DETECTION OF DEFECTS ON

WARP KNITTED FABRIC SURFACES

Hungampala Ralalage Dimuthu Rangana Wijesingha

(148487X)

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

December 2018

DETECTION OF DEFECTS ON

WARP KNITTED FABRIC SURFACES

Hungampala Ralalage Dimuthu Rangana Wijesingha

(148487X)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the Master of Engineering in Manufacturing Systems Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

December 2018

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Date:

Signature:

The above candidate has carried out research for Master's thesis under my supervision.

Dr. A.G.B.P. Jayasekara Senior Lecturer Department of Electrical Engineering University of Moratuwa

Date:

Signature:

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. A.G.B.P. Jayasekera for the continuous support during the research period, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of the research and writing of this thesis. I could not have imagined having a better advisor and mentor for this study.

Besides my advisor, I would like to thank Prof. R.A.R.C. Gopura for his encouragement, insightful comments, and advice.

My sincere thanks also goes to the Department of Mechanical Engineering, University Of Moratuwa for the unstinted support and guidance which paved the way for this research.

Furthermore I would like to thank Mr. A. Herath, Assistant Manager Product Development of Trischel Fabrics (Pvt) Ltd for giving his support in collecting fabric samples and capturing images of fabric samples.

Finally, without the support from my family I would not be able to achieve this goal and I am deeply indebted to all of them for their support and bearing with me during the entire course of my research study.

Dimuthu wijesingha (dimuthuwije@gmail.com)

Abstract

This thesis is concerned with the development of a novel learning algorithm based method for detection of defects on patterned, textured surfaces of warp knitted fabric surfaces using neural networks. The acquired images were subjected to several filtering processes and morphological operations to improve the state of the image and enhance texture details.

The proposed method was developed by considering textural abnormality as a defect. Since the warp knitted fabric surface is a repetitive patterned texture the image was splitted into windows prior to analysis in order to enhance detectability of defects. Also, gray level co-occurrence matrix and local binary pattern were used as the texture models of an image window. Selected set of statistical measurements were used to extract the texture from gray level co-occurrence matrix. Since detection of defects on an image is a binary classification problem an anomaly detection scheme was proposed. This enabled the development of the detection model by learning the feature space of one particular class of problem. A self-organizing map was used to learn the texture patterns on images of the non defective fabric samples. The resultant Euclidian distance of a window from the self-organizing map was used as the measure of similarity to non-defective windows while thresholding the similarity measure by using the maximum value similarity of non-defective windows as the threshold. The proposed anomaly detection scheme enabled detection of defects on particular type of texture.

There were different surface types associated with warp knitted fabrics. Self-organizing map based clustering approach was used to discretize the detection problem according to surface texture type and the intention was to simplify the detection problem and solve it with respect to specific texture. Furthermore, the histogram of the local binary pattern was used for development of compressed self-organizing map to represent the local texture of a window of different surface types.

All the calculations, analysis tasks and development of mathematical models were performed in a matlab environment. The appropriate graphical user interfaces were also developed with the proposed method been applied on images with seven different types of defects on seven surface types. The quality percentage was calculated based on the number of false positives/false negatives of the detection results for the image windows in order to evaluate the validity of the proposed method. The method results quality percentage was in the 80% range during the detection of defects.

Key words : Intelligent learning algorithms, Self-organizing neural networks, defect detection, Statistical texture analysis, Fabrics

TABLE OF CONTENTS

DECLARATION	i			
Acknowledgementsi				
Abstractii				
TABLE OF CONTENT i				
LIST OF FIGURES v				
LIST OF TABLES vii				
LIST OF ABBREVIATIONSviii				
1 CHAPER 1 INTRODUCTION				
1.1. Related work				
1.1.1. <i>k</i> - nearest neighbor classifier	3			
1.1.2. Multi layer perceptron	5			
1.1.3. Kohonen self-organizing map	б			
1.2. Overview of the thesis	9			
1.3. Organization of the thesis	11			
2 CHAPER 2 OVERVIEW OF THE METHODOLOGY	12			
2.1. Warp knitted fabrics: An overview	12			
2.2. Defect types on warp knited fabrics	13			
2.3. The problem definition and objectives	15			
2.4. The proposed solution and implementation	17			
3 CHAPER 3 PRE PROCESSES FOR IMAGE ENHANCEMENT	19			
3.1. Gama transformation	20			
3.2. Homomorphic filter	21			
3.3. High-pass filter	22			
3.4. Morphological operations	23			
3.5. Histogram equalization	24			
4 CHAPTER 4 EXTRACTION OF TEXTURE FEATURES	25			
4.1. Global texture model: Gray level co-occurrence matrix	26			
4.2. Local texture model: Local binary pattern	36			
5 CHAPTER 5 SURFACE TYPE IDENTIFICATION	40			

	5.1.	Kohonen self-organizing model	-41	
6	CH	APTER 6 DETECTION OF DEFECTS	-49	
	6.1.	The KSOM Model	-51	
	6.2.	The method for detection of defects and implementation	-52	
7	CH	APTER 7 CONCLUSIONS	-61	
REFERENCES62				
APPENDIX A: MATLAB SCRIPTS65				

LIST OF FIGURES

Figure 2.1:	Example surface types	12
Figure 2.2:	Example defect types	13
Figure 2.3:	igure 2.3: Knitting machine faults	
Figure 2.4: Defects associated with yarn faults		14
Figure 2.5: Defects associated with chemical processes		15
Figure 2.6:	Schematic for implementation of the proposed solution	17
Figure 2.8:	Set-up for image capturing	24
Figure 3.1:	Images of defective fabric samples	20
Figure 3.2:	Green channel of defective samples	20
Figure 3.3:	Gama transformed images	21
Figure 3.4:	Corrected images for illumination	22
Figure 3.5:	High-pass filtered images	22
Figure 3.6:	Morphologically processed images	24
Figure 3.7:	Histogram equalized images	24
Figure 4.1:	are 4.1: Original and pre-processed images	
Figure 4.2:	re 4.2: Local binary pattern	
Figure 5.1:	Catalogue of fabric types	40
Figure 5.2:	GUI for feature extraction stage	41
Figure 5.3:	Flow diagram for of KSOM training related processes	43
Figure 5.4:	GUI for training of KSOM	43
Figure 5.5:	Activated regions in KSOM lattice	44
Figure 5.6:	Labeled KSOM on GUI	45
Figure 5.7:	Flow diagram of proposed scheme for fabric type identification	46
Figure 6.1:	Flow diagram of initially developed detection scheme	48
Figure 6.2:	Flow diagram of final detection scheme	49
Figure 6.3:	Flow diagram for associated processes of KSOM training	50
Figure 6.4:	Flow diagram for Defect detection strategy	51
Figure 6.5:	GUI for implementation of defect detection scheme	52
Figure 6.6:	Presentation of final detection results on GUI	53

LIST OF TABLES

TABLE 4.1:	RESULTS OF EXPERIMENT	-34
TABLE 6.1:	GENERATION OF DETECTION RESULTS	-53
TABLE 6.2:	DETECTION RESULTS OF THE EXPERIMENT	-54
TABLE 6.3:	RESULTS OF ACCURACY ASSESMENT	-59

LIST OF ABBREVIATIONS

Abbreviation	Description
ANN	Artificial neural networks
BMU	Best matching unit
BP	Back propagation algorithm
GD	Gradient descent method
GLCM	Gray level co-occurrence matrix
GUI	Graphical user interface
k-NN	k - nearest neighbor algorithm
KSOM	Kohonen self-organizing map
LBP	Local binary pattern
PC	Personal computer
PCA	Principle component analysis
MLP	Multi-layer perceptron
USB	Universal Serial Bus
W.R.T.	With respect to