Using Data Mining Techniques to Analyze Crash Patterns in Sri Lanka Road Accident Data

U L A S Perera 158768U

Faculty of Information Technology University of Moratuwa February 2019

Using Data Mining Techniques to Analyze Crash Patterns in Sri Lanka Road Accident Data

U L A S Perera 158768U

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of Master of Science in Information Technology

February 2019

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information delivered form the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Name of the Student	Signature of the student
U. L. A. S. Perera	Date:
Supervised by	
Name of Supervisor	Signature of Supervisor
S. C. Premaratne	Date:

Acknowledgements

I would like to express sincere gratitude to my project supervisor, Mr. S. C. Premaratne, Senior Lecturer in University of Moratuwa, who spent his valuable time for guiding this research to make it a success. I would also like to thank Prof. Asoka Karunananda and Dr. M. F. M. Firdhous who are lecturers in charge of literature review, research methodology and thesis writing subjects which were the basis for this research. Not only that my thanks should go to all the lecturers in MSc in Information Technology, all the facilitators and batch mates of MSc IT 2015/2016 batch.

Moreover a very special thanks should go to DIG Traffic Administration, Mr. Hemantha and his staff members of Sri Lanka Police for assisting me in collecting dataset and giving me their valuable comments on my research.

Finally I wish to thank my wife Kumudu for her understanding and guidance throughout this project and my two sons, Venura and Sandaru for their love and support.

Abstract

The road safety has been identified as a major factor that influences the sustainable development worldwide. This growing interest in road safety, is reflected by including it in Sustainable Development Goals of United Nations as "Halve the number of global deaths and injuries from road traffic accidents by 2020". According to road accident statistics published by Sri Lanka traffic police in 2015, every three and half hours a person is killed due to a road accident and two are seriously injured. This shows that travelling on local roads becoming more and more unsafe and risky. When improving the road safety conditions, it is necessary to identify the major factors contributing to road crash injuries and deaths, in order to take appropriate safety measures.

The Sri Lanka Police department uses MAAP (Microcomputer Accident Analysis Package) system for the storage and analysis of Road Traffic Accidents (RTA) data. However MAAP has its own limitations of analysis of accident data.

In the area of road traffic accident analysis, data mining technique has been recognize as a reliable technique which can be used beyond the conventional techniques. When analyzing road traffic accidents, different models were developed to identify factors affecting the severity of a traffic accident.

The objectives of this study are to explore the underlying factors influencing on injury severity, to identify the human, environment and vehicle factors influencing the road traffic accident severity and to identify crash proneness of road segments using available road and crash factors. In this study, data mining classification model is used to detect factors which influence on road accidents. We conducted an experiment with road accident data in 2015, provided by Sri Lanka Police.

In this research we proposed an accident severity model based on selected data mining techniques to identify influential factors for the severity of road traffic accidents. The solution model is developed using Weka software tool.

Table of Contents

DECLARATION	Ι
ACKNOWLEDGEMENTS	II
ABSTRACT	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	VIII
LIST OF TABLES	VIII
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 Problem Definition	2
1.4 Aim and Objectives	2
1.5 Proposed Solution	2
1.6 Structure of Dissertation	3
1.7 Summary	3
CHAPTER 2 DISCOVERING CRASH PATTERNS IN ROAD ACCII	DENT
DATA	4
2.1 Introduction	4
2.2 Road Safety and Traffic Accidents	4
2.3 Road Accident Analysis	5
2.4 Data Mining Techniques in Road Traffic Accident	6
2.5 Summary of Challenges	7
2.6 Problem Definition	9
2.7 Aim and Objectives	9
2.8 Summary	10

CHAPTER 3 TECHNOLOGY ADAPTED	11
3.1 Introduction	11
3.2 Data Mining	11
3.3 Steps of Knowledge Discovery Process	12
3.4 Data Mining Models	12
3.5 Major Applications of Data Mining	15
3.6 Data Mining in Road Accident Analysis	15
3.7 Tools used for Data Mining	16
3.8 Data Mining Algorithms used	16
3.8 Summary	17
CHAPTER 4 A NOVEL APPROACH TO ANALYZE ROAD TRAFFIC ACCIDENT DATA	18
4.1 Introduction	18
4.2 Hypothesis	18
4.3 Input	18
4.5 Process	18
4.5.1 The Proposed Model	19
4.6 Users	20
4.7 Summary	20
CHAPTER 5 RESEARCH DESIGN FOR ANALYZING RTA DATA	21
5.1 Introduction	21
5.2 Research Design	21
5.3 Summary	23
CHAPTER 6 IMPLEMENTATION	24
6.1 Introduction	24
6.2 Solution for the Research Objective	24

6.2.1 Data Pre-processing	25
6.2.1.1 Data Pre-processing for the First Research Objective	25
6.2.1.2 Data Pre-processing for the Second Research Objective	25
6.2.2. Attribute/Feature Selection	25
6.2.2.1 Attribute Selection for the First Research Objective	27
6.2.2.2 Attribute Selection for Second Research Objective	29
6.2.3. Measure the Variable Importance	32
6.2.4. Classification Rule Extraction	34
6.3 Summary	37
CHAPTER 7 EVALUATION	38
7.1 Introduction	38
7.2 Evaluation for classification	38
7.3 Evaluation of Injury severity	39
7.4 Evaluation of Accident Severity	41
7.5 Summary	43
CHAPTER 8 CONCLUSION AND FURTHER WORKS	44
8.1 Introduction	44
8.2 Overview of the Research	44
8.3 Key Findings	44
8.4 Problems Encountered and Limitations	46
8.5 Further Works	46
8.6 Summary	46
REFERENCES	47
APPENDIX A: TABLE DETAILS OF ACCIDENT DATABASE	50
APPENDIX B: INITIAL ATTRIBUTES SETS FOR SAMPLE SET 01	51
APPENDIX C: SELECTED ATTRIBUTES SETS FOR SAMPLE SET 01	52

APPENDIX D INITIAL ATTRIBUTES SETS FOR SAMPLE SET 02	53
APPENDIX E: SELECTED ATTRIBUTES SETS FOR SAMPLE SET 02	54
APPENDIX F: MEASURING ATTRIBUTE IMPORTANCE	55
APPENDIX G: FURIA RULE EXTRACTION	57

List of Figures

Figure 3-1 Steps of Knowledge Discovery Process	11
Figure 3-2 Data Mining Models	13
Figure 4-1 Proposed Model	20
Figure 4-2 Overall System design of the Proposed Solution	22
Figure 4-3 Weka GUI	24
Figure 4-4 Weka Attribute Selector Tool	26
Figure 4-6 Measure the attribute importance with RF	33

List of Tables

Table 2-1 Summary of literature	8
Table 3-1 Application of Data Mining Techniques	15
Table 4-1 Attributes selected after Wrapper Method	29
Table 4-2 Attributes selected after wrapper method	31
Table 4-3 VIM for Injury severity	33
Table 4-4 VIM for Accident Severity	34
Table 4-5 FURIA rule generation for injury severity	35
Table 4-6 FURIA rule generation for Accident severity	36
Table 4-7 Evaluation measures for classifiers	38
Table 4-8 J48 Tree Classifier evaluation summary for injury severity model	39
Table 4-9 The prediction accuracy of J48 by using the test data set	40
Table 4-10 Random Forest evaluation summary for injury severity model	40
Table 4-11 FURIA evaluation summary for injury severity model	40
Table 4-12 J48 Classifier Evaluation Summary for accident severity model	41
Table 4-13 The prediction accuracy of J48 by using test data set	41
Table 4-14 Random Forest evaluation summary of accident severity model	42
Table 4-15 FURIA evaluation summary of accident severity model	42
Table 4-16 Most influential factors of injury severity based on algorithm	45
Table 4-17 Most influential factors of accident severity based on algorithm	45