CLIMATE RESPONSIVE DESIGN (CRD);
CLIMATIC STRATEGIES IN ARCHITECTURE AND THEIR REGIONAL VARIATIONS WITH
SPECIAL REFERENCE TO MAIN CLIMATIC ZONES IN SRI LANKA

A Dissertation
submitted for the Master of Science (Architecture) at the University of Moratuwa
in March 2005.

T.H.A.PRASANGANI
Department of Architecture
University of Moratuwa

85483
DECLARATION

I declare that this dissertation represents my own work, except where due acknowledgement is made, and that it has not been previously included in a thesis, dissertation or report submitted to this University or to any other institution for a degree, diploma or other qualification.

Signed: ...

T.H.A.Prasangani

Supervisor: ...

Dr. Indrika Rajapaksha
ACKNOWLEDGEMENTS

This study owes much to the assistance and guidance given by all the following; to whom I wish to extend my heartfelt gratitude.

Archt. Vidura Sri Nammuni - Head of the Department, Faculty of Architecture for the advices and guidance given in selecting the subject area and preparation the framework of this study.

Archt. Prasanna Kulathilake - Senior Lecturer, Department of Architecture and Dr. Upendra Rajapaksha Group Coordinator for M.Sc. Dissertations, Senior Lecturer, Faculty of Architecture for the valuable guidance and advice given in making the scope of the study as well as in 'Academic Writing' from the initial stages of this dissertation.

My Supervisor - Dr. Indrika Rajapaksha, Senior Lecturer, Faculty of Architecture who has been the 'Main Force' of making this task a success for the critical and important guidance in setting the scope of the study, managing the topics and relevant data, organizing the research and analysis and for teaching the correct way of writing focus to the topic.

The Staff of the Main Library, University of Moratuwa who has been helpful in collecting latest information both in printed and electronic media.

My colleagues who helped me in finding data, computer works and typing the manuscript and encouraged me in difficult situations

My Parents and my sisters who always encouraged me throughout my stay in campus
Climate Responsive Design (CRD);
Climatic Strategies in Architecture and their Regional Variations
with special reference to main climatic zones in Sri Lanka

CONTENTS

Page

Declaration i
Acknowledgements ii
Contents iii
List of illustrations viii
Abstract xii

1.0 CHAPTER ONE – INTRODUCTION
1.1 Preamble 01
1.2 Some Important Global Events on Environment Crisis 02
1.3 Observation and its criticality 03
 1.3.1 Global warming 03
 1.3.2 Ozone layer depletion Intention of the study 05
1.4 Justification 06
1.5 Intention of the study 07
1.6 Method of Study 07
1.7 Scope and Limitations 08
1.8 Concluding Remarks 10

2.0 CHAPTER TWO - CLIMATE AND ARCHITECTURE; UNDERSTANDING THE
RELATIONSHIP BETWEEN CLIMATE OF A REGION AND IT'S
ARCHITECTURE
2.1 Preamble 12
2.2 World Climate 12
2.3 Köppen Climate Classification System 13
 2.3.1 Group I - Low-latitude Climates 15
 2.3.2 Group II - Mid-latitude Climates 17
 2.3.3 Group III - High-latitude climates 19
2.4 World Climate and Building Forms 20
 2.4.1 Tropical-moist Climate Regions 21
 2.4.2 Dry Climate Regions 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3 Warm-temperate Climate Regions</td>
<td>22</td>
</tr>
<tr>
<td>2.4.4 Cool Climate Regions</td>
<td>22</td>
</tr>
<tr>
<td>2.4.5 Polar Climate Regions</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Climate of Tropical Asian Region</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Climate of Sri Lanka and its regional architecture</td>
<td>26</td>
</tr>
<tr>
<td>2.6.1 Dry Zone (Warm humid region with low rain fall)</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1.1 Climate</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1.2 History and Socio-Economic background</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1.3 The traditional dwelling for Dry Zone</td>
<td>28</td>
</tr>
<tr>
<td>2.6.2 Wet Zone (Warm humid region with low rain fall)</td>
<td>29</td>
</tr>
<tr>
<td>2.6.2.1 Climate</td>
<td>29</td>
</tr>
<tr>
<td>2.6.2.2 History and Socio-Economic background</td>
<td>29</td>
</tr>
<tr>
<td>2.6.2.3 The traditional dwelling for Wet Zone</td>
<td>30</td>
</tr>
<tr>
<td>2.6.3 Hilly Zone (Warm humid region with low rain fall)</td>
<td>31</td>
</tr>
<tr>
<td>2.6.3.1 Climate</td>
<td>31</td>
</tr>
<tr>
<td>2.6.3.2 History and Socio-Economic background</td>
<td>31</td>
</tr>
<tr>
<td>2.6.3.3 The traditional dwelling for Hilly Zone</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Concluding Remarks</td>
<td>33</td>
</tr>
</tbody>
</table>

3.0 CHAPTER THREE - CLIMATE RESPONSIVE DESIGN STRATEGIES FOR TROPICS; IDENTIFICATION OF THE PRINCIPLES OF CRD AND THEIR STRATEGIES.

3.1 Preamble | 35 |
3.2 A Study of CRD Strategies for Tropics | 35 |
3.2.1 'Climate Responsive Design' by Hyde, R (2000)	35
3.2.2 'Design Primer for Hot Climate' by Konya, A (1980)	37
3.2.3 'Energy Efficient Houses for Tropical Climates'	38
Jayasinghe, T.M (2003)	38
3.2.4 'Climatic Design Energy efficient Building Principles	39
3.2.5 'Climatic Responsive Energy Efficient Passive Techniques	40
in Buildings ' by Sharma, A. (etal)	40
3.2.6 'Design with Climate-Bioclimatic approach to Architectural	41
Regionalism' by Olgray V. (1963)	41
3.2.7 'Tropical Architecture in the dry and humid zones', by Fry, M	42
and Drew, J (1982)	42
3.2.8 'Housing, Climate and Comfort' by Evans.M (1980)	43
3.3 Principles of CRD and their Strategies	44
3.3.1 Analysis of the findings	44
3.3.2 Developed Principles and Strategies for Tropics	46
CHAPTER FOUR - CASE STUDIES: RESEARCH ON REGIONAL VARIATIONS OF CRD USING 'CRD EVALUATION INDEX'

4.0 Preamble

4.1 Selection Criteria

4.2 Analysis of Base Case for Dry Zone.

4.3 Case 1- Anuradhapura

4.4 Case 2- Kurunegala

4.5 Case 3- Hambantota

4.6 Analysis of Base Case for Wet Zone

4.7 Case 4- Colombo
4.8.3 Selected cases
4.8.3.1 Case 4a - House 01 at Frankfort place Colombo 04
4.8.3.2 Case 4b-House 02 at Frankfort Place, Colombo 04
4.8.4 Comparative Analysis for Colombo
4.8.4.1 Main Findings

4.9 Case 5- Ratmalana
4.9.1 Climate
4.9.2 Bio-climatic Analysis
4.9.3 Selected cases
4.9.3.1 Case 5a-House at Bandaranayaka Mawatha, Katubadda
4.9.3.2 Case 5b-House at Molpe Road, Katubedda
4.9.4 Comparative Analysis for Colombo
4.9.4.1 Main Findings

4.10 Case 6- Galle
4.10.1 Location and Climate
4.10.2 Bio-climatic Analysis
4.10.3 Selected cases
4.10.3.1 Case 6a-House 01 at Ahangama, Galle.
4.10.3.2 Case 6b-House 02 at Ahangama, Galle.
4.10.4 Comparative Analysis for Galle
4.10.4.1 Main Findings

4.11 Evaluation of Base Case for Hilly Zone

4.12 Case 7- Kandy
4.12.1 Climate
4.12.2 Bio-climatic Analysis
4.12.3 Selected cases
4.12.3.1 Case 7a-House at Menikdiwela, Kadugannawa
4.12.3.2 Case 7b-House at Udairiyagama, Peradeniya
4.12.4 Comparative Analysis for Kandy
4.12.4.1 Main Findings

4.13 Case 8- Bandarawela
4.13.1 Climate
4.13.2 Bio-climatic Analysis
4.13.3 Selected cases
4.13.3.1 Case 8a-House at Seewali Road, Bandarawela
4.13.3.2 Case 8b-House at Badulla road, Bandarawela
4.13.4 Comparative Analysis for Bandarawela
4.13.4.1 Main Findings
4.14 Case 9- Nuwara-Eliya
 4.14.1 Climate 127
 4.14.2 Bio climatic analysis 128
 4.14.3 Selected cases 128
 4.14.3.1 Case 9a-House at Welimada Road, Nuwara-Eliya 129
 4.14.3.2 Case 9b-House at Kalugala Road, Nuwara-Eliya 132
 4.14.4 Comparative Analysis for Hilly Zone 135
 4.14.4.1 Main Finding 135

4.15 Analysis of the Main Findings 136

4.16 Possible Areas for Future Studies 136

Conclusion 137

Bibliography 139
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Simplified diagram of global warming</td>
<td>004</td>
</tr>
<tr>
<td>02</td>
<td>Increase in atmospheric Carbon Dioxide concentrations</td>
<td>004</td>
</tr>
<tr>
<td>03</td>
<td>UK Carbon dioxide emissions by sector</td>
<td>005</td>
</tr>
<tr>
<td>04</td>
<td>Simplified diagram of ozone layer depletion</td>
<td>006</td>
</tr>
<tr>
<td>05</td>
<td>Relationship of Global Issues, Building and Architect</td>
<td>006</td>
</tr>
<tr>
<td>06</td>
<td>Roll of Architect and Climate Responsive Design (CRD)</td>
<td>006</td>
</tr>
<tr>
<td>07</td>
<td>Koeppen’s Climate classification</td>
<td>012</td>
</tr>
<tr>
<td>08</td>
<td>Effect of Climate in Roof Forms</td>
<td>021</td>
</tr>
<tr>
<td>09</td>
<td>Location of Sri Lanka in Tropical Asian Region</td>
<td>023</td>
</tr>
<tr>
<td>10</td>
<td>Observed annual precipitation and temperature changes for the Tropical Asia region.</td>
<td>025</td>
</tr>
<tr>
<td>11</td>
<td>Location of Sri Lanka in relation to the equator</td>
<td>026</td>
</tr>
<tr>
<td>12</td>
<td>Main Climatic Zones of Sri Lanka</td>
<td>027</td>
</tr>
<tr>
<td>13</td>
<td>Average Climatic Data for Dry Zone</td>
<td>027</td>
</tr>
<tr>
<td>14</td>
<td>Average climatic data for Wet Zone</td>
<td>029</td>
</tr>
<tr>
<td>15</td>
<td>Average climatic data for Hilly Zone</td>
<td>031</td>
</tr>
<tr>
<td>16</td>
<td>Bioclimatic Chart for Anuradhapura</td>
<td>054</td>
</tr>
<tr>
<td>17</td>
<td>Plan and Elevations</td>
<td>055</td>
</tr>
<tr>
<td>18</td>
<td>Section through Main Space</td>
<td>055</td>
</tr>
<tr>
<td>19</td>
<td>Front Elevation</td>
<td>056</td>
</tr>
<tr>
<td>20</td>
<td>The plinth area</td>
<td>056</td>
</tr>
<tr>
<td>21</td>
<td>Interior view</td>
<td>056</td>
</tr>
<tr>
<td>22</td>
<td>A window</td>
<td>056</td>
</tr>
<tr>
<td>23</td>
<td>Plan and Elevations</td>
<td>058</td>
</tr>
<tr>
<td>24</td>
<td>Section through Main Space</td>
<td>058</td>
</tr>
<tr>
<td>25</td>
<td>The Front side of the house</td>
<td>059</td>
</tr>
<tr>
<td>26</td>
<td>The front verandah</td>
<td>059</td>
</tr>
<tr>
<td>27</td>
<td>The long eaves and orientation</td>
<td>059</td>
</tr>
<tr>
<td>28</td>
<td>Interior</td>
<td>059</td>
</tr>
<tr>
<td>29</td>
<td>Bioclimatic Chart for Kurunrgala</td>
<td>063</td>
</tr>
<tr>
<td>30</td>
<td>Plan and Elevations</td>
<td>064</td>
</tr>
<tr>
<td>31</td>
<td>Section through Main Space</td>
<td>064</td>
</tr>
<tr>
<td>32</td>
<td>Front Elevation</td>
<td>065</td>
</tr>
<tr>
<td>33</td>
<td>The interior</td>
<td>065</td>
</tr>
<tr>
<td>34</td>
<td>Shading devices</td>
<td>065</td>
</tr>
</tbody>
</table>
Fig. 75 - Interior
Fig. 76 - Plan and Elevations
Fig. 77 - Section through Main Space
Fig. 78 - Shading and overhangs
Fig. 79 - Vegetation
Fig. 80 - Interior
Fig. 81 - Use of materials and spaces
Fig. 82 - Bioclimatic Chart for Galle
Fig. 83 - Plan and Elevations
Fig. 84 - Section through Main Space
Fig. 85 - Front Elevation
Fig. 86 - Interior
Fig. 87 - Side Elevation
Fig. 88 - Plan and Elevations
Fig. 89 - Section through Main Space
Fig. 90 - An Overall View
Fig. 91 - The front porch
Fig. 92 - The rear addition
Fig. 93 - Bioclimatic Chart for Kandy
Fig. 94 - Plan and Elevations
Fig. 95 - Section through Main Space
Fig. 96 - Exterior of the house.
Fig. 97 - A birds eye view
Fig. 98 - Interior
Fig. 99 - A sketch of central courtyard.
Fig. 100 - Plan and Elevations
Fig. 101 - Section through Main Space
Fig. 102 - Front Elevation
Fig. 103 - Verandah.
Fig. 104 - Central courtyard.
Fig. 105 - Pergolas
Fig. 106 - Bioclimatic Chart for Bandarawela
Fig. 107 - Plan and Elevations
Fig. 108 - Section through Main Space
Fig. 109 - The exterior view.
Fig. 110 - The ceiling
Fig. 111 - Rear courtyard
Fig. 112 - Doors and windows.
Fig. 113 - Plan and Elevations
Fig. 114 - Section through Main Space
Fig. 115- Front Elevation 124
Fig. 116- Ceiling 124
Fig. 117- interior 124
Fig. 118- Rear space 124
Fig. 119 - Bioclimatic Chart for Nuwara-Eliya 128
Fig. 120 - Plan and Elevations 129
Fig. 121 - Section through Main Space 129
Fig. 122- Front elevation 130
Fig. 123- use of materials 130
Fig. 124- Openings 130
Fig. 125- Use of timber ceiling 130
Fig. 126 - Plan and Elevations 132
Fig. 127 - Section through Main Space 132
Fig. 128- Front Elevation 133
Fig. 129- the front garden 133
Fig. 130- Interior 133
Fig. 131- Finishes 133
ABSTRACT

As a main consumer of energy and mechanical methods for keeping its internal spaces comfortable and therefore emitting adverse components like CO₂ and CFC to the environment, the contemporary buildings are responsible for current global issues like 'global warming' and ozone layer depletion.

Therefore, as the Professionals involved in designing buildings, Architects has great responsibility on addressing such issues.

Making the buildings climate responsive can reduce a greater amount of such causes for these current environmental issues.

The world is divided into various climatic regions considering their weather conditions and the strategies in architecture for respond these climatic conditions are unique for their basics. But considerable variations in Architectural Form can be observed even within these main climatic Zones.

Therefore it is important to study on Climate Responsive Design (CRD) and its regional variations as a Postgraduate student of Architecture. This dissertation includes a study on various principles and strategies of CRD for Tropical climate in order to formulate a comprehensive set of principles and strategies for tropics which was further developed into a CRD Evaluation Index and a research on regional variations of CRD and their applicability in traditional and modern domestic buildings with special reference to main Climatic Zones of Sri Lanka.

Eighteen (18) Houses were evaluated under nine (09) cases selected from the three main climatic zones in order to obtain reasonable coverage for the research and the results were evaluated against a 'base case' selected for each zone using the developed CRD Evaluation Index.

The analysis of research reinforced the hypothesis for the research of ...'there is a regional variation of CRD and the modern buildings have ignored such CRD strategies, which were specifically followed by the traditional buildings of the same region'.

The research was further discovered that there are various sub zones even within these main climatic regions we identified and concluded the dissertation while opening various areas for possible future studies.

Key Words: Climate Responsive Design (CRD), Principles and Strategies of CRD, CRD Evaluation Index, Main Climatic Zones in Sri Lanka, Dry Zone, Wet Zone, Hilly Zone.