AN ANALYSIS OF OCCUPATIONAL SAFETY AND HEALTH HAZARDS IN THE HOT END SECTION OF CONTAINER GLASS MANUFACTURING INDUSTRY

R.D.K Samitha Kumara

149387A

Degree of Master of Science

Department of Building Economics

University of Moratuwa Sri Lanka

March 2019

AN ANALYSIS OF OCCUPATIONAL SAFETY AND HEALTH HAZARDS IN THE HOT END SECTION OF CONTAINER GLASS MANUFACTURING INDUSTRY

R.D.K Samitha Kumara

149387A

Thesis submitted in partial fulfilment of the requirement for the degree Master of Science in Occupational Safety and Health Management

Department of Building Economics

University of Moratuwa

Sri Lanka

March 2019

Table of contents

Table of contents -----iii List of Tables-----ix List of figures----- xi List of appendices-----xiii Abbreviations----- xiv Acknowledgement-----xv Dedication-----xvi Declaration-----xvii Abstract----- xviii **Chapter One** 1.0 Background of Study 01 1.1 Identification of research problem 02 Justification of the problem 1.2 03 1.3 Research Aim 04 Specific Objectives of the Study 04 1.4 Significance and Limitations of Study 04 1.5 1.6 Chapter outline 06 **Chapter Two** 2.0 Literature Synthesis 07 2.1 Introduction to glass industry 07 2.1.1 Historical overview 07 2.1.2 Diversification of the glass industry 08 2.1.3 10 Glass manufacturing process 2.1.3.1 Batch Processing (Batch House) 11 2.1.3.2 Melting in Furnace 11 2.1.3.3 Forming the glass 12 2.1.3.4 Surface coatings and anti-weathering agent treatment 12 2.1.3.5 Annealing 13 2.2 Exposures in the workplace 13 2.3 Health Hazards 14

2.3.1	Physical Hazards	14
2.3.2	Chemical Hazards	
2.3.3	Biological Hazards	
2.4	Safety Hazards	
2.5	Sri Lankan Glass manufacturing industry	
2.6	Hazards at workplace	
2.7	OSH Hazards in glass industry	19
2.7.1	Exposure to High Heat	
2.7.1.1	Importance in metabolic rate	23
2.7.1.2	Effect on Cardiac output	24
2.7.2	Exposure to Noise	25
2.7.2.1	Occupational Exposure to high indoor noise levels	25
2.7.2.2	7.2.2 Noise Exposure health Effects	
2.7.2.3	Noise induces hearing loss (NIHL)	27
2.7.2.4	Tinnitus	
2.7.3	Exposure to respiratory hazards	28
2.7.3.1	RCS - Respirable Crystalline Silica	
2.7.3.2	Silica Sand related OSH diseases	29
2.7.3.3	Silicosis induced by Respirable Crystalline silica dust	30
2.7.3.4	Types of Silicosis	31
2.7.3.4.1	Acute Silicosis	31
2.7.3.4.2	Accelerated Silicosis	31
2.7.3.4.3	Chronic Silicosis	31
2.7.3.4.4	Chronic Simple Silicosis	31
2.7.4	Occupational Exposure to Refractory (Ceramic) Fibre (Glass Wool)	31
2.7.5	Respiratory hazards due to Emissions	32
2.7.6	Abrasive blasting (sand blasting)	32
2.7.7	Emissions & fumes	33
2.7.8	Physical Hazards	34
2.7.8.1	Cut injuries in glass industry	35
2.7.9	Ergonomics hazards	35

2.7.10	Electrical Hazards	37
2.7.10	Control & prevention measures to reduce of Hazard in the industry	
2.8.1	Types of preventive methods	
2.8.1.1	••	
	Application of personal protective equipment	
2.8.1.2	Fire protection	
2.8.1.3	OSH programs	39
2.8.1.4	Risk assessment and management	39
Chapter	Three	
3.0	Research Methodology	42
3.1	Introduction	42
3.2	Research design & Methodology	42
3.3	Research design/ philosophy	
3.4	Scope of the study	
3.5	Research approach & Strategy	
3.6	Population & Sample selection procedure	
3.7	Sample size determination	48
3.8	Sampling limitations and controls	
3.9	Data collection techniques and research analysis	49
3.10	Literature survey	49
3.11	Pilot Study	50
3.12	Questionnaire survey	51
3.13	Structured interviews	51
3.14	Distribution of questionnaire	52
3.15	Questionnaire structure	52
3.16	Data analysing techniques	52
3.16.1	Relative Importance Index (RII)	53
3.16.2	Determination of level of significance	53
3.16.3	Percentage analysis	54
3.17	Validity & Reliability	54

Chapter Four 4.0 Findings and Analysis 56 4.1 Introduction 56 4.2 Pilot Study 56 4.3 **Data Collection** 57 4.4.0 Questionnaire survey analysis 58 4.4.1 Introduction 58 4.4.2 59 Demographic data 4.4.2.1 Gender Distribution 59 4.4.2.2 Age Groups 59 4.4.2.3 Work Area in the population 60 4.4.2.4 Work experience of employee in hot end 61 4.4.2.5 Maximum of sample population education 63 4.5. Occupation safety and health status of the sample selected 64 4.5.1 Hospitalization during working due to accident 64 65 4.5.2 Suffering from Chronic Diseases 4.6 Evaluation of responses in relation to OSH condition of the factory 66 Responses in relation to the Noise & related hazards 4.6.1 66 4.6.1.1 Level of exposure & severity - noise hazards 67 4.6.1.2 Responses of Knowledge, adherence & prevention - noise hazards 67 4.6.2 Responses in relation to the - Burn injury hazards 69 4.6.2.1 Level of exposure & severity – Burn Injuries 69 4.6.2.2 Responses of Knowledge, adherence & prevention on burn hazards 70 4.6.3 Responses in relation to the - heat stress & related hazards 71 4.6.3.1 Level of exposure & severity – heat stress 71 4.6.3.2 Responses of Knowledge, adherence & prevention on heat hazards 72 4.6.4 Responses in relation to the – physical cut injuries 73 4.6.4.1 Level of exposure & severity – Physical cut injuries 73 Responses of Knowledge, adherence & prevention on cut injury haz: 74 4.6.4.2 75 4.6.5 Responses in relation to the – Respiratory hazards 4.6.5.1 Level of exposure & severity – Respiratory hazards 76

4.6.5.2	Responses of Knowledge, adherence & prevention on Respiratory	76
	Hazards	
4.6.6	Responses in relation to the – Ergonomics hazards	77
4.6.6.1	Level of exposure & severity – Ergonomics hazards	
4.6.6.2	Responses of Knowledge, adherence & prevention on Ergonomic	
	Hazards	78
4.7	Ranking of hazards with Relative Importance Index (RII)	
4.7.1	Ranking the hazards according to severity	79
4.7.1.1	Severity level I – Exposure to hazard	
4.7.1.2	Severity level II – Medical treatment	81
4.7.1.3	Severity level III – Hospitalization	
4.7.2	Overall Ranking Hazards – Severity	83
4.8 Ranking of hazards according to the awareness, commitment and		
	adherence	84
4.8.1	Knowledge (Level of awareness)	84
4.8.2	Level of commitment in prevention	86
4.8.3	Level of Adherence to the safety practices	87
4.9	Overall Ranking Hazards awareness, commitment and adherence	88
4.10	Identify critical causes for each critical health and safety Hazards	89
4.10.1	Causes for Noise hazards	90
4.10.2	Causes for Burn injuries	91
4.10.3	Causes for Heat Stress	92
4.10.4	Causes for Physical Cut injuries	93
4.10.5	Causes for Respiratory Issues	94
4.10.6	Causes for Ergonomics Issues	95
4.10.7	Causes for Slipping, Tripping and fall on floor	96
4.10.8	Causes for Accidents by machinery	97
4.10.9	Causes for Eye injuries	98
4.10.10	Causes for Sprains of body parts	99
4.11	Overall ranking the critical causes for overall safety and health	100

4.12	Company General OSH background	101
Chapter	Five	
5.0	Conclusions	103
5.1	Recommendations	108
5.2	Suggestions for future research	112
Reference	S	113
Appendix A		121
Appendix B		125
Appendix C		126

List of tables

Table 2.1– Category wise percentage of Glass production	08
Table 2.2 – Category wise % of Glass production total Asian region	08
Table 2.3 –Key Raw Material of glass production	11
Table 2.4- Category of health and safety hazards in glass industry	14
Table 2.5– The Risks in workplace	19
Table 2.6 – Screening Criteria for TLV® and Action Limit for Heat Stress Exposu	ure
	22
Table 2.7 – Metabolic Work Rates	24
Table 2.8– Allowable daily exposure to varying noise levels	26
Table 2.9- Air emission levels for glass manufacturing	34
Table 3.1 –Population & sample selection table	49
Table 3.2 – Likert Scale	51
Table 3.3 – How to Evaluate –Likert Scale	53
Table 3.4 – Suggested Data Analysis Procedures for Likert-Type and Likert Scale	;
Data	54
Table 4.1 – Sample population & the Responses to Questionnaire	58
Table 4.2 – Age distribution of the sample population	59
Table 4.3 – Work categories in the research	60
Table 4.4 – Work Experience at the Hot End	61
Table 4.5 – Age Vs. work experience	63
Table 4.6 – Maximum Education Level of the sample population	64
Table 4.7 – Hospitalization during working	65
Table 4.8 – Chronic diseases suffering	65
Table 4.9 – Chronic Disease history	66
Table 4.10 – Tabulated data on Noise Hazards (question number Q1.1 to 1.6)	66
Table 4.11 – Tabulated data on Burn Injuries (question number Q2.1 to 2.6)	69
Table 4.12 – Tabulated data on heat stress (question number Q3.1 to 3.6)	71
Table 4.13 – Tabulated data on cut injuries (question number Q4.1 to 4.6)	73
Table 4.14 – Tabulated data on respiratory hazards (question number Q5.1 to 5.6)	75
Table 4.15 – Tabulated data on Ergonomics Haz: (question number Q 6.1 to 6.6)	77

80
81
83
83
S
85
86
87
88
90
91
92
93
94
95
96
97
98
00
01

List of figures

Figure 2.1 - Category wise percentage global glass production	08
Figure 2.2 - Global Glass bottle packaging Market USD Bn, (2013 - 2023)	09
Figure 2.3 - steps of container glass manufacturing	10
Figure 2.4 - Incidence rate of injuries in the Asian glass sector, 2011, 2012, 2013	3 &
2014	13
Figure 2.5 - Risk Sources	40
Figure 2.6 - Risk Management process	41
Figure 3.1 - Research process	43
Figure 3.2 - Nested research methodology	44
Figure 4.1 - Age categories	60
Figure 4.2 - Work area classifications and number of responses	61
Figure 4.3 - work experience of JMOs & Line In-charge (L/I)	62
Figure 4.4 - Age groups and service experience	63
Figure 4.5 - Maximum Education Level of the sample population	64
Figure 4.6 - Hospitalization during working	65
Figure 4.7 - Responses for noise hazards	68
Figure 4.8 - Responses for Burn Injuries	71
Figure 4.9 - Responses for Heat stress Hazards	73
Figure 4.10 - Responses for Physical cut injury hazards	75
Figure 4.11 - Responses for Respiratory Hazards	77
Figure 4.12 - Responses for Ergonomics hazards	79
Figure 4.13 - Hazards of Hot End ranked according to the RII index – minor	
incidents	81
Figure 4.14 - Hazards of Hot End ranked according to the RII index - Moderatel	ly
critical incidents	82
Figure 4.15 - Hazards ranked according to the RII index — Hospitalizations/ high	l
criticality	83
Figure 4.16 - Overall Ranking of hazards in hot end	84
Figure 4.17 - Rank the level of knowledge (Level of awareness) of hazards by	
employees	85

Figure 4.18 - Rank the level of commitment in prevention the hazards by	
Company	87
Figure 4.19- Rank the hazards according to level of adherence	88
Figure 4.20 Overall ranking according to the awareness, commitment and	
adherence	89
Figure 4.21 - Critical causes for Noise hazards	90
Figure 4.22 - Critical causes for Burn injuries	91
Figure 4.23 - Critical causes for heat stress	93
Figure 4.24 - Critical causes for Physical Cut injuries	93
Figure 4.25 - Critical causes for respiratory hazards	94
Figure 4.26 - Critical causes for Ergonomics issues Noise hazards	96
Figure 4.27 – Causes for Slipping, Tripping and fall on floor	98
Figure 4.28 - Causes for Accidents by machinery Noise hazards	98
Figure 4.29 - Causes for Eye injuries	99
Figure 4.30 - Causes for Sprains of body parts	100
Figure 4.31 - Ranking the Critical causes for overall safety and health	101
Figure 4.32 - OSH initiative of the company – answers with "YES"	102
Figure 4.33 - OSH initiative of the company – answers with "YES"	102
Figure 5.1 - The Map of hazard existence	107
Figure 5.2 - Safety framework	111

List of Appendices

Appendix A - Survey questionnaire

Appendix B – Determination of sample size from a given population

Appendix C - Pilot study

Abbreviations

ACGH - American Conference of Governmental Industrial Hygienists

TLVs - Threshold Limits Values

JMO – Junior Machine In-charge.

LI – Line In-charge

NIOSH – National Institute of Occupational Safety and Health

ISM - Individually sectioned machine

ACGIH - The American Conference of Government Industrial Hygienists

WBGT - Wet-bulb globe temperature

WHO – World Health Organization

SLIDB – Sri Lanka Industrial Development Board

IARC - International Agency for Research on Cancer

IJERT - International Journal of Engineering Research & Technology

OSH – Occupational safety and Health

RCS - Respirable crystalline silica

MR - Metabolic rate

TLV - Threshold Limit Value

NIHL - Noise induces hearing loss ()

COSHH - Control of Substances Hazardous to Health Regulations 2002

GDP - Gross Domestic Production

COSHH - Control of Substances Hazardous to Health Regulations 2002

ILO – International Labour Organizations

Acknowledgement

It is obvious than an academic and research work could not be accomplished without the support and the assistance of certain personalities to this level. It is indeed a pleasure of remembering all the extensive support and dedication granted during accomplishment of this piece of academic effort by these personalities. In writing this has provided me with the real understanding of my capabilities and personal abilities, whist making me a better understanding of magnitude of a research activity involves to accomplish a true outcome.

I would frankly offer my heart-felt gratitude to my supervisor Ch.QS Indunil Seneviratne, senior lecturer in the Building Economics Department University of Moratuwa, who gave me an immense support and guidance in writing this dissertation since beginning to the end.

Secondly, during this study period, the support given by the BHU - DGM of Prime polymers division of Industrial Clothings Pvt Ltd, Mr Hari S.N is unforgettable as authorizing & releasing from factory during working hours in attending to supervisor discussions.

In completion of this document, support given by my loving wife is unforgettable at all the times. Bearing with all the difficulties of personal endeavours keeping me non-disturbing and handling all the family matters alone during the period would certainly allowed me to focus in this effort in full. Final gratitude goes to my loving two daughters who showed extreme patience with supportive role right throughout the study period.

Dedication

This project of dedicated to my beloved mother who wanted me to be the best at all the times

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning. To the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

-

Date	
R.D.K Samitha Kumara (149	9387A)
The above candidate has c	carried out research for the Masters thesis under my
supervision	
Signature of the supervisor	-
Date	

Department of Building Economics

University of Moratuwa

Signature of the student

May 2019

Abstract

The uncontrolled occupational health and safety hazards are hidden issue all over the world. Many people die and sacrifice their lives in short terms and long terms as a result of these uncontrolled and unidentified hazards existing in the working environment. The health care sector of countries have to spent billions of money for medical treatments for the occupations illnesses, in the developing countries. In addition, the contribution of victimized people to the economic development process of a country get limited in various ways and their personal lives get disturbed. Accidents caused in industries making partially disabled, fully disabled people, who are considered as dependents in the society making minimum contribution to the economy.

The glass industry is known as an industry with high concerns of occupational health and safety conditions and with less studies in finding the long lasting solutions and remedies in remedying the hazardous conditions. In this study, preliminary the Sri Lankan glass manufacturing sector was considered and data collection done.

Preliminary in data collection the structured questionnaire was used validated with a questionnaire pilot study with industry experts. In this study, the hot end section was selected in carrying the survey and out of 35 employees; the 32 employees were selected according to the small survey-sampling plan. The demographic data, health and safety hazards according to the criticality, company background of OSH and critical causes for the OSH hazards were collected with interview of employees by the researcher by face-to-face interview. All collected data tabulated and analysed through the excel and RII (Relative Importance Index) was calculated in facilitating the ranking the hazards and the cause. In most of the cases, the hazardous condition had been controlled with PPE applications and engineering controls where as the eliminating and substitution is a challenging initiatives in the glass manufacturing environment. Against the preventive initiatives the controlling of the hazards and exposures are quite unsatisfactory as during the case study the results showed are alarming. This study conducted by emphasizing to develop a better OSH environment in Sri Lankan glass industry.

Key words: Safety Hazards, Container glass, Occupational health