LB/DON/27/06

A Systems Approach to Assess the Vulnerability of Buildings to Bomb Blast

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

S. R. M. S. R. Chandratilake

<u>624 °06″</u> 624 (043)

Department of Civil Engineering University of Moratuwa Sri Lanka

85981

January 2006

85981

85981

ABSTRACT

A blast event lies within the social system and involves people. Hence vulnerability to blast loading can be considered a socio-technical or "soft" system, where our ability to model and hence predict bounds on behaviour is poor. Even where the "hard" part of the system is concerned (i.e. structural response), blast loading is difficult to idealize and its effects cannot be fully predicted. For all the above reasons, the analysis of vulnerability to blast loading must be grounded in past experience. Grounded Theory is a way in which theory is built from phenomena. Theory is considered as being grounded in phenomena; the reliability of data forms the basis for claiming the phenomena exist. Once the specific phenomena in the different case studies have been identified, they can be generalized into concepts. Coherence among concepts is the appropriate grounds for theory formation and acceptance. Grounded Theory is "explicity emergent" and does not test a hypothesis. For the above reasons, Grounded Theory was used to structure this ill-structured research problem that also required a reliance on experience.

The main objective of the study was to construct a hierarchy of concepts, which would constitute aspects that contribute to building vulnerability, using case histories. "Vulnerability" is treated as the top level concept, itself consisting of other concepts. Ten case studies of blast loading were chosen. These represented a variety of building uses, structural form and construction material, and also reflected a variety of explosive types and different locations worldwide. Data (e.g. statements) from case histories were used to identify phenomena. It was possible to extract 63 phenomena relating to building vulnerability from these case studies; some concepts were repeated in the case study phenomena. It was observed that the concepts lent themselves to hierarchical structuring. Some of the concepts could be grouped into a single concept that "emerged" from the former. The 63 original phenomena were used to generate 52 concepts, at various levels in the hierarchy. The hierarchy that was constructed consisted of seven levels. Each emergent concept can be called a "holon" – i.e. it is a whole when considering its constituent lower level concepts, and a part when considering an emergent higher level concept it contributes towards.

The top levels of the hierarchy obtained differed somewhat from those that were previously constructed using "top down" approaches based largely on literature surveys; this demonstrates the value of a "bottom up" approach that seeks to "listen to the data" from case studies. Level 2 of the hierarchy shows that the vulnerability due to blast effects is a social process where context too plays a key role; hence due consideration must be given to context when seeking to assess or reduce vulnerability. Some of the concepts that were frequently repeated in the case study phenomena are "advance warning", "standoff distance", "nature of terrorism", "confinement", "building layout", "structural redundancy", "security" and "glass"; a method of weighting is required to account for the importance of such concepts (reflected in their repetition) within the hierarchy.

The assessment procedure combines existing numerical models as well as ways of processing vague information and expert judgements. It is also a very flexible tool which allows the handling of various types of artefacts which are significantly different from past experience. Experts will use linguistic assessments to measure the evidence about the dependability of holons to sustain their function in a particular blast incident. Linguistic assessments are matched to interval probability numbers. An interval number is used to capture, in practical manner, features of fuzziness and incompleteness. Interval Probability Theory (IPT) is used to combine evidential support values throughout the hierarchy. A computer implementation of the model was developed to show its potential for practical use. The software developed was used to apply the methodology to a building located in the heart of Colombo. The interpretation of results shows the potential of the model to be used as a management tool for practical decision making.

Π

ACKNOWLEDGEMENTS

First and foremost I wish to acknowledge the forbearance and support of my supervisor Prof. W.P.S. Dias, and thank him for guiding me in getting acquainted with the subject, which was relatively unknown for me when I first delved into it, for accommodating my views with patience and ingenuity and for many hours spent immersed in my thesis manuscripts.

I also want to thank to the Head of the Department of Civil Engineering for permitting me not only to make use of the computer facilities, but also to avail myself of the assistance of printing and drawing, which indeed facilitated me to carry out my work unhindered. I also have the pleasure in thanking Dr. (Mrs).P.Hettiarachchi, who served on my review panel, for having reviewed my research work and advised me in improving it.

I am grateful to Dr. A.C. Vishvalingam, Brgd. A.M.A. Chandrasiri, Wng. Cmdr. F. Dirkze, Eng. L.S. Sahabandu and Eng. S. Chandrasekara for their assistance in assessing and improving the developed hierarchical model.

I extend my gratitude to Dr. R. Emmanual of the Faculty of Architecture for his recommendation that in fact helped me to secure the ADB scholarship to pursue my research work.

I wish to express my appreciation to many of my colleagues who so willingly helped me in some form or the other in producing my thesis. In particular, I would like to record my appreciation to Ms. F.R. Rifka and Ms. R.F. Rafeek for assisting me in typing my thesis. I would like to extend my heartfelt thanks to Mr. R. Thivakar for offering useful comments on my work and to Mr. H. M. I Thilakaratne, Mr. B. D. Y. Madunoraj, Mr. S. Sriharan and Mr. M. Madurapperuma for supporting and motivating me in carrying out the research work. I am also grateful to Mr. P.P.R. Peiris, lab assistant who was helpful in making the necessary facilities available for me. Lastly I thank my Mother for her enduring love and tolerance that gave me the environment conducive to successfully complete my research work.

Π

The work included in this thesis in part or whole has not been submitted for any other academic qualification at any institute.

Þ Signature of the Candidate

Certified.

UOM Verified Signature

Signature of the Supervisor

CONTENTS

Abstract	Ι
Acknowledgements	III
Declaration	IV
Contents	V
List of Figures	IX
List of Tables	Х
List of Plates	х
Notation	XI

1.0 Introduction

1.1	The Premise		01
1.2	Objectives of the St	udy	02
1.3	Method of Study	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	02

2.0 Vulnerability of Buildings Due to Blast Effects as a Soft System

	2.1	Definition of Vulnerability	04
		2.1.1 Total Vulnerability	04
		2.1.2 Retrievable Vulnerability	04
	2.2	Blast Event as a Soft System	
		2.2.1 Characteristics of Soft Systems and Hard Systems	06
		2.2.2 Soft and Hard Characteristics of Blast Events	07
		in Relation to Buildings	
	2.3	Summary	08
3.0	Use	of Grounded Theory to Manage Soft Systems	
	31	Grounded Theory	10

1	Glouin	ded Theory	10
	3.1.1	Hypothesis Testing Versus Emergence	10
	3.1.2	Explicit Emergence in Grounded Theory	11

3.2	Sources of Qualitative Data	
3.3	The Constant Comparison Method of Qualitative Analysis	
	3.3.1 Identifying Phenomena from Data	12
	3.3.2 Develop Concept from Phenomena	14
3.4	Holons as Interactive Objects in Hierarchical Organization	14
	of Information	
	3.4.1 Definition of Holons	15
	3.4.2 Janus Face of Holons	16
3.5	Summary	17

4.0 Identifying Vulnerability of Buildings to Blast Loading with the Aid of Grounded Theory

4.1	Existing Methodologies to Assess the Vulnerability		
4.2	Emergent Linkages for Modelling Vulnerability		
	4.2.1 Event Sequence Diagrams	19	
	4.2.2 Hierarchical Causal Treesramwa, Sri Lanka	20	
4.3	The Main Characteristics of the Proposed Model	21	
4.4	Selection of Case Studies	22	
4.5	Identifying Phenomena from Case Study Data	23	
4.6	Critical Aspects	31	
4.7	Developing Concepts from Case Study Phenomena	33	
4.8	Hierarchical Organization of Concepts with the Aid of	38	
	Grounded Theory		
4.9	Literature as a Source of Data	39	
	4.9.1 The Need of Access to Literature	39	
	4.9.2 Improve the Model with Literature	41	
4.10	Experts' Comments and Suggestions for the Model	43	
4.11	Summary	46	

VI

5.0 Interval Probability Theory

5.1	Introduction	48
5.2	Basic Concepts	49
5.3	Representation of Evidence	49
5.4	Interval Representation	51
5.5	The Confidence of Judgement	53
5.6	Membership Function and Confidence	53
5.7	Selecting linguistic Ranges	55
5.8	Arriving at Interval Values	56
5.9	Summary	57

6.0 Combining Evidence

.

6.1	Management of Information in hierarchical model	59
6.2	Dependence Between Component Holons	60
6.3	Different Types of Dependence	60
6.4	Types of Dependence Applicable to the Model	62
6.5	Logical Connectors	63
6.6	Relative importance of holons	65
6.7	Combination of more than two holons	69
6.8	Summary	70

7.0 Developing Computer Aided Model

7.1	Review of conceptual model	72
7.2	Introduction to computer model	73
7.3	Basic aspects of computer model	74
7.4	Functionality of the model	76
7.5	Case study analysis with the computer model	78
7.6	Interpretation of results	79
7.7	Improving Confidence	87
7.8	Alternative Connectives and Dependences	88

.

	7. 9	Using the model as a management tool	92
	7.10	Summary	95
8.0	Cone	clusions and Recommendations	96
9.0	Refe	rences	100
Appendix A			
Detai	Detailed Hierarchical Model		103
App	endix	В	
Defin	ition of	Holons	106
App	endix	C	
Case	Study A	ssessment	119
		University of Moratuwa, Sri Lanka	

.

VIII

Figure 2.1: Types of vulnerability	05
Figure 2.2: Aspects of vulnerability	05
Figure 2.3: Blast event as a soft system	08
Figure 3.1: "Janus face" of holons	16
Figure 4.1: Portion of the schematic event sequence diagram	20
Figure 4.2: Part of a hierarchical causal tree	21
Figure 4.3: Some key phenomena and their frequency	32
Figure 4.4: The emergent criteria of upper level concepts	40
Figure 4.5: The emergent criteria of upper level concepts	41
Figure 4.6: Top levels of the model developed using Grounded Theory	42
Figure 4.7: Top levels of the final hierarchical model	42
Figure 4.8: A "concentric circle" approach	44
Figure 5.1: Interval representation of the assessment	52
Figure 5.2: Membership function and confidence	54
Figure 5.3: selecting number of linguistic alternatives	5,6
Figure 5.4: Representation of linguistic range with confidence	57
Figure 6.1: Hierarchy of holons	59
Figure 6.2: Venn diagram representation of union and intersection	61
Figure 6.3: Role of logical connectors in hierarchical representation.	64
Figure 6.4: First three levels of the final hierarchical model	65
Figure 7.1: Evidence and confidence	74
Figure 7.2: Input parameters to the model	77
Figure 7.3: Evidential support for the physical entity	80
Figure 7.4: Evidential support for the spatial planning	80
Figure 7.5: Evidential support for the security	81
Figure 7.6: Evidential support for the object/ artefact (building)	81
Figure 7.7: Evidential support for the building function	82
Figure 7.8: Evidential support for the physical environment	82
Figure 7.9: Evidential support for the sociological environment	82

.

Figure 7.10: Evidential support for the context	83
Figure 7.11: Evidential support for the vulnerability	83
Figure 7.12: Interval values of evidence for the vulnerability	84
Figure 7.13: Converting interval numbers back to linguistic labels	85
Figure 7.14: Area belong to the interval values	86
Figure 7.15: Interval values of moderate evidence with	90
moderate confidence (Method 1)	
Figure 7.16: Interval values of moderate evidence with	90
moderate confidence (Method 2)	
Figure 7.17: Variation pattern of S_n and S_p values for the top level holons	91
for different evidence values at two extreme	
confidence values (Method 1)	
Figure 7.18: Variation pattern of S_n and S_p values for the top level holons	92
for different evidence values at two extreme	
confidence values (Method 2)	

LIST OF TABLES

Table 4.1: Vulnerability assessment score table	19
Table 7.1: Percentage intervals assigned to linguistic confidence values	
Table 7.2: The interval values obtained for upper holons	88
from two assessment methods	
Table 7.3: Assessment results of all holons with moderate confidence (Method 1)	
Table 7.4: Assessment results of all holons with moderate confidence (Method 2)	91

LIST OF PLATES

Plate 4.1: Northern Ireland, Ballykelly, Shopping Well bar bombing	28
Plate 4.2: Oklahoma City bombing, USA	29
Plate 4.3: Use of cards to represent phenomena	31

.

NOTATION

AND	- Logical operator for the intersection of sets.
Indep	- Independence.
Maxdep	- Maximum dependence.
Mindep	- Minimum dependence.
Mutexc	- Mutual exclusive.
OR	- Logical operator for the union of sets.
P(A)	- Probability of A.
$[S_n(A), S_p(A)]$	- Interval probability number, where $S_n(A)$ and $S_p(A)$ are defined
	as the lower and upper bounds of the probability $P(A)$ for any
	event or proposition A.
P(A∩B)	- Intersection between events A and B.
P(AUB)	- Union between events A and B.
$S_n(A)$	- Necessary support for the proposition A.
S _p (A)	- Possible support for the proposition A.
W _A	- Weight of A.
W _B	- Weight of B.
$ ho_{\scriptscriptstyle \mathrm{AB}}$	- Dependence relationship between A and B.

ø