
DEVELOPMENT OF SELF-COMPACTING CONCRETE USING LIMESTONE POWDER

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

> University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

> > R.Thivakar

Supervised by

624°06" 624 (043)

Dr.S.M.A.Nanayakkara

University of Moratuwa University of Moratuwa

January 2006

35923

85983

DECLARATION

I herewith declare that the work included in the thesis in part or whole has not been submitted for any other academic qualification at any institution.

31 01 2006 Date

R. Hrivokan.

R.Thivakar

31/1/2006

Date

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dr.S.M.A.Nanayakkara Supervisor

UOM Verified Signature

ABSTRACT

Self-compacting concrete (SCC) is characterized by high flowability and segregation resistance. With the aid of these properties, SCC can be compacted into all corners of a formwork without using an external source of vibration. Sri Lanka has been in the back front of developing such a constructive material for the use of the local construction industry. This research had focused on the development of SCC using blended cement, which is enriched with limestone powder. Keeping in mind of the properties and the availability of the materials and also the economic factors, limestone powder along with the Ordinary Portland Cement were chosen as the major powder constituents to impart the necessary properties in the concrete to make it selfcompactable. The design process in this research devised a novel technique; that is, the process of developing the SCC essentially involved three concomitant stages. In the first stage, paste mixes with relatively high flowability and apparently high cohesiveness were found out using modified flow table test and apparent bleeding of the pastes. The modified flow table test was carried out with some modifications to suit the appropriateness of the tests to the objective of the research. In the second stage, the selected pastes from the first stage were used to produce self-compacting mortar mixes. V-funnel test and mortar blocking tests were carried out in this stage to investigate the flowing ability and viscosity of the mixes. As a result of these tests, optimum concentration of sand and high self-compactable mortar mixes were found out. The concentration of coarse aggregate, which could be used in the initial mix proportioning of the concrete, was found out through a supplementary research. Then the derived mortar mixes were used in the third stage to check the self-compactability of the concrete. U-box test and slump flow tests were performed at this stage to verify the self-compactability characteristics of the concrete. Relatively lower rank SCC was produced in this research. This research concluded that blended cement with limestone powder, such as masonry cement, could be effectively used in producing SCC. Also SCC was produced for limestone powder/OPC ratio equals 0.56. It is highly effective to develop SCC by designing it through three connected stages; that is, by designing the paste, mortar and finally the concrete. Further to this development, a novel technique was discovered to quantitatively ascertain the resistance to segregation of the concrete by using modified L-box test. The developed self-compacting concrete was first put into this test and positive test results were obtained.

LIST OF CONTENTS	PAGE NO.
ABSTRACT	ii
ACKNOWLEDGEMENT	xii
1 INTRODUCTION	
1.1 INTRODUCTION TO CONCRETE AS A STRUCTURAL MATERIAL	01
1.2 GENERAL INTRODUCTION TO SELF-COMPACTING CONCRETE	02
1.3 HISTORY OF DEVELOPMENT OF SELF-COMPACTING CONCRETE	03
1.4 OBJECTIVES AND SCOPE OF THE PROJECT	03
1.5 DEVELOPMENT OF SELF-COMPACTING CONCRETE AROUND THE GLOBE	04
1.6 SELF-COMPACTING CONCRETE IN SRI LANKA	06
2. LITERATURE REVIEW	
2.1 THE CONCEPT OF SELF-COMPACTING CONCRETE	. 08
2.2 CHARACTERISTICS OF SELF-COMPACTING CONCRETE AND THE COMMON LABORATORY TEST METHODS	
AVAILABLE TO VERIFY THESE CHARACTERISTICS	10

1

iii

2.2.1 FLOWING ABILITY	10
2.2.2 PASSING ABILITY	14
2.2.3 RESISTANCE TO SEGREGATION	21
2.3 MATERIALS USED IN PRODUCING SELF-COMPACTING CONCRETE	25
2.3.1 POWDER MATERIALS	26
2.3.2 SUPERPLASTICIZERS	28
2.3.3 VISCOSITY AGENTS	29
2.4 AVAILABLE MIX DESIGN APPROACHES TO	
SELF-COMPACTING CONCRETE	29

3. METHODOLOGY

3.1 RATIONALE BEHIND THE METHOD ADOPTED IN PRODUCING	
SELF-COMPACTING CONCRETE	33
3.2 DEVELOPING SELF-COMPACTING CONCRETE THROUGH	
THREE CONNECTED STAGES	34
3.2.1 SELECTION OF MATERIALS	35
3.2.2 PARAMETERS USED TO EXPRESS THE MIX PROPORTIONS	36

3.2.3 DEVELOPMENT OF PASTE	38
3.2.4 DEVELOPMENT OF SELF-COMPACTING MORTAR	39
3.2.5 DEVELOPMENT OF SELF-COMPACTING CONCRETE	41
4. OBSERVATIONS AND ANALYSIS OF RESULTS	
4.1 EXPERIMENTAL FINDINGS FROM THE TESTS PEFORMED TO PRODUCE THE PASTE	43
4.2 DEVELOPMENT OF SELF-COMPACTING MORTAR	46
4.3 DEVELOPMENT OF SELF-COMPACTING CONCRETE FROM SELF-COMPACTING MORTAR	50
4.4 TEST OF RESISTANCE TO SEGREGATION OF THE CONCRETE BY MODIFIED L- BOX TEST	55
5. CONCLUSIONS	58
6. RECOMMENDATIONS	59
REFERENCES	60
APPENDIX	
A.1 DETERMINATION OF FINENESS OF POWDER MATERIALS	

a. CALCULATION OF FINENESS OF MASONRY CEMENT 63

v

b. CALCULATION OF FINENESS OF OPC	64
A.2 SIEVE ANALYSIS OF FINE AGGREGATE	65
A.3 PHYSICAL PROPERTIES OF FINE AGGREGATE	65
A.4 RELATIONSHIP BETWEEN VOID RATIO AND AGGREGATE RATIO	66
A.5 MECHANICAL PROPERTIES OF COARSE AGGREGATES	66
A.6 FLOW TABLE TEST RESULTS OF PASTE MIXES	67
b. MIX PROPORTION OF PASTE MIX OF WATER/POWDER RATIO (BY VOLUME) = 0.8	68
c. MIXP ROPORTION OF PASTE MIX OF WATER/POWDER RATIO (BY VOLUME) = 0.85	70
d. MIXPROPORTION OF PASTE MIX OF WATER/POWDER RATIO (BY VOLUME) = 0.9	72
e. MIX PROPORTION OF PASTE MIX OF WATER/POWDER RATIO (BY VOLUME) = 1.0	73

~

l

A.7 TEST RESULTS TO DETERMINE OPTIMUM COARSE	
AGGREGATE CONTENT	
a. CONCRETE MIX PROPORTIONS AND U BOX AND SLUMP FLOW	
TEST RESULTS	75
b. TABLE OF MIX PROPORTIONS AND EXPERIMENTAL RESULTS	
OF THE TESTED CONCRETE	77
A LIFECUT DIFFEDENCES FOR DIFFEDENT C/Course FROM LI DOV	
c. HEIGHT DIFFERENCES FOR DIFFERENT G/Gmax FROM U-BOX TEST	78
1251	70
d. SLUMP FLOWS FOR DIFFERENT G/Gmax FROM SLUMP FLOW	
TEST University of Moratuwa, Sri Lanka,	78
Electronic Theses & Dissertations www.lib.mrt.ae.lk	
A.8 SIEVE ANALYSIS REPORT OF COARSEAGGREGATES	
a. 20MM COARSE AGGREGATE	79
b. 10MM COARSE AGGREGATE	79
c. BINARY MIXTURE	80
	00
A.9 MIX PROPORTIONS OF CONCRETE FOR DIFFERENT	
WATER/POWDER RATIOS	
a. MIX DESIGN OF CONCRETE FOR WATER/POWDER RATIO	
(BY VOLUME) = 0.85	80
b. MIX DESIGN OF CONCRETE FOR WATER/POWDER RATIO	
(BY VOLUME) = 0.9	83
	,

LIST OF TABLES

PAGE NO.

2. LITERATURE REVIEW

TABLE 2.1 ACCEPTANCE CRITERIA FOR SELF-COMPACTING	
CONCRETE	24
TABLE 2.2 POSSIBLE CAUSES FOR LOW RESULTS	24
TABLE 2.3 POSSIBLE CAUSES FOR HIGH RESULTS	25

3. METHODOLOGY

TABLE 3.1 PHYSICAL PROPERTIES OF MASONRY CEMENT AND	
OPC USED IN THE EXPERIMENTS	35
TABLE 3.2 PROPERTIES OF SAND AND MORTAR	39

4. OBSERVATIONS AND ANALYSIS OF RESULTS

TABLE 4.1 FLOW TABLE TEST RESULTS FOR PASTES WITH	
DIFFERENT WATER/POWDER RATIOS	43
TABLE 4.2 OBSERVATION OF BLEEDING ON POWDER PASTES	44
TABLE 4.3 OBSERVATIONS FROM THE MORTAR BLOCKING	
TEST FOR S/S _{MAX} EQUALS TO 70%	47
	.,
TABLE 4.4 V FUNNEL TIMES OF MORTAR MIXES WITH $S/S_{MAX} = 70\%$	48

.

4

53
56
56

•

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk LIST OF FIGURES

PAGE NO.

2. LITERATURE REVIEW

FIG.2.1 SLUMP FLOW TEST APPARATUS	11
FIG.2.2 MODIFIED FLOW TABLE TEST FOR PASTE	12
FIG.2.3 V- FUNNEL TEST FOR MORTAR	13
FIG.2.4 U-BOX TEST APPARATUS	15
FIG.2.5 L-BOX TEST APPARATUS	16
FIG.2.6 THE J-RING USED IN CONJUNCTION WITH THE SLUMP FLOW	18
FIG.2.7 FILL BOX TEST APPARATUS	20
FIG.2.8 APPARATUS FOR MORTAR BLOCKING TEST	23
FIG.2.9 JSCE METHOD OF MIX PROPORTIONING	30
FIG.2.10 OKAMURA'S METHOD OF MIX PROPORTIONING	31

3. METHODOLOGY

FIG.3.1 PACKING ARRANGEMENT OF SOLID PARTICLES IN A	
UNIT VOLUME	37
FIG. 3.2 FLOW TABLE TEST THE ON PASTE	38
FIG.3.3 V-FUNNEL TEST ON THE MORTAR	40

х

FIG 3.4 FLOW CHART OF DESIGN PROCEDURE	42
4. OBSERVATIONS AND ANALYSIS OF RESULTS	
FIG.4.1 RELATIVE SLUMP FLOW OF PASTES WITH DIFFERENT	
WATER/POWDER RATIOS	45
FIG.4.2 GRADING CURVE OF FINE AGGREGATE	46
FIG 4.3 V FUNNEL TIMES OF MORTAR MIXES OF DIFFERENT	
WATER/ POWDER RATIOS	48
FIG.4.4 COMBINED MORTAR BLOCKING AND V-FUNNEL	
TEST RESULTS	49
FIG. 4.5 GRADING CURVE OF 20MM COARSE AGGREGATE	50
FIG. 4.6 GRADING CURVE OF 10MM COARSE AGGREGATE	51
FIG.4.7 VOID RATIO VS. AGGREGATE RATIO	51
FIG. 4.8 GRADING CURVE OF THE BINARY MIXTURE	52
FIG 4.9 HEIGHT DIFFERENCE VS. LIMESTONE POWDER/OPC IN THE	
U-BOX TEST	54
FIG.4.10 SLUMP FLOW VS. LIMESTONE POWDER/OPC IN THE SLUMP	
FLOW TEST	54
FIG 4.11 OUTLINE OF MODIFIED L BOX TEST TO DETERMINE	
SEGREGATION OF CONCRETE	55
FIG 4.12 CORRELATION OF HEIGHT RATIOS FOR MIXES WITH	
TWO TYPES OF ADMIXTURES	57
FIG 4.13 PERCENT CHANGE, P VS. HEIGHT RATIO OF CONCRETE	
WITH TWO TYPES OF ADMIXTURES	57