

SAFE AND EFFICIENT PEDESTRIAN CONTROL MECHANISM

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science.

Supervised By

Professor J.M.S.J.Bandara

624 "05 624 (043)

Department of Civil Engineering

University of Moratuwa

Sri Lanka



LB/DON/15/06

SAFE AND EFFICIENT PEDESTRIAN CONTROL MECHANISM

13 14 13

MASTER OF SCIENCE

S.H.DAMITH University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

UNIVERSITY OF MORATUWA

SRI LANKA

December 2005

85.962

DECLARATION

I, Sella Hewage Damith, here by declare that the content of this thesis is the output of original research work carried out over a period of 15 months at the Department of Civil Engineering, University of Moratuwa, Sri Lanka. Whenever the work done by others was used, it was mentioned appropriately as a reference.

S.H. Damith. Department of Civil Engineering Period Moratuwa, Sri Lanka. University of Moratuwa. Sri Lanka.

UOM Verified Signature

Prof. J.M.S.J. Bandara. Department of Civil Engineering. University of Moratuwa. Sri Lanka

ABSTRACT

Pedestrians are legitimate users of the transportation system and they should, therefore, be able to use this system safely and without unreasonable delay. Pedestrians have a right to cross roads safely, Planers and Engineers, therefore, have a professional responsibility to plan, design, and provide safe crossing facilities.

Major findings of recent accident studies have identified that pedestrians comprise a significant proportion of' serious injuries and fatalities. Furthermore it has found that one half of pedestrian fatalities have occurred while the pedestrian was crossing the road but not on a marked pedestrian crossing. As the majority of pedestrian accidents occur while crossing a road, the need of safe and efficient pedestrian crossing facilities could arguably be the most important pedestrian safety factor.

Generally, the cost of installation and maintenance of pedestrian crossing needs to be balanced against associated benefits such as time saving and safety. Therefore, installation of pedestrian crossing at a location of a road is being considered, delay is one of the major term that should be considered and it will be significantly differ upon the type of crossing introduced to a particular location. Some time there would be additional delay by introducing crossing where it is not needed or inappropriate

In Sri Lanka, the practice of deciding where to install pedestrian crossing considerably differs from other countries, and engineers have been got to use their judgment arbitrarily and sometimes influenced by political or pubic pressure in reaching decisions,

Goal of this study is, to prepare a background to develop set of guidelines to assist in determining the appropriate crossing facility for a given location of a road, based on the relationship between pedestrian and vehicle flow and their delays. These relationships help to develop a more efficient pedestrian crossing facility that minimizes total delay for both pedestrians and vehicles.

ACKNOWLEDGMENT

I am deeply indebted to my supervisor, Professor J.M.S.J. Bandara, Head, Transportation Engineering Division, Department of Civil Engineering of University of Moratuwa for his constant support. Without his help, this work would not be possible. I would also like to thank Professor Amal. S. Kumarage, Mr. M.B.S. Fernando and other staff of the Transportation Engineering Division of the Department of Civil Engineering of University of Moratuwa and their support and advice is appreciated.

I would also like to thank Professor (Mrs.) N. Rathnayke, Head of Department of Civil Engineering of University of Moratuwa, Director Post Graduate Studies of University of Moratuwa for giving opportunity to do this research work and Asian Development Bank for providing funds.

I would like to thank my friends Gayan Liyanage, Randu Harischandra, Kathiswaran, L.G. Kasun, L.G. Ruwani and Jayasnka those gave outstanding help in collecting data in the field.

I dedicate this thesis to my mother.

CONTENTS

CHAPTER 1. INTRODUCTION		01
1.1	PROBLEM STATEMENT	01
1.2	ACCIDENT PROFILE	01
1.3	SCOPE AND OBJECTIVES OF THE STUDY	03
1.4	STUDY OVERVIEW	03

CHAPTER 2. REVIEW OF PEDESTRIAN RELATED LITERATURE 05

-

- *

2.1	INTRODUCTION	05
2.2	CLASSIFICATION OF PEDESTRIAN CROSSING	
	FACILITIES www.lib.mrt.ac.lk	05
2.2.1	UNCONTROLLED CROSSING- ZEBRA CROSSINGS	06
2.2.2	PELICAN CROSSINGS	08
2.2.3	GRADE SEPARATED CROSSINGS	10
2.3	PEDESTRIAN AND VEHICULAR DELAYS AT A	
	PEDESTRIAN CROSSING	12
2.4.	COST OF DELAY	13
2.5	COMPUTING DELAY AT SIGNALIZED CROSSING	13
2.6	PAST STUDIES AND CURRENT PRACTICES FOR	
	INSTALLATION OF PEDESTRIAN CROSSING	
	FACILITIES	15
2.7	CURRENT PRACTICES	20

CHAPTER 3. DATA COLLECTION

3.1	INTRODUCTION	23
3.2	GENERAL METHODOLOGY	24
3.3	SITE DESCRIPTION	24
3.4	SURVEY METHODOLOGY	26

23

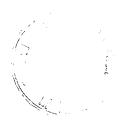
27

CHAPTER 4. ANALYSIS

4.1	DATA ANALYSIS	27
4.2	REGRESSION ANALYSIS	29
4.2.1	NUMBER OF VEHICLES STOPPED AND VOLUME OF PEDESTRIANS AND VEHICLES	29
4.2.2	TOTAL COST OF DELAY VS VOLUME OF PEDESTRIAN	AND
	VEHICLES.	31
4.3	DELAYS AT SIGNALIZED CROSSINGS	32
4.4	COMPARISON OF TOTAL COST FOR DELAY UNDER	
	DIFFERENT CONTROLLED CROSSINGS	34
4.5	WARRANTS FOR UNCONTROLLED AND CONTROLLED)
	CROSSINGS	37

CHAPTER S	5. CONCLUSION AND RECOMMENDATIONS	39
5.1	INTRODUCTION	39
5.2	CONCLUSION	39
5.3	RECOMMENDATIONS	40

REFERENCES


e

\$

41

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

٠ ч

.

• •

| | ļ i

.

•

Table.2.1	Duration of Stages in Pelican Crossing Cycle	09
Table 4.1	VOT for Transport User Groups	28
Table 4.2	Regression Results ; Number of Vehicles	
	Stopped and Volume of Pedestrians and Vehicles	30
Table 4.3	Regression Results ; Total Cost of Delay Vs	
	Volume of Pedestrian and Vehicle.	31
Table 4.4	The Time Settings Assigned to the 'Fixed Time'	
	Hypothetical Pelican Crossing	33

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Fig.2.1	Operational Cycle of Pelican Crossing Signals	08
Fig 2.2	Pedestrian Delay vs Vehicular Volume	16
Fig.2.3	Warrants for Pedestrian Controls	17
Fig.2.4	Criteria for Installing Crosswalks	19
Fig.2.5	Useful Area of Application	20
Fig. 4.1	Graph of Number of times Vehicle Stopped	
	Vs Square root of pv	30
Fig. 4.2	Graph of Total Cost of Delay Vs pv	32
Fig.4.3	Comparison of Total Cost for Delay between	
	Controlled and Uncontrolled Crossing at Vehicle	
	Flow less than 30veh/min	35
Fig.4.4.	Comparison of Total cost for Delay between	
	Controlled and Uncontrolled Crossing at Vehicle	
	Flow between 40veh/min and 30veh/min	36
Fig.4.5.	Comparison of Total Cost for Delay between	
	Controlled and Uncontrolled Crossing at Vehicle	
	Flow above 40veh/min	36