hinge to desired folded configuration, rotation is given at 

each end of the boom in opposite directions. But in practical scenario to prevent 

material damages in epoxy, boom is needed to be pinched or flattened first before 

folding. Hence, folding sequence is consisted with pinching, folding and pinch 

removing steps.  

Following Ubamanyu et al. [41], first the boom was pinched using contact 

force applied through two rigid bodies to mimic the experimental procedure (see figure 

3.6 (b)). Abaqus key word General Contact was used, which allows software to 

automatically detect potential contact surfaces including composite boom and rigid 

bodies (see figure 3.5) by specifying *Contact Inclusions, All Exterior. Pinching force 

is simulated by giving an equal and opposite displacement to both rigid bodies over 

0.3 s of step time.  

 After pinching is done, then the boom is rotated by specifying a 450 rotation 

to dummy node C over 5 s as in figure 3.6 (c). When fully folded configuration is 

achieved, two rigid bodies were removed over 0.3 s by specifying Contact Extrusion, 

to avoid any further constraints on the folded shape due to contact between boom and 

rigid bodies, figure 3.6 (d).   
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(a) Unstressed (b) Pinching 

(d) Pinch Removal (c) Folding 

(e) Deployment 

 

 

 

 

 

Figure 3.5: Folding using rigid cylinders 

Once the folded configuration is achieved two ends were kept stationary for 1 

s till it achieves the stable static configuration without changing any boundary 

condition. This will damp out the rise of kinetic energy due to sudden snapping after 

pinch removal. Finally after the stabilization, the boom was deployed over 10 s by 

rotating back dummy node C to 00 (see figure 3.6 (e)). All rotations were specified 

with a fifth order polynomial variation (*smooth step function) to avoid any 

accelerations at the beginning and end of each step to simulate quasi-static condition.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Folding simulation sequence 
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Linear bulk viscosity and viscous pressure were used to damp out high 

frequency oscillations [45]. Linear bulk viscosity factor was set to 0.1 and viscous 

pressure coefficient was set to 1.4528 10-3 kg mm- 1s- 1 to reduce kinetic energy and 

to achieve quasi-static equilibrium faster. Damping values were chosen such that 

kinetic energy is <1% of internal energy during deployment. 

Figure 3.7 shows energy variation of simulation. Note that total energy remains 

zero throughout the simulation which confirms it is a stable solution. Slight rise of total 

energy at the end of the simulation is due to dynamic vibrations which is not considered 

in this study. Quasi-static behaviour is confirmed by keeping kinetic energy below 1% 

of strain energy. Sudden increase of kinetic energy corresponds to points of snapping 

which are dynamic events even when considering quasi-static experiments. Note that 

viscous dissipation rises mainly when high oscillations are to be damped. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7:  Energy variation of simulation 

Results obtained through these simulations are presented in the following chapter and 

the key features are compared and discussed. 
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CHAPTER IV 

4. Simulation Results   

In this chapter characterization of the dual-matrix boom is carried out using the 

moment-rotation behaviour from the results extracted from simulation process 

mentioned under Chapter 3 is presented. Initially, thorough study was carried out to 

understand and to simulate fully folded hinge configuration. Next, change of 

transverse curvature with rotational angle was investigated to find out the effect of 

variable bending stiffness during the simulation process. Finally, comparison of 

moment-rotation response for quasi-static simulation with different bending stiffness 

is presented. 

4.1. Folded Hinge  

In simulation, when the boom with 100% of initial bending stiffness (100% D) 

in silicone region is pinched using rigid cylinders, it was observed that the boom forms 

a kink at the centre of the folded hinge soon after removing the rigid cylinders. Figure 

4.1 shows two snapshots of boom hinge before the pinch removal and right after the 

pinch removal. Further examination of deformed cross section demonstrates that 

silicon hinge bends inward for its initial bending stiffness, which is an unrealistic 

folded configuration (see figure 4.2). As the stiff silicon hinge is reluctant to be 

flattened, tape springs are pushed back and the force generated by that tends to make 

the kink after the contact removal.  

 

 

 

 

Figure 4.1: Kink at the centre of the fold after pinch removal 

 

Before pinch removal After pinch removal 
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Figure 4.2: Fully deformed cross-section for 100% D 

According to the kinetic energy plot, until the end of balancing step as shown 

in figure 4.3, there is clear energy rise at 5.3 s where the kink occurs with the geometric 

change after the pinch removal. This can affect quasi-static deployment behaviour of 

boom leading to oscillations in response due to vibrations. Balancing step of 1.0 s is 

used to damp out these high oscillations using viscous pressure load as mentioned in 

the previous chapter. However, viscous pressure was reduced to very small value 

before the start of deployment step to prevent the high damping effect on deployment 

behaviour.  

 

Figure 4.3: Kinetic energy plot until the end of balancing step 

 

Following Sakovsky et al. [40] and Ubamanyu et al. [41] another simulation 

was run reducing bending stiffness (D matrix) in ABD matrix to 10% of its initial 

value. In figure 4.4, the cross section of folded hinge at centre for 10% D shows a more 

Section 
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realistic profile. This clearly confirms the reduction of bending stiffness in silicone 

matrix due to micro buckling in fibres under extreme curvatures, which is 

experimentally proven by Karl [26].  

Figure 4.5 shows the variation of fully folded cross-section along the boom 

from centre (0 mm) to end after the stabilization using the balancing step. At the centre 

two tape-springs are tightly folded and towards the end of the boom, cross-section 

opens up rapidly showing an ovalized shape.  

 

 

 

 

 

 

Figure 4.4: Fully deformed cross-section for 10% D 

The understanding of transverse curvature is required to accurately predict 

deployment behaviour of dual-matrix composite boom with the variable bending 

stiffness. Figure 4.6 shows transverse curvature distribution for fully folded 

configuration for 10% D. 

Figure 4.7 shows the maximum curvature variation of the hinge with respective 

deployment angle for simulations with 10% D and 100% D. Sudden change in 

curvature in both simulations corresponds to dynamic snap-back of the boom. Also, in 

both plots there is a small drop in curvature between 200 < θ < 250, where the other 

small peak moment can be expected due to snapping in outer tape-spring. 

Section 
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Figure 4.5: Variation of fully folded cross-section along the boom 

 

 

Figure 4.6: Transverse curvature distribution for fully folded boom 

As expected stiffer 100% D simulation shows low curvatures compared to 

softer 10% D simulation. But there is a significant difference between 10% D and 

100% D curvature values before the snapping and this implies that there is no sudden 

recovery back to initial bending stiffness of the reduced material bending stiffness due 

to extreme curvatures. Therefore, for a smooth deployment of dual-matrix hinge, 

0 mm (centre) 

5 mm 

10 mm 

15 mm 

25 mm 

50 mm 

75 mm 

125 mm (end) 

Curvature (1/mm) 
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curvature and bending stiffness change should occur gradually. For an accurate 

characterization of dual-matrix boom, above mentioned curvature difference is needed 

to be captured and it was decided to study this effect using intermediate bending 

stiffness. 

 

Figure 4.7: Variation of maximum curvature 

Same simulation procedure mentioned in Chapter 3.3 was repeated with 

different bending stiffness coefficients (D matrix) for elastomer region to examine the 

bending behaviour. D sub-matrix of the complete ABD was changed to 50% and 70% 

of the original values apart from 10% and 100%. 
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4.2. Moment-Rotation Response of Quasi-Static Simulation 

As mentioned in Chapter 2, moment-rotation response is used to characterize 

deployment behaviour of dual-matrix composite boom. Reaction moment 

corresponding to deployment angle was extracted from simulation output using 

dummy node to plot moment-angle response. Here, the deployment angle is defined 

as the angle between the two axes of straight portions of the boom. 

Figure 4.8 compares the moment-rotation responses of simulations with 10%, 

50%, 70% and 100% of bending stiffness coefficients for elastomer region against 

experimental results. Savitzky-Golay filter in MATLAB [46] was used to remove high 

frequency oscillations. Table 4.1 summarizes the main characteristics of all five cases. 

Table 4.1-Comparison of boom characteristics 

Model 

Steady -state 

moment 

(Nmm) 

Peak moment 

(Nmm) 

Peak angle 

(deg) 

10% D 33.3 484 5.7 

50% D 76.6 599 6.4 

70% D 85.4 706 8.1 

100% D 129.9 833 8.2 

Experiment 34.3 634 7.1 

 

Note that all simulations and experimental results show a similar overall 

response and key characteristic values are in the same order of magnitude. Also as 

predicted for deployment of two tape-springs, it shows two separate peaks in graph.  

As one would expect, the moment corresponding to a given deployment angle rises 

with increasing bending stiffness in the silicone region.  It can be observed that it is 

not realistic to reduce the bending stiffness to 10% D before θ=400. 50% D and 70% D 

show a reasonable agreement with the experimental results from 120 to 300. However, 

50% D shows significant deviation when it comes to peak-moment and corresponding 

angle. 
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 Initial bending stiffness of the boom as well as peak-moment and peak-angle 

are better captured by the simulation with 100% D. It should be noted that the boom is 

not subjected to any localized deformations during deployment angles below the peak-

angle and hence it is reasonable to use 100% of the bending stiffness at the initial stage. 

But still the predicted peak moment from simulation with 100% D is higher than the 

experimental peak moment. That is because folded hinge tends to self-deploy, which 

leads to lower peak moment in experiment. Further it should be noted that the 

apparatus used by Sakovsky et al. [40] is not sensitive to capture the absolute peak-

moment. 

 

Figure 4.8: Comparison of moment rotation responses 
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CHAPTER V 

5. Import Analysis   

As described in Chapter 4, it is required to consider change of stiffness with 

degree of deformation in order for accurate prediction of deployment behaviour of 

hinges made of soft-elastomers. Since the features available in Abaqus [43] presently 

does not allow changing Section Definition during a simulation, possibility of 

transferring results of deformed structure to a new analysis and redefining Section 

Definition was investigated. 

5.1. Introduction to Import Analysis  

“*Import” feature in Abaqus allows transferring deformed mesh, associated 

material state and selected results to a new model where the material and section 

properties can be redefined. Results can be transferred from Abaqus/Standard to 

Abaqus/Explicit, Abaqus/Explicit to Abaqus/Standard, Abaqus/Standard to a new 

Abaqus/Standard model and Abaqus/Explicit to a new Abaqus/Explicit model as 

desired. When transferring model information and results from one analysis to another, 

user is allowed to decide on whether material state and stress state to be continued or 

not in the subsequent analysis. Table 5.1 shows a summary of import capabilities in 

Abaqus [43].  

When using this import function, similar maintenance release of 

Abaqus/Standard and Abaqus/Explicit must be run on binary compatible computers. 

Furthermore transferring results from multiple analyses is not supported therefore 

transfer of results and model can be done only from one previous analysis.  
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Table 5.1 – Summary of import capabilities 

Can be imported Need to be re-specified Cannot be imported 

Material state Boundary Conditions Analytical rigid surfaces 

Nodal Positions Loads 
Mesh-independent 

fasteners 

Elements, element sets Contact definitions Connector elements 

Nodes, node sets Output requests 
Dashpot and spring 

elements 

Temperatures Kinematic constraints 
Mass and rotary inertia 

elements 

Rebar layers Nodal transformations Infinite elements 

 Amplitude definitions Fluid elements 

 

5.2. Finite element model  

For the simulation of change in stiffness, sensitivity analysis was done using a 

plate which has geometry as shown in Figure 5.1, equal to the dimensions of silicon 

region in dual matrix composite boom described in Chapter 3. Finite element model 

of the plate was created and analysed using commercial finite element software 

package Abaqus/Explicit. In simulation plate is folded for 600 degrees and deployed 

back to the 00 to reach initial state. 

The plate model consisted of 1000 S4R four node doubly curved shell elements 

with reduce integration and the minimum element size length was around 0.8 mm. 

Since the purpose of this sensitivity analysis was checking the capability of import 

analysis, reduced integration is used to reduce computational cost with a coarser mesh 

with an acceptable accuracy.  

Figure 5.1: Geometry of the plate 
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Three sensitivity analyses were done with different material properties to check 

the capability of import analysis. In analysis 01 and 02 plate was assigned steel 

material properties and in analysis 03 plate was assigned ABD stiffness matrix (fibre-

composites) with Silicone material properties. More details about the three analyses 

are explained further in next section.  

The simulation is included folding, importing folded configuration with stress, 

strains and deployment. Folding and deployment of plate was done using a dummy 

node connected to two reference points with *Equation constraint command in 

Abaqus,  imposing similar boundary conditions which were used for dual matrix boom 

model in Chapter 3.1. 

5.3. Analysis 01 – Transferring Results with the Constant Stiffness 

The elastic properties of the isotropic material were defined as homogeneous 

using *Shell Section keyword in Abaqus. The Young’s modulus was 200 GPa, 

Poisson’s Ratio 0.3 with Density of 7800 kg/m3 respectively.    

In the folding process 600 rotation was given to dummy node C using smooth 

step over 1s. After fully folded configuration was obtained, deformed mesh, associated 

material state and results were transferred to a new analysis without updating reference 

configuration using Abaqus keyword *Import, state=yes, update=no. Here the state 

refers to the material state and update refers to the reference configuration. That will 

help to record translations, rotations and strains relative to initial position of the plate 

without resetting to zero again. When transferring initial condition to plate instances 

in the new model *predefined field, Initial state was used to define deformed mesh and 

material state from last step of previous folded analysis. This was done at initial step 

since the creation of an initial field only available during the initial step. It should be 

noted that to verify import analysis, Young’s modulus was kept as a constant during 

the analysis 01, to receive a solution without the effects due to change in stiffness. 

Figure 5.2 shows the stresses at the end of folded configuration and Figure 5.3 show 

folded configuration and stresses at the start after import analysis. Two figures show 

similar folded configuration with stresses and it implies that it is possible to transfer 

results from one analysis to another. 
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The deployment of updated new model was done by rotating node C back to 

00 over 1 s with a smooth step definition. Figure 5.4 shows the final configuration of 

the plate after the deployment to the initial state. Stress shows value zero, similar as 

the original undeformed configuraiton. Furthermore Figure 5.5 and Figure 5.6 show 

moment variation over time during folding and deployment. At the end of the folding 

process moment is recorded as 50.04 Nmm. At the start of the analysis after the import 

analysis graph shows similar value of moment which is 50.04 Nmm and it confirm the 

correctness of importing stress and strains. After that, at the end of deployment process 

graph shows 0 Nmm as expected when plate comes to its initial position.   

 

Figure 5.2:  Stress distribution over the folded plate for analysis 01 at the end of 

folding step 

 

Figure 5.3:  Stress distribution over the folded plate for analysis 01 soon after import 

analysis 
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Figure 5.4: Stress variation of the plate for analysis 01 at the end of deployment 

using import analysis 

 

Figure 5.5: Folding moment for analysis 01 

 

 

Figure 5.6: Deployment moment after using predefined fields for analysis 01 
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Also it is possible to import deformed mesh and the results from the 

intermediate step. But when the importing was done from an intermediate step to new 

Abaqus/Explicit analysis, the model may not be in static equilibrium. There will be 

inertia and damping dynamic forces at an intermediate step. If we neglect that and 

carried out the analysis there can be oscillations in the results and it is one of the main 

drawbacks in Abaqus import analysis. To study that affect, for a similar model 

described above was used. After folding, in new analysis deformed mesh, material 

state and other results were imported at 0.8 s using predefined field key word. After 

that step time was changed to 0.8 s for the deployment and simulation was done. As 

Figure 5.7 shows moment-time shows noise in the results as expected but which 

shouldn’t be there.  

 

 

Figure 5.7: Deployment moment after using predefined fields at an intermediate time 

step (0.8 s) 

Further a study was done to find a solution to remove these oscillations. It is 

proposed to reduce initial out of balance forces by introducing a smooth step at 

intermediate point when plate is folding, which will allow to achieve static 

equilibrium. Figure 5.8 shows the angle-time graph with a smoothing step at the 

intermediate time step. According to new moment-time graph shown in Figure 5.9, 

now there are no oscillations in the results. So it is very important to consider about 

the importing time step when doing the import analysis.  
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Figure 5.8: Folding angle with a smooth step at intermediate point (0.8 s) 

 

Figure 5.9: Deployment moment with a smooth step at intermediate point (0.8 s) 

5.4. Analysis 02 – Transferring Results After Changing the Constant Stiffness 

Analysis 02 is also done using similar properties and boundary conditions as 

mentioned in analysis 01. But in this analysis, after the result were transferred to new 

analysis using *predefined field as previous, Young’s modulus was changed to half of 

its initial value which is 100 GPa before the deployment. Then the deployment process 

is carried out rotating back dummy node C to 00 to achieve initial configuration.  

At the end of the folding process moment of 50.04 Nmm is recorded as 

previous. But after that when the stiffness is changed, there is a clear variation in the 

moment-time plot as shown in Figure 5.10. There is a small drop in moment at the start 

point to which is 49.7 Nmm. Also the shape of curve is not smooth as analysis 01. 
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When the 00 is reached after the deployment, moment is not zero it has a value of  

24.46 Nmm. This can be described using the residual stress remain in the plate as 

shown in Figure 5.11 after the deployment. Due to the sudden change in Young’s 

modulus the residual stress is generated when plate comes to initial configuration and 

the moment is not set to zero. It is evident that the analysis can be used to change 

material properties during the simulation process and incorporate different Young’s 

modulus. After this analysis, it is decided to check the capability to vary ABD stiffness 

matrix which is defined in shell general section using import analysis in Abaqus.  

 

Figure 5.10: Deployment moment at the end of import analysis after using predefined 

fields at the end of the folding for analysis 02 

 

Figure 5.11: Stress for analysis 02 at the end of the import analysis 
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5.5. Analysis 03 – Transferring Results after Changing ABD Stiffness Matrix  

In this analysis material properties of the plate are defined for 10%D of Silicon 

with ABD stiffness matrix as mentioned in equation 3 using *Shell General Section 

keyword in Abaqus. First plate is folded as described in previous sections and after the 

folded configuration is achieved *predefined field was used to transfer results of this 

analysis to a new analysis. In the new model ABD stiffness matrix is changed to 

100%D to introduce variable stiffness matrix to study moment change with varying 

stiffness. Then the plate is folded back to initial unreformed shape by rotating back 

dummy node to 00.  

When investigating the results it was visible that moment is not changing when 

the ABD matrix is changed during the simulation. After that thorough study was 

carried out to find out the reason and when investigating the Abaqus input file it is 

found that when *General Shell Stiffness is used in Abaqus import analysis it is not 

behaving similar to Shell Section, which is used with Young’s modulus. When the 

material property is defined with *General Shell Stiffness and transfer results using 

import analysis, it is found that ABD stiffness of the new analysis has not been 

modified despite the new definition. Because of that even we change the ABD matrix 

values in new analysis, it is overwritten by the previous definition which is used to 

transfer material state with deformed mesh. Finally it can be concluded that Import 

analysis is not a suitable option to account variable bending stiffness in Silicone for 

ABD matrix using *General Shell Section.  

Another main drawback in Abaqus import analysis is when importing was done 

from an intermediate step to new Abaqus/Explicit analysis, the model is not in static 

equilibrium. There will be inertia and damping dynamic forces at an intermediate step. 

The initial out of balance forces were reduced by introducing a smooth step at 

intermediate point which will allow to achieve static equilibrium. 
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CHAPTER VI 

6. User-Subroutine   

This chapter presents simulations performed with user subroutine. Using user 

subroutine different material properties can be assigned during finite element analysis 

when the deployment angle change with the time. In this section codes are 

implemented to calculate membrane stresses in a solid and then the bending and 

membrane stresses in a shell using UMAT and UGEN user subroutines in the finite 

element software package Abaqus Implicit. Since it is only possible to define Shell 

General Stiffness using subroutine for implicit this solver is used. 

6.1. Overview of Some User Subroutines  

Customization of program for particular applications are allowed in Abaqus 

software using user subroutines. As an example user subroutine in Abaqus/Standard 

and user subroutine VUMAT in Abaqus/Explicit allow to add and change constitutive 

models in the program, while user subroutine like UEL, DLOAD in Abaqus/Standard 

allows to create user-defined elements and user-defined loading. Also in 

Abaqus/Standard, subroutines like CREEP is allowed to define time-dependent 

viscoplastic behaviour and Subroutines like DFLOW and FLOW is useful for 

consolidation analysis when defining non-uniform pore fluid velocity and non-uniform 

seepage coefficient. Furthermore there are subroutines like VDISP, VUAMP which 

are available in Abaqus/Explicit to define prescribed boundary conditions and to 

specify amplitudes. There are other subroutines also available in Abaqus [43] for both 

standard and explicit solver. Figure 6.1 shows the basic flow of data and actions in 

Abaqus/Standard analysis from start to end of a step. It demonstrates how the various 

subroutines are fitted at different steps of executing process.  
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Figure 6.1: Global flow of Abaqus/Standard where User Subroutines fit into 

6.2. Linking Abaqus with other software packages for subroutine 

Simulia Abaqus is selective with FORTRAN and C++ compilers, their edition 

and linking environment. In this research Intel compiler with MS Visual Studio is used 

for linking. But it should be noted that every Intel Visual FORTRAN compiler and 

MS Visual Studio edition are not be able to linked and function properly with all 

Abaqus software editions. The following software packages are used for the user 

subroutine development, SIMULIA AbaqusTM 6.14, Microsoft Visual Studio 2012, 

Intel FORTRAN Composer XE 2013. 

 For the linking, computer’s environment variables should be refreshed which 

are available in Advanced System Settings in computer. The infortvars.bat file in Intel 

Composer and the vevars64.bat file in the MS Visual Studio are located and directory 

is copied. Then the copied paths are pasted using add two lines in “Path” under the 

Environment Variables.  
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It is required to invoke Intel Parallel Studio and MS Visual Studio every time 

when Abaqus is running. For that Abaqus Command file and Abaqus CAE files are 

located and file targets are changed as described below respectively.  

“C:\Program Files (x86)\Intel\Composer XE 2013\bin\ifortvars.bat" intel64 vs2012 & 

C:\Windows\SysWOW64\cmd.exe /k 

"C:\Program Files (x86)\Intel\Composer XE 2013\bin\ifortvars.bat" intel64 vs2012 & 

C:\SIMULIA\Abaqus\Commands\abq6141.bat cae || pause 

After the linking is done successfully, Abaqus command should visualize the 

screen as shown in figure 6.2. Figure 6.3 shows the computer process stepwise from 

start of Abaqus programme to compile and running the user subroutine.  

 

 Figure 6.2: Abaqus command after successful linking with FORTRAN compiler and 

MS Visual Studio 
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Figure 6.3: Flow chart describing the execution process in Abaqus with subroutine 
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6.3. UMAT 

Abaqus has many calculation options in the software with the solver and it uses 

Jaumann stress derivative for implicit solver in 3D continuum elements. Nevertheless 

to define customize material behaviour UMAT (for implicit) subroutine, which is 

written in user-defined FORTRAN code can be implemented. This allows to define 

material with general constitutive equation for every integration point in the model and 

to change it with the requirement.  

It is proposed to create a steel solid model with material properties mentioned 

in section 5.2.1. Tensile test is simulated with C3D8 elements with a UMAT 

subroutine to calculate membrane stresses using a code and another model is created 

with similar properties without the subroutine for the comparison.  

In the FORTRAN code there is two way communication between the Abaqus 

software and the subroutine. In this process Abaqus main programme obtain necessary 

values from the subroutine to update them in UMAT subroutine and after the 

calculations in the code send them back to the model.  

This whole process can be described further using headings of the subroutine 

as mentioned below. (Refer Appendix 1) 

      SUBROUTINE UMAT (STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

      1 RPL,DDSDDT,DRPLDE,DRPLDT, 

      2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

      3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

      4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

      1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

      2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

      3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

      4 JSTEP(4) 
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The heading must be included in every UMAT subroutine at the start. It 

described what are the values provided by Abaqus programme and what are the 

information that is needed to be send back to main programme by subroutine. 

Basically, the input data which is mentioned after the name for the user-defined UMAT 

material subroutine are the deformation variables such as deformation gradient, strain, 

strain increment, stress and state variables from the previous step. Also various 

information that might be used for some particular cases can be defined at the 

beginning, for example the step time and energy. The next group send the information 

back to main program after every increment in each step.  

In the beginning of the increment stress array is passed as the stress tensor and 

the stress tensor must be updated at the end of the every increment. Stress vector is 

stored as this σ11, σ22, σ33, τ12, τ13, τ23. 

Then the Jacobian matrix of the constitutive model is defined with, 
∆𝜎

∆𝜀
 where  

∆𝜎 is the stress increments and ∆𝜀 (DSTRAN) is strain increments. The mechanical 

strains and the stress increments are passed to the subroutine at the beginning of the 

increment. Total strains are passed as an array of ε1, ε2, ε3, γ12, γ13, γ23. 

Figure 6.4 describes more information to understand how the Stress, Strain and 

strain increments arrays are made. In the graph i is the previous increment and the i+1 

is the current increment. In the current increment Abaqus gives input variables to the 

subroutine from the previous increment. Stress (i), Strain (i) and stress increment is 

received for the subroutine at the beginning of the increment. FORTRAN code is 

calculating Stress (i+1) Strain (i+1), at the end of the current increment calculated 

values are sent to Abaqus programme.  
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Figure 6.4: Change of stress and strain with the increment 

In the Abaqus model, geometry with the mesh is created using in regular way 

defining the boundary conditions and applied tensile load. But the materials properties, 

Young’s modulus and Poisson’s ratio are not defined. The values of them are given as 

mechanical constants. After doing that Abaqus programme send these values to 

UMAT subroutine at every increment in an array named as PROPS array. At the end 

it was defined Abaqus to use user subroutine in every increment during numerical 

solving process of the model.  

As mentioned above in the code UMAT subroutine receive the strains at the 

beginning of the increment with the mechanical constants. Using those constants 

stiffness matrix is given as a matrix. After that to calculate stress at each increment, 

the below equation is defined using the strain increment, stiffness matrix and the 

current stress with 2 loops, where I and J change from one to six.  

STRESS(I) = STRESS(I)+ DDSDDE(I,J)*DSTRAN(J) 

At the end another model is created with similar geometry and properties by 

giving Young’s modulus and Poisson’s ratio without a subroutine in regular way and 

compared with the results of the subroutine. Both results (Figures 6.5 and 6.6) show 

the similar pattern which confirms the accuracy of the subroutine.  
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Figure 6.5: Final stress using subroutine 

 

 

Figure 6.6: Final stress without using subroutine 
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6.4. UGEN 

After simulating membrane stresses using subroutine next step is to simulate 

both membrane and bending stresses using the subroutine code. For every iteration in 

finite element analysis, the strain components of the shell elements are located in 

stiffness curves which is used to define the equivalent stiffness matrix, update 

moments and forces. In order to update mechanical behaviour of shell element in finite 

element model Abaqus UGENS subroutine can be used. That allows to calculate force 

on element after every load increment. Furthermore, it is possible to update state 

variables and other convergence parameters like Jacobian matrix using this subroutine.  

In the following sections, input file and subroutine code preparation are 

explained stepwise.  

6.4.1. Input File 

The UGEN subroutine is developed to calculate membrane and bending 

stresses for a Silicone plate with S4 shell elements simulating pure bending with 

similar boundary conditions, material properties and other parameters as discussed in 

Section 5.2.3. The Abaqus input files need special preparation in-order to use the 

UGEN subroutine. The shell elements to assign ABD stiffness matrix and to follow 

the UGEN subroutine is defined using the *shell general section abaqus command. 

Initial stiffness matrix of silicon is given defining symmetric part using 21 properties 

following equation 9 in Chapter 3. But if the stiffness matrix is unsymmetrical, each 

element should be defined using 36 properties.  

*SHELL GENERAL SECTION, elset= name_of_element_set, USER, 

VARIABLES= number_state_var, PROPERTIES=21 (using symmetry of the matrix), 

density= 5.81e-07.  

6.4.2. Subroutine File 

The heading mentioned below should be used at the start of the UGEN 

subroutine. It consists with different parameters and values that are imported from 

Abaqus software and the information send back from subroutine to the Abaqus 

Programme as described in previous section.  
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   SUBROUTINE  UGENS (DDNDDE,FORCE,STATEV,SSE,SPD,PNEWDT,STRAN, 

     1 DSTRAN,TSS,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CENAME,NDI, 

     2 NSHR,NSECV,NSTATV,PROPS,JPROPS,NPROPS,NJPROP,COORDS,CELENT, 

     3 THICK,DFGRD,CURV,BASIS,NOEL,NPT,KSTEP,KINC,NIT,LINPER) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CENAME 

      DIMENSION DDNDDE(NSECV,NSECV),FORCE(NSECV),STATEV(NSTATV), 

     1 STRAN(NSECV),DSTRAN(NSECV),TSS(2),TIME(2),PREDEF(*), 

     2 DPRED(*),PROPS(*),JPROPS(*),COORDS(3),DFGRD(3,3), 

     3 CURV(2,2),BASIS(3,3) 

 

For every strain component in every element, Abaqus determines the strain at 

current increment εj, and next strain εj + dεj and located in the corresponding strain 

array. In the subroutine code, total strain at current increment is calculated as below. 

strainE(j)=STRAN(j) + DSTRAN(j) 

Then the Jacobian stiffness matrix is updated using PROPS where the values 

are called from input files during code compiling and processing.  

Finally the section forces are calculated using strain and stiffness arrays. For 

every finite element, every iteration, every strain increment a loop runs from (i = 1 to 

6) and (j = 1 to 6). In the loop, index i loops among the force component, while j loops 

among the strain components. Bending and moment forces are given by, 

FORCE(i) = FORCE(i)+DDNDDE(i,j)*strainE(j) 

When the simulation is running it was stopped after few increments as in figure 

6.7. It is found that convergence difficulties are observed when dramatic changes of 

mechanical properties are present between steps or among elements.  

To improve the subroutine code decreasing maximum load step size, inducing 

the finite element package not to overshoot the next stiffness estimate and smoothing 

out sudden stiffness changes can be studied. Also the predefined strain points can be 

added to code input and then the stiffness curves can be interpolated using the pre-

defined strains. The points can take arbitrary and same for the all stiffness. Number of 
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points can be decided on at what point it is needed to change the stiffness. Then the 

forces and moments can be calculated at strain points. 

 

Figure 6.7: UGEN subroutine results up to termination 

 Furthermore stated variables can be added to the subroutine if it is required. The 

number of state variables for each element depends on the chosen integration 

procedure. At each integration point of the linear element, there are two state variables 

for the relative displacement (x- and y-direction) and the local stresses acting in the x- 

and y-direction. Furthermore, there is one value describing the current interaction state 

between the two surfaces for the purpose of stability analysis and position tracking 

during the numerical procedure. For a standard integration procedure with 3 

integration points, this results in 15 (3x5) state variables for the linear element. As 

ABAQUS will not terminate the analysis if an insufficient number of state variables is 

provided for the chosen integration procedure, this user input error is checked within 

the subroutine. 
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CHAPTER VII 

7. Conclusion 

In this thesis, a detailed study of a dual-matrix composite boom made of weave 

glass fibre laminates is presented.  A finite element simulation technique is used to 

predict quasi-static deployment behaviour of the composite boom.  

Finite element model was developed using Abaqus/Explicit which is a 

commercially available finite element software package.  Robustness of the explicit 

solver helped to reduce computational time for the simulation with a stable solution. 

7.1. Important Findings and Discussion 

 It is shown that, bending stiffness of the elastomer region needs to be changed 

with degree of deformation of the hinge region for accurate prediction of bending 

behaviour of these type of dual-matrix composite booms. Variation of moment-

rotation response with changing bending stiffness of the soft elastomer region has been 

compared against the experimental results available in literature. More reasonable 

agreement is shown capturing the peak moment and other areas in moment-rotation 

response, which were not captured in earlier researches. Also model predictions clearly 

show two distinct peaks in moment-rotation curve as predicted in analytical solution 

for two tape-spring boom, which was not captured during experiment.  

However, for deployment angle from 8.20-120 reaction moment was not captured 

accurately.  Therefore, rather than using a constant bending stiffness it is required to 

change the bending stiffness according to the curvature during simulation process. 

The features available in finite element software does not allow changing the section 

definition during a simulation. Hence to simulate variable bending stiffness, import 

analysis was used to transfer deformed stress and strain state from a folded simulation 

and redefined section properties to corresponding reduction in bending stiffness. It is 

shown that, when there is a constant stiffness in the model it is possible to change 

material state and stress state during the analysis. Also analyses show that importance 

of keeping static equilibrium when importing from an intermediate step and the 

procedure to reduce inertia and damping dynamic forces. However, it is also shown 
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that when using ABD stiffness matrix, the stiffness matrix is not being modified 

despite the new definition with General Shell Section which is presently not fixed in 

Abaqus 6.14. Therefore it is not possible to use this method to simulated composite 

boom with a variable stiffness.  

Next, attempts to simulate bending stiffness reduction with degree of deformation were 

performed through more complex User-defined Subroutines. Preliminary attempts on 

utilizing user-defined subroutine clearly indicates that the Shell Section definition can 

be updated to simulate the reduction in bending stiffness. Detail study showed how to 

make computer environment to link Abaqus software with other software packages for 

subroutine. In the process of creating user subroutine for shell section to simulate 

bending behaviour of composite, working subroutine is developed to calculate 

membrane stresses and compared with a model without the subroutine. It clearly shows 

exact results in comparison and the accuracy of the subroutine.  

Proposed strategy with UGEN subroutine was studied to in cooperate variable bending 

stiffness for Shell General Section with membrane and bending stresses. The 

procedure to create the input file to be compatible with the UGEN subroutine for the 

ABD stiffness matrix is shown. However initial subroutine encountered convergence 

difficulties due to dramatic changes in mechanical properties between adjacent 

increments. It is identified that decreasing maximum load step size improves the 

subroutine. Smoothing out sudden stiffness changes and adding predefine strain points 

can be implemented. 

7.2.  Future Work 

Presently the finite element programme does not have the capability to change 

stiffness with curvature during a simulation and it is intended to implement concurrent 

updating of section stiffness definition through user-defined sub-routine option. 

Simulation technique for predicting deployment behaviour by incorporating 

variable bending stiffness in elastomer is still at the beginning. The next step is 

optimizing the sub-routine code for convergence. Then it is possible to define stiffness 

value according to the curvature. Ultimate goal is to develop simulation tool that can 

be used to update micro-scale response with the loads applied at macro-scale. 
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Appendix A 

Removing high frequencies in response using Savitzky-Golay filter  

%%% importing mom-rotation data 

rot1new = radtodeg(rot1)-0.6342;    %%%angle radian to degrees  

rot70new = radtodeg(rot70)-2.253; 

rot100new = radtodeg(rot100)-2.459; 

rot50new = radtodeg(rot50)-2.779; 

 

%% %% smoothing 

%%%%%10D 10D 10D 

%  

 k=0; 

 tem1p1=sgolayfilt(mom1,9,777); 

 tem2p1 = sgolayfilt(mom1,5,33); 

 for k=1:9945 

    if k<8100 | k>8350 

     t1mom(k)=tem1p1(k); 

    else 

      t1mom(k)=tem2p1(k);   

    end 

 end 

 

%% smoothing 

%%%%%50D 50D 50D 

 

 i=0; 

 tem1p50=sgolayfilt(mom50,9,777); 

 tem2p50 = sgolayfilt(mom50,5,33); 
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 for i=1:10006 

    if i<6700 | i>7000 

     t50mom(i)=tem1p50(i); 

    else 

      t50mom(i)=tem2p50(i);   

    end 

 end 

 

%% %% %% smoothing 

%%%%%70D 70D 70D 

 

 j=0; 

 tem1p70=sgolayfilt(mom70,9,777); 

 tem2p70 = sgolayfilt(mom70,5,33); 

 for j=1:10004 

    if j<6400 | j>6680 

     t70mom(j)=tem1p70(j); 

    else 

      t70mom(j)=tem2p70(j);   

    end 

 end 

%% %% %% %% smoothing 

%%%%%100D 100D 100D 

 

n=0; 

tem1p100=sgolayfilt(mom100,9,777); 

tem2p100 = sgolayfilt(mom100,5,33); 

for n=1:10004 
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   if n<6400 | n>6680 

    t100mom(n)=tem1p100(n); 

   else 

     t100mom(n)=tem2p100(n);   

   end 

end 

%% plot plot plot 

 

%%plotting moment-rotation curve after smoothing. 

 

plot(rot1new,t1mom,rot50new,t50mom,rot70new,t70mom,rot100new,t100mom) 
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Appendix B 

Abaqus Subroutine Files 

B.1 UMAT User Subroutine 

 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

      1 RPL,DDSDDT,DRPLDE,DRPLDT, 

      2 

STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

      3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

      4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

      1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

      2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

      3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

      4 JSTEP(4) 

 

C 

      ELASTIC USER SUBROUTINE 

       PARAMETER (ONE=1.0D0, TWO=2.0D0)   

          E=PROPS(1) 

          ACONNU=PROPS(2) 

          ACONLAMBDA = E*ACONNU/(ONE+ANU)/(ONE-TWO*ACONNU) 

          ACONMU = E/(ONE+ACONNU)/2 

            DO I =1, NTENS 
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               DO J=1,NTENS 

                     DDSDDE(I,J) = 0.0D0 

              ENDDO 

            ENDDO 

          

        DDSDDE(1,1)= (ACONLAMBDA+TWO*ACONMU) 

        DDSDDE(2,2)= (ACONLAMBDA+TWO*ACONMU) 

        DDSDDE(3,3)= (ACONLAMBDA+TWO*ACONMU) 

        DDSDDE(4,4)= ACONMU 

        DDSDDE(5,5)= ACONMU 

        DDSDDE(6,6)= ACONMU 

        DDSDDE(1,2)= ACONLAMBDA 

        DDSDDE(1,3)= ACONLAMBDA 

        DDSDDE(2,1)= ACONLAMBDA 

        DDSDDE(2,3)= ACONLAMBDA 

        DDSDDE(3,1)= ACONLAMBDA 

        DDSDDE(3,2)= ACONLAMBDA 

 

              DO I =1, NTENS 

               DO J=1,NTENS 

                    STRESS(I) = STRESS(I)+ DDSDDE(I,J)*DSTRAN(J) 

              ENDDO 

            ENDDO 

          

      RETURN 

      END 

 

B.2 UMAT User Subroutine 
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*USER SUBROUTINES 

C*******************************************************************

**** 

C2345678901234567890123456789012345678901234567890123456789012345678

9012 

      SUBROUTINE 

UGENS(DDNDDE,FORCE,STATEV,SSE,SPD,PNEWDT,STRAN, 

     1 

DSTRAN,TSS,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CENAME,NDI, 

     2 

NSHR,NSECV,NSTATV,PROPS,JPROPS,NPROPS,NJPROP,COORDS,CELENT, 

     3 THICK,DFGRD,CURV,BASIS,NOEL,NPT,KSTEP,KINC,NIT,LINPER) 

 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CENAME 

      DIMENSION 

DDNDDE(NSECV,NSECV),FORCE(NSECV),STATEV(NSTATV), 

     1 STRAN(NSECV),DSTRAN(NSECV),TSS(2),TIME(2),PREDEF(*), 

     2 DPRED(*),PROPS(*),JPROPS(*),COORDS(3),DFGRD(3,3), 

     3 CURV(2,2),BASIS(3,3) 

 

C     ELASTIC USER SUBROUTINE 

      PARAMETER (ONE=1.0D0, TWO=2.0D0, THREE=3.0D0) 

 

 

C-----update Jacobian (tangent stiffess)-----C 

 



75 

 

      do i = 1, NSECV 

        do j = 1, NSECV 

         DDNDDE(i,j)=0.0   

         end do 

     end do 

        

  DDNDDE(1,1)=PROPS(1) 

  DDNDDE(1,2)=PROPS(2) 

  DDNDDE(2,2)=PROPS(3) 

  DDNDDE(1,3)=PROPS(4) 

  DDNDDE(2,3)=PROPS(5) 

  DDNDDE(3,3)=PROPS(6) 

  DDNDDE(1,4)=PROPS(7) 

  DDNDDE(2,4)=PROPS(8) 

  DDNDDE(3,4)=PROPS(9) 

  DDNDDE(4,4)=PROPS(10) 

  DDNDDE(1,5)=PROPS(11) 

  DDNDDE(2,5)=PROPS(12) 

  DDNDDE(3,5)=PROPS(13) 

  DDNDDE(4,5)=PROPS(14) 

  DDNDDE(5,5)=PROPS(15) 

  DDNDDE(1,6)=PROPS(16) 

  DDNDDE(2,6)=PROPS(17) 

  DDNDDE(3,6)=PROPS(18) 

  DDNDDE(4,6)=PROPS(19) 

  DDNDDE(5,6)=PROPS(20) 

  DDNDDE(6,6)=PROPS(21) 
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 DDNDDE(2,1)=DDNDDE(1,2) 

                DDNDDE(4,5)=DDNDDE(5,4) 

 

C generalized section strains at the end of increment 

  

 strainE(1)=STRAN(1) + DSTRAN(1) 

 strainE(2)=STRAN(2) + DSTRAN(2) 

 strainE(3)=STRAN(3) + DSTRAN(3) 

 strainE(4)=STRAN(4) + DSTRAN(4) 

 strainE(5)=STRAN(5) + DSTRAN(5) 

 strainE(6)=STRAN(6) + DSTRAN(6) 

 

 

   do i = 1, NSECV 

        do j = 1, NSECV 

          FORCE(i) = FORCE(i)+DDNDDE(i,j)*strainE(j) 

         end do 

     end do 

 

      RETURN 

      END 


