REFERENCES

- 1. Balaam N.P., Poulos H.G. and Booker J.R. (1975) "Finite Element Analysis of the effect of Installation on Piles Load-Settlement Behaviour" *Geotechnical Engineering*. 6(1), 33-48.
- 2. Balakirshnan E.G., Balasubramaniam A.S. and Noppadol Phein-wej (1999) "Load Deformation of Analysis of Bored Piles in Residual Weathered Formation" J. Geotech. Engng. ASCE, 125(2), 121-131.
- 3. Banerjee P.K. (1978); "Analysis of Axially and Laterally Loaded Pile Groups" In Development in Soil Mechanics. Ed. C. Scott, Ch 9, London. *Applied Science Publishers*.
- 4. Banerjee P.K. and Davis T.G. (1977); "The Behaviour of Axially and Laterally Loaded Single Pile Embedded in Non-homogeneous Soils", *Geotechnigue*, 28, No.3, 309-326.
- 5. Bowles J.E. (1997); "Foundation Analysis and Design", Mc-Graw Hill publications, Fifth Edition, 313-316.
- 6. Butterfield R. and Banarjee P.K. (1971); "The Elastic Analysis of Compressible Piles and Pile Groups" *Geotechnique*, 21, No.1, 43-60.
- 7. Coyle H.M. and Reese L.C. (1966) "Load Transfer for Axially Loaded Piles in Clays" J. Soil Mechs Fdn Engng. ASCE, 92, No.SM2, 1-26.
- 8. Desai C.S. (1974) "Numerical Design-Analysis for Piles in Sands" J. Geotech. Engng. ASCE, 100(6), 613-635.
- 9. Desai C.S. and Chiristian J.T. (1977) "Numerical Methods in Geotechnical Engineering", *Mc Grow-Hill*.
- 10. Ellision R.D. et al. (1971) "Load-Deformation Mechanism of Bored Piles" J. Geotech. Engrg. ASCE, 97(4), 661-678.
- 11. Guo W.D. (2000) "Vertical Loaded Single Piles in Gibson Soil" J. Geotech. Engng. ASCE, 126(2), 189-193.
- 12. Guo W.D. and Randolph M.F. (1997) "Vertically Loaded Piles in homogeneous Media" J. Geotech. Engrg. ASCE, 21(8), 507-532.
- 13. Kodagoda S.S.I and Puswewala U.G.A.P (2001) "Numerical Modelling of Pile-Rock Interface In Rock Socketed Piles", *Proc* 7th Annual Symposium, ERU, University of Moratuwa.
- 14. Kraft L.M., Ray R.P. and Kagawa T. (1981) "Theoretical t-z Curves" J. Geotech. Engng. ASCE, 107(11), No. GT11, 1543-1561.
- 15. Lee C.Y. and Small J.C. (1991) "Finite Layer Analysis of Axially Loaded Piles" J. Geotech. Engng. ASCE, 117(11), 1706-1722.

- 16. Leland M. Kraft Jr. (1999) "Performance of Axially Loaded Piles in Sand" J. Geotech. Engng. ASCE, 117(2), 272-296.
- 17. Mabsout E.M., Reese L.C. and Tassoulas J.L. (1995) "Study of Pile Driving by Finite Element Method" J. Geotech. Engng. ASCE, 121(7), 535-543.
- 18. Ottaviani M. (1975) "Three-Dimensional Finite Element Analysis of Vertically Loaded Pile Groups" *Geotechnigue*, 25, No.2, 159-174.
- 19. Poulos H.G. (1989) "Pile Behaviour Theory & Application", Journal of Geotech. Engng. ASCE, 39(3), 365-415.
- 20. Poulos H.G. and Davis E.H. (1980) "Pile Foundation Analysis and Design" john Willy and Sons, New York. N.Y.
- 21. Puswewala U.G.A.P (2003) "Lecture Notes on Computer Application", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.
- 22. Rajashree S.S. and Sitharam T.G. (2001) "Non-linear Finite Element Modeling of Batter Piles under Lateral Load" J. Geotech. Engng. ASCE, 127(7), 604-612.
- 23. Randolph M.F. and Wroth (1978) "Analysis Deformation of Vertically Loaded Piles" J. Geotech. Engng. ASCE, 104(12), 1465-1488.
- 24. Selvaduarai, A.P.S. (1979) "Elastic Analysis of Soil Foundation Interaction", Amsterdam: Geotechnical Engineering Vol 17.
- 25. Tomlinson, M.J. (1986) "Foundation Design and Construction" Fifth Ed., ELBS, Longman Group, UK.
- 26. Thilakasiri H.S. (2003) "Lecture Notes on Design and Construction of Deep Foundation", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.
- 27. Trochanis A.M., (1991) "Numerical Methods in Geotechnical Engineering", 3rd Edition, ELBS London.
- 28. Trochanis A.M., Bielack J. and Christiano P. (1991a) "Three-Dimensional Non-Linear Study of Piles" J. Geotech. Engng. ASCE, 117(3), 429-447.
- 29. Trochanis A.M., Bielack J. and Christiano P. (1991b) "Simplified Model Analysis of for One or Two Piles" J. Geotech. Engrg. ASCE, 117(3), 448-466.
- 30. Wyllie D.C. (1992) "Foundation on Rock" First Edition E& FN Spon London.
- 31. Zehong Yuan and Koon Meng Chua (1992) "Exact Formulation of Axisymmetric interface Element Stiffness Matrix", *J. Geotech. Engng.* ASCE, 118(8), 1264-1271.
- 32. Zienkiewicz O.C. (1977) "The Finite Element Method", 3rd Edition Mc. Graw-Hill Co., London, U.K.

ABBREVIATIONS

A - Cross sectional area of the cylinder

a – Half the length of a rectangular element

b – Half the width of a rectangular element

C - Pile perimeter

 c_a – Adhesion

Cs - A bond modulus for the adhesive strength

D. d - Diameter of pile

ds - Relative displacement parallel to the bond interface

E – Young's modulus

Es – Soil modulus

F Total applied force

F_w - Correction factor for tapered pile

H - Thickness of the weak layer

K₀ - Lateral earth pressure coefficient

K_n, K_s - Interface element stiffness

L – Length of pile shaft

N - Shape function

P - Vector of Transformed stresses

P1, P2 - Force acting on node number 1, 2

 P_{su} – Ultimate shaft resistance

P_{bu} – Ultimate base resistance

Q - Load on head of pile

q - Effective overburden pressure at depth z_i

Q_s - skin friction on pile

Q_b - Base resistant on pile

Q_p - Failure load on pile

s - Surface of a finite element

 U_s - Strain energy of an elastic body

v - Volume of a finite element

w₁, w₂ - Weight factors

 W_p - Weight of the pile

 W_s Work done by surface tractions

 W_b Work done by body forces

 x_i - Ordinates in X-Axis (i=1,2,3 etc)

y_i - Ordinates in X-Axis (i=1,2,3 etc)

α – A Coefficient

α_i – Constants for shape function (i=1,2,3 etc)

β - A Coefficient

Φ – Angle of friction of soil

 δ, ϕ_a - Angle of friction between pile and soil

λ – A Coefficient

σ_a – Shear resistance at the pile soil interface

 σ_n - Normal stress between pile and soil

v – Poisson's ratio

Normalized co-ordinates along X-Axis

η - Normalized co-ordinates along Y-Axis

ε – Strain vector

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

 π^e – Potential energy

[B] Shape function matrix

[D] – Modulus vector

{f} - Body forces vector

[L] – Derivation vector

 $\{u\}$ – Displacement matrix

 $\{\sigma\}$ - Stress vector

 $\{\tau\}$ - Applied traction vector

 $\{\phi\}$ - Nodal Displacement vector