DEVELOPMENT OF A SUSTAINABLE ENERGY RATING SYSTEM FOR RESIDENTIAL BUILDINGS IN SRI LANKA

Shakila Madhushani Pathirana

158066P

Thesis submitted in partial fulfilment of the requirement for the degree Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2019

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

S. M. Pathirana Department of Civil Engineering University of Moratuwa Sri Lanka

The above candidate has carried out research for the PhD thesis under my supervision.

Prof. R. U. Halwatura Department of Civil Engineering University of Moratuwa Sri Lanka Dr. Asanka Rodrigo Department of Electrical Engineering University of Moratuwa Sri Lanka

ABSTRACT

Energy rating system can be considered as a key policy instrument that will assist the government to reduce energy consumption. Energy rating includes the direct benefits such as, energy requirement and carbon dioxide emission reduction, cost reduction for the users, increase the public awareness regarding energy issues, and improve the availability of information regarding the building. The government of Sri Lanka also has identified the importance of energy performance of buildings and considers it as a strategy for the sustainable energy development of the country. Existing rating systems in the world only considered limited factors related to energy consumption and to provide more accurate rating system it is proposed that a more sustainable energy rating system should be developed considering all the criteria. This research is aimed at identifying the existing rating systems, investigate the existing systems, to identify the parameters required for determining the energy performance of residential buildings, to develop and equation for calculating the energy score and to develop a scale for comparing the energy performance of residential buildings in hot and humid climate in Sri Lanka.

To achieve the above mentioned objectives, this research followed the concept of sustainable energy which comprises of both energy efficiency and renewable energy. The energy efficiency of a residential building needs to consider the energy efficiency due to building properties and energy efficiency of the occupants. To evaluate the energy efficiency of the building properties, the asset rating method was used where the building is modeled and the energy consumption for thermal comfort and lighting is calculated. Using 4569 different models (varying window to wall ratio, orientation, zone size, zone location, building shape and floor area), a parametric analysis was conducted to develop an optimum model which was then used as the reference value for the first sub rating (Building consumption rate). A questionnaire survey was conducted to identify the factors affecting the energy consumption of the Sri Lankan residential buildings and in total 336 filled questionnaires were used for parametric analysis. The questionnaire revealed that the number of bedrooms is not significant for energy consumption and the occupant characteristics and the equipment usage are highly significant factors. Therefore, when developing the occupancy behaviour rate, the average domestic energy consumption in Sri Lanka was used as reference, without normalising. To consider the renewable energy usage, another sub rating named energy source rate was developed and to decide whether to offset the energy consumption with renewable energy use or to use a separate index, another questionnaire survey was conducted with rooftop solar PV consumers. The results of the survey indicated

that there is a strong rebound effect due to the solar PV adoption and there are some other social and technical impacts as well. Therefore, when developing the energy source rate, a sustainability index was used and based on the percentage of contribution of the energy sources to the final energy use the final energy source rate was determined.

These three sub ratings were normalised and brought to a common scale of 0 to 100. The sub ratings were integrated using weightages which were obtained using a perception survey of engineers, architects, quantity surveyors and facility managers in the industry. The application of the rating method is explained using two actual examples. Further, a sensitivity analysis was done to reflect the effect of the changes in the parameters used in the score calculation equation using the first sample house. The rating methodology proposed in this thesis can be used over any country or any building by changing the reference values and weightages.

Keywords: Energy rating; energy efficiency; buildings; thermal comfort; renewable energy; energy labels; consumer behaviour

ACKNOWLEDGEMENT

Throughout the research leading to the completion of this thesis, I have gratitude to many people, who have provided me with tremendous help and support in one way or another, which I think I cannot possibly acknowledge in full measures.

First and foremost, I would like to express my sincere thanks to Prof. R. U. Halwatura and Dr. Asanka Rodrigo, my supervisors for their insightful suggestions and useful guidance throughout the thesis works. Sincere appreciations are also to the review panel members for their propositions, valuable comments, and constructive suggestions which were substantial value to this study.

I am also immensely grateful to the Head of the Department of Civil Engineering for permitting me to use of the resources of the department which indeed facilitated me to carry out my work unhindered.

I would like to express my gratitude to the Construction Engineering and Management division staff, and my lab members for supporting and motivating me in carrying out the research work. I thank all my colleagues for the numerous supports they have given me for the fulfilment of this challenging task.

I extend my gratitude to the University of Moratuwa Senate Research Fund for financial assistance provided for my research work.

Finally, I am profoundly grateful to my family, who have been always with me in every situation. My warm gratitude is for my husband who always stood by me during difficult moments and for nourishing my mind with hope.

S. M. Pathirana

TABLE OF CONTENTS

Abstract Acknowledgement Table of Contents List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 2.1 General 2.2 Existing energy rating systems 2.2.1 Parameters used for existing energy rating systems. 2.2.2 Comparability matrix 2.2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3.1 Factors affecting thermal comfort 2.3.2 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.6 Listing behaviour	D	eclara	ation of the Candidate & Supervisor	i
Acknowledgement Table of Contents List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 2.1 General 2.2 Existing energy rating systems 2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.7 Multi criteria decision analysis	A	bstra	ct	ii
Table of Contents List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 2.1 General 2.2.1 Parameters used for existing energy rating systems. 2.2.2 Comparability matrix 2.2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3.1 Factors affecting thermal comfort 2.3.2 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.5 Effect of occupant behaviour 2.6 In Decision support methods for energy sources 2.6 Multi criteria decision analysis	A	cknov	wledgement	iv
List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Energy performance assessment	Ta	able o	of Contents	vii
List of Tables List of Abbreviations 1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 2 Literature Review 2.1 General 2.2.1 Parameters used for existing energy rating systems. 2.2.2 Comparability matrix 2.2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3.1 Factors affecting thermal comfort 2.3.2 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.6 Thereia decision support methods for energy sources 2.7 Multi criteria decision analysis	Li	st of	Figures	ix
List of Abbreviations 1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 2 Literature Review 2.1 General 2.2.1 Parameters used for existing energy rating systems. 2.2.2 Comparability matrix 2.2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3.1 Factors affecting thermal comfort 2.3.2 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.6.1 Decision support methods for energy sources 2.7 Multi criteria decision analysis	Li	st of	Tables	xi
1 Introduction 1.1 Energy performance assessment 1.2 Energy rating systems 1.3 Objectives 1.4 Scope 1.5 Methodology 1.6 Main findings 1.7 Structure and overview of the thesis 1.7 Structure and overview of the thesis 2 Literature Review 2.1 General 2.2. Existing energy rating systems 2.2.1 Parameters used for existing energy rating systems. 2.2.2 Comparability matrix 2.2.3 Existing energy rating methods 2.2.4 Research gap 2.3 Thermal comfort 2.3.1 Factors affecting thermal comfort 2.3.2 Thermal comfort standards in built environment 2.4 Effect of building form on the energy efficiency 2.5 Effect of occupant behaviour 2.6 Sustainability assessment of energy sources 2.6.1 Decision support methods for energy sources 2.7 Multi criteria decision analysis	Li	st of	Abbreviations	xii
 2 Literature Review 2.1 General	1	Intr 1.1 1.2 1.3 1.4 1.5 1.6 1.7	oduction Energy performance assessment Energy rating systems Objectives Scope Methodology Main findings Structure and overview of the thesis	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \end{array} $
 2.2.2 Comparability matrix	2	Lite 2.1 2.2	Prature Review General General Existing energy rating systems General 2.2.1 Parameters used for existing energy rating systems	9 9 9 10
 2.4 Effect of building form on the energy efficiency		2.3	 2.2.2 Comparability matrix	$12 \\ 12 \\ 13 \\ 13 \\ 14 \\ 16$
		2.4 2.5 2.6 2.7	Effect of building form on the energy efficiency	18 21 23 29 30

		2.7.1 Weighted sum method
		2.7.2 Analytical hierarchy process (AHP)
		2.7.3 Multiattribute utility theory (MAUT)
		2.7.4 The elimination and choice translating reality (ELECTRE) 3
		2.7.5 The technique for order preference by similarity to ideal
		solutions (TOPSIS)
		2.7.6 Preference ranking organisation method for enrichment eval- uation (PROMETHEE)
	2.8	Summary
3 Research Methodology		earch Methodology 3
	3.1	General
	3.2	Research approach
	3.3	BC_{rate} (Building consumption rate) calculation 4
		3.3.1 BC_A calculation
		3.3.2 BC_O calculation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$
	3.4	Analysing the effect of building shape and zones
		3.4.1 Case study models
		3.4.2 Simulation settings
	3.5	Parametric analysis of the optimal form
	3.6	Optimum building design
	3.7	$OB_{\rm mate}$ (Occupant behaviour rate) calculation 55
	0.1	3.7.1 Development of the questionnaire 5
		3.72 OB , calculation 5
	20	$S_{12} = OD_{rate}$ (Energy Source rote) colculation 55
	0.0	2.8.1 Sugtainability aggregament of reaction color DV in regidential
		5.8.1 Sustainability assessment of roonop solar 1 v in residential
		Dundings
	2.0	5.8.2 Sustainability index for energy sources
	3.9	Development of energy score and scale
	0.10	3.9.1 Deciding the weights of the rates
	3.10	Summary
4	Res	ults and Analysis 6
	4.1	General
	4.2	Effect of building form and zones 6
		4.2.1 Analysis of the effect of building shape on discomfort hours 6
		4.2.2 Analysing the effect of building shape on artificial lighting 6
		4.2.3 Analysing the effect of zone size and zone location 6
		4.2.4 Analysing the effect of WWR and orientation 6
		4.2.5 Discussion
	4.3	Results of the parametric analysis
	4.4	Optimum building design
		4.4.1 Calculating the total energy consumption of the optimum
		model
		4.4.2 Calculating the total energy consumption of the optimum
		air conditioned models

		4.4.3	Calculating energy consumption for actual naturally venti-	
			lated house	88
	4.5	Effect	of occupant behaviour on energy efficiency	90
		4.5.1	Results of the consumer energy survey	91
		4.5.2	Development of OB_{rate}	99
4.6 Su		Sustai	nability assessment of energy sources	100
		4.6.1	Analysis of sustainability assessment of rooftop solar PV in	
			residential buildings	100
		4.6.2	Development of Energy source rate ES_{rate}	108
	4.7	Develo	opment of energy score	109
		4.7.1	Normalising the BC_{rate}	109
		4.7.2	Normalising the OB_{rate}	110
		4.7.3	Normalising the ES_{rate}	112
		4.7.4	Developing the energy score	112
	4.8	Develo	oping the energy rating scale	113
	4.9	Summ	ary	115
5	Anr	olicatio	on of the energy rating system	116
0	5.1	Gener	al	116
	5.2	Apply	ing the rating system to actual sample houses	116
	0.2	5.2.1	Sample house 1	116
		5.2.2	Sample house 2	120
	5.3	Sensit	ivity Analysis	124
6	Disc	nissior		126
U	Dist	2055101	1	120
7	Con	clusio	ns and Recommendations	128
	7.1	Recon	nmendations and future work	130
Appendix A Outdoor temperature of weather fileIAppendix B Velocities to achieve acceptable comfort levelsI				
$\mathbf{A}_{]}$	ppen	dix D	Questionnaires	153

LIST OF FIGURES

$1.1 \\ 1.2 \\ 1.3$	Net energy generation by energy source in the world Energy performance assessment systems	$\begin{array}{c} 1 \\ 3 \\ 5 \end{array}$
2.1	Acceptable operative temperature ranges in ASHRAE 55 (2017) .	18
2.2	Renewable energy sources: decision making	20
3.1	Parameter categorisation	38
3.2	Overall methodology of the research	39
3.3	Samples of case study house models	44
3.4	Staircase positions of the house models and the seven cases	45
3.5	The different phases in the MIVES method	55
4.1	Discomfort hours of model houses	62
4.2	Lighting electricity of model houses	63
4.3	Variation of thermal comfort and lighting based on zone size	64
4.4	Variation of thermal comfort and lighting in square shape	65
4.5	Variation of thermal comfort and lighting in rectangular shape	66
4.6	Variation of thermal comfort and lighting in L shape	67
4.7	Thermal comfort of the cases for various WWR	69
4.8	Lighting electricity of the cases for various WWR	69
4.9	Thermal comfort of the cases for various orientations	70
4.10	Lighting electricity of the cases for various orientations	70
4.11	Regression plots of significant variables I	77
4.12	Regression plots of significant variables II	78
4.13	Regression plots of significant variables III	79
4.14	Initial model prepared for optimal model	81
4.15	Plan views of the initial model	81
4.16	Optimum house model	82
4.17	Decision process for cooling energy calculation	89
4.18	Decision process for cooling energy calculation for Katunayake	90
4.19	Number of occupants in age categories	92
4.20	Number of occupants in employment categories	92
4.21	Number of households based on number of occupants in households	93
4.22	Number of households based on number of floors	93
4.23	Number of households based on number of bedrooms	93
4.24	Average electricity consumption of the households	94
4.25	Ventilation and cooling methods of respondents	94

4.26	Occupancy schedule - Time of leaving home	95	
4.27	Occupancy schedule - Time of returning home	95	
4.28	Average door opening schedules	96	
4.29	Average window opening schedules	96	
4.30	Average lighting schedules of the respondents	97	
4.31	Electricity consumption before and after solar PV installation	101	
4.32	2 Percentage change in electricity consumption compared to the elec-		
	tricity consumption before installation	101	
4.33	Equipment used before PV installation and purchased after instal-		
	lation	102	
4.34	Reasons for increase in total electricity consumption	103	
4.35	Excess units supplied to the main grid by the respondents	103	
4.36	Motivation for installing rooftop solar PV system	105	
4.37	Utilization of the saved money from lower electricity bill	105	
4.38	Electricity consumption compared to GDP	106	
4.39	Electricity generation by various sources	107	
4.40	Change in daily load curves from 2007 to 2014	107	
4.41	Distribution of the energy score	114	
4.42	Energy rating scale with standard deviations	114	
4.43	Energy rating scale	114	
51	Sample house 1	117	
5.2	Sample house 2	191	
0.2		141	
6.1	Graphical representation of the final model	127	

LIST OF TABLES

2.1	Principle criteria for sustainability assessment	24
2.2	Sustainability principles and sustainability assessment indicators .	25
2.3	Sustainable energy technologies and assessment	27
2.4	Classification of sustainability assessment criteria	28
2.5	Value of importance in AHP fundamental scale	32
	I I I I I I I I I I I I I I I I I I I	
3.1	Descriptive Statistics of the pilot survey $(N=120)$	44
3.2	Minimum internal dimensions of the zones	45
3.3	Material details of the construction components	46
3.4	Objectives and design variables of the optimisation	47
3.5	Internal dimensions as per regulations	51
3.6	Unobstructed area of openings	51
3.7	The requirement tree of the model with the weights	57
3.8	Sustainability index values	58
	v	
4.1	Floor areas in three zone size categories	65
4.2	Discomfort hours for various orientations	68
4.3	Best orientations	69
4.4	Parametric analysis - first run results	72
4.5	Parametric analysis - second run results	74
4.6	Parametric analysis - third run results	76
4.7	Increase in acceptable operative temperature	82
4.8	Calculated acceptable operative temperature limits	83
4.9	Air velocities and fan power at different fan speeds	84
4.10	Number of hours in operative temperature categories	85
4.11	Hours in operative temperature categories in AC case 1	86
4.12	Hours in operative temperature categories in AC case 2	86
4.13	Hours in operative temperature categories in AC case 3	86
4.14	Hours in operative temperature categories in AC case 4	86
4.15	Hours in operative temperature categories in AC case 5	87
4.16	Hours in operative temperature categories in AC case 6	87
4.17	Energy consumption of optimum air conditioned cases	87
4.18	Distribution of the respondents	91
4.19	Parametric analysis of consumer survey: first run results	98
4.20	Parametric analysis of consumer survey: second run results	98
4.21	Electricity consumption of Sri Lankan households	99
4.22	Basic Information of the respondents	100
4.23	Basic information on PV installation	100
0		-00

4.24	Installation related decisions	104
4.25	Sustainability index values for energy mix	108
4.26	Sustainability index values for energy generation scenarios	109
4.27	Percentage of scores received for the three factors	112
4.28	Percentage of scores received for the three factors	113
4.29	Values used for hypothetical scenarios	113
5.1	Hours in operative temperature categories in sample house 1 \ldots	118
5.2	Total energy consumption in sample house 1	118
5.3	Hours in operative temperature categories in sample house 2	122
5.4	Total energy consumption in sample house $2 \ldots \ldots \ldots \ldots$	122
5.5	Sensitivity analysis	125
A.1	Monthly average temperatures in weather file	143
A.2	Monthly average temperatures in weather file	144
B.1	Required velocities to achieve acceptable comfort levels $\ . \ . \ .$.	145
C.1	Values used for hypothetical scenarios	147
C.2	Values used for hypothetical scenarios Cont	148
C.3	Values used for hypothetical scenarios Cont	149
C.4	Values used for hypothetical scenarios Cont	150
C.5	Values used for hypothetical scenarios Cont	151
C.6	Values used for hypothetical scenarios Cont	152

LIST OF ABBREVIATIONS

AHP	Analytic Hierarchy Process
ANP	Analytic Network Process
ASHRAE	American Society of Heating, Refrigerating and Air Conditioning Engineers
BC_{rate}	Building Consumption Rate
CBA	Cost Benefit Analysis
ELECTRE	Elimination and Choice Translating Reality
ES_{rate}	Energy Source Rate
IRR	Internal Rate of Return
LCA	Life Cycle Analysis
LCC	Life Cycle Cost
LPD	Lighting Power Density
MAUT	Multi Attribute Utility Therory
MCDA	Multi Criteria Decision Aid
MIVES	Modelo Integrado de Valor para una Evaluacion Sostenible
NDCs	Nationally Determined Contributions
NPV	Net Present Value
OB_{rate}	Occupancy Behaviour Rate
PER	Primary Energy Ratio
PMV	Predicted Mean Vote
PPD	Predited Percentage Dissatisfied
PROMETHEE	Preference Ranking Organisation Method for Enrichment Evaluation

SDGs	Sustainable Development Goals
SI	Sustainablity Index
SOS	System Of Systems
TOPSIS	Technique for Order Preference by Similarity to Ideal Solutions
WWR	Window to Wall Ratio