Development of conceptual model for Main Line Container Vessel Berth allocation in a Transhipment Container Terminal

K.U.P.C.Karunathilaka
159210L

Research submitted in partial fulfilment of the requirements for the degree of Master of Business Administration in Supply Chain Management

Department of Transport and Logistics Management

University of Moratuwa
Sri Lanka

November 2017
I. Declaration of Originality

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Signature: Date:

K.U.P.C.Karunathilaka
Copy Right Statement

I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: ……………… Date: …………………

K.U.P.C.Karunathilaka
Statement of the Supervisor

The candidate has carried out research for the MBA in Supply Chain Management in the Department of Transport and Logistics Management of University of Moratuwa under my supervision.

Signature of the supervisor: Date: ..

Dr. Indika Sigera
Abstract

Berth allocation is essential for efficient terminal utilization in container ports and it can identify as a most critical activity which should manage in strategic ways to achieve long term benefits. Previous studies have empathized that, Port/ Terminal congestion i.e unexpected waiting times before berthing, as a main factor which affects to the schedule unreliability in container Shipping. Terminal operators’ objective is to minimize the sum of port staying times of container vessels while maximizing berth occupancy of terminal and that minimizes dissatisfaction of the ships in terms of the berthing order. Main container Shipping lines strive to maintain their sailing schedules to manage expected level of schedule reliability. Focusing on that, this research is aimed to develop a common model which beneficial to both Container Terminal Operators & Shipping Lines when arranging berths in container terminals. The study was focused on main line container vessels’ berth allocation practices in Transshipment container terminals. Analysis of the study was carried out from both Terminal operators’ and Shipping Lines’ aspects. Eight criteria have identified from terminal operators’ aspect which are consider when allocating and prioritizing berths for incoming container vessels. From the Container shipping lines’ aspect eight criteria have identified which are consider by them when requesting berths for their vessels. Finalized criteria from both aspects were structured in to two questionnaires and one sent to the managerial level of selected ten major transshipment terminals and other one sent to the ten leading container shipping lines in world. Collected expert judgments regarding the subject criteria was analyzed using Analytical Hierarchy Process (AHP) technique and as a final outcome those were ranked based on the weight assigned. Products of the two aspects were combined to develop a common model which considered to be as a win-win approach. Common criteria from both aspects have extracted to develop a product of two matrixes. In common model criteria named “Berthing Pro-Forma” ranked as a most critical and important one having weight of 0.2701. Other seven criteria were ranked based on the calculated weights as Punctuality of service (0.2255), Investment in terminal (0.1791), Liner connectivity (0.1268), Commercial aspects (0.0862), Relationship and market power (0.0537), Service agreements and policies (0.0317) and Special requirements (0.0222). Since mentioned eight criteria make a positive impact on the berthing arrangement equation has developed by adding those together. Within this study applicability of the modal to the real-world berth
allocation problem have discussed as a final step of the analysis. As currently practiced in container terminals, berth allocation has done based on the practical experience and intuition of relevant professionals and it was an activity they daily performed. Since they are focusing on this as a day to day activity, in long term negative impacts can occur due to customer dissatisfaction. This happens because terminal operators and shipping lines are working separately to achieve their individual objectives by neglecting the importance of mutual agreements. That gap will fill by this study and developed model can use in berth allocation which may generate long term mutual benefits to both parties. Future studies can be focusing on to apply the same concept in feeder line operation and any type of port terminal.

Key words: Berth Allocation, Port staying time, Transhipment terminal, Analytical Hierarchy Process, Schedule reliability
Acknowledgements

I would to convey my utmost gratitude to my research supervisor Dr. Indika Sigera, Senior lecturer of the Department of Transport and Logistics Management, University of Moratuwa for the continuous guidance, assistance and the encouragement throughout the endeavor. My appreciation is also extended to Dr. Mahinda Bandara, MBA research coordinator & Senior lecturer of the Department of Transport and Logistics Management, University of Moratuwa for the utmost support and guidance on this. I have been fortunate to have Dr. Indika Sigera as a research supervisor who gave me the freedom to explore the beauty of the research and continuous attention throughout the research project.

I extend my gratitude to Senior Prof. Amal S. Kumarage, and all the academic staff members for providing the knowledge and skills throughout the MBA program that enables to carry out the research and creating an opportunity to expose to the industry via the research.

Specially, I would like to extend my gratitude professionals in maritime industry, Sri Lanka and abroad who are working in Shipping lines and Container terminals who gave their full support to complete this research successfully. Special thanks should go to Mr. L.P.S. Chandana -Senior Manager (Berth Planning), Jaya Container Terminal and U.L.A.G. Bandara- Operations Manager (Berth Planning), Jaya Container Terminal, Port of Colombo for their valuable inputs and support.

I am sincerely thankful to all the lecturers who acted as members in evaluation panels and the non-academic staff of the Department of Transport and Logistics Management.

Furthermore, I convey my sincere gratitude to my family members, batch mates, senior colleagues and friends who supported me to make this research a success.
Finally, my gratitude is dedicated to any individual who supported me with a mere word, encouragements, advices and opinions when bringing this study into a success.
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>TEU</td>
<td>Twenty-Foot Equivalent Unit</td>
</tr>
<tr>
<td>ITT</td>
<td>Inter Terminal Trucking</td>
</tr>
<tr>
<td>FCFS</td>
<td>First Come First Serve</td>
</tr>
<tr>
<td>THC</td>
<td>Terminal Handling Charges</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Time of Readiness</td>
</tr>
<tr>
<td>BAP</td>
<td>Berth Allocation Problem</td>
</tr>
<tr>
<td>QC</td>
<td>Quay Crane</td>
</tr>
<tr>
<td>MUT</td>
<td>Multi User Container Terminal</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>TSA</td>
<td>Terminal Service Agreement</td>
</tr>
</tbody>
</table>
1 Contents

I. Declaration of Originality .. ii

Copy Right Statement ... iii

Statement of the Supervisor ... iv

Abstract ... v

Acknowledgements .. vii

List of Acronyms ... ix

List of Tables .. xvi

List of Figures .. xx

1 Introduction .. 1

1.1 Background of the Research .. 1

1.1.1 Introduction... 1

1.1.2. Aim of the Research .. 4

1.1.3. Objectives of the research ... 4

1.1.4. Limitations of the Research ... 5

1.1.5. Significance of the research ... 6

1.1.6 Chapter breakdown ... 8

2 Literature review .. 9

2.1 Global maritime industry and its importance to Supply chain .. 9

2.2 Main routes and trading areas in container Shipping ... 13

2.3 Hub port development and future trends ... 15

2.4 Forms of Transshipment .. 17

2.5 The future of Transshipment ... 19

2.6 Container Terminals and their importance in shipping ... 19

2.7 Selection criteria of container terminals by shipping lines ... 21
2.8 Structural developments in shipping lines and trading patterns ... 23
2.9 Fleet management in Shipping .. 26
2.10 Schedule reliability in container Shipping ... 27
2.11 Profitability of Container Shipping lines and impact on Berth planning 29
2.12 The process of Liner service design and its applicability to the berth planning 30
 2.12.1 Configuration of the liner sipping service and networking 30
 2.12.2 The process of designing container liner service .. 32
2.13 Multi user container (MUT) terminals concept and berth allocation 41
2.14 Berth allocation practices and trends ... 42
2.15 Attributes influence for Berth Allocation problem ... 46
 2.15.1 Temporal Attribute ... 47
 2.15.2 Spatial attribute ... 48
 2.15.3 Handling time attribute ... 51
 2.15.4 Performance measure attribute ... 51
3 Methodology .. 52
 3.1 Introduction ... 52
 3.2 Research approach & Design .. 52
 3.3 Selection of population and sample .. 52
 3.3.1 Populating and sample in container terminal operators .. 53
 3.3.2 Population and Sampling in Shipping Lines ... 54
 3.4 Data collection .. 56
 3.4.1 Primary data sources ... 56
 3.4.2 Secondary data sources ... 57
 3.5 Questionnaire Design ... 57
 3.5.1 Overview ... 57

xi
3.5.2 Structure of the questionnaire .. 57
3.6 Research Procedure & data analysis .. 58
 3.6.1 Criteria Development for Container Terminal Operators Aspect in berth allocation 58
 3.6.2 Criteria Development for shipping lines’ aspect in requesting for Berths 58
 3.6.3 Development and Data gathering .. 59
3.7 Data collection through questionnaire and application of Analytical Hierarchy Process (AHP) 59
 3.7.1 Application of analytical hierarchy process .. 59
 3.7.2 Measurements .. 60
3.8 Development of equation for both aspects ... 63
3.9 Application of Analytical Hierarchy Process in this study 64
.. 64
3.10 Regression Analysis and Application of the model to real world example 64
4 Research Findings .. 66
 4.1 Introduction ... 66
 4.2 Criteria consider by Transshipment container terminal operators when allocating berths for container ships ... 66
 4.3 Criteria consider by main container shipping lines when requesting for berths in transshipment container terminals .. 68
 4.3.1 Berthing Pro-forma and schedule ... 70
 4.3.2 Service Agreements and Policies .. 72
 4.3.3 Relationship/ Customer Service and Market power 73
 4.3.4 Commercial Aspects ... 76
 4.3.5 Punctuality of Service .. 77
 4.3.6 Liner Connectivity ... 78
4.3.7. Response to special requirements ... 80
4.3.8. Investment in Terminal ... 80

4.4 AHP Results Presentation .. 82

4.4.1 Analysis of the Container Terminal operators’ perspective 82
 4.4.1.1 Analysis of the Main criteria consider by container terminal operators when
 allocating Berths for main line container vessels .. 82
 4.4.1.2. Analysis of the Sub criteria under each main criterion consider by container
 terminal operators when allocating Berths for main line container vessels 85
 4.4.1.3. Summery and Analyzing of the result – Terminal operators’ perspective in berth
 allocation 93
 4.4.1.4. Interpretation of outcome of the Analysis – Terminal Operators’ Perspective. 95

4.4.2. Analysis of the Main Container Shipping Lines’ perspective 97
 4.4.2.1. Analysis of the Main criteria consider by Container Shipping Lines when
 requesting berths for their vessels in Transshipment Container terminals 97
 4.4.2.2. Analysis of the Sub criteria under each main criterion consider by Container
 Shipping lines when requesting for berths in Transshipment container terminals 99
 4.4.2.3. Summery and Analyzing of the results- Shipping Lines’ perspective in berth
 allocation 108
 4.4.2.4. Interpretation of outcome of the Analysis – Terminal Operators’ Perspective. 110

4.4.3. Combination of the both aspects ... 111
 4.4.3.1. Interpretation of analysis data generated from common modal 113

4.5. Regression & Correlation Analysis for Deciding on the Efficiency of Berth Allocation 114

As per the APH model findings; Berth Allocation is influenced by several critical parameters
which varies from high importance to low importance and the regression analysis method has
been carried out to define the significance of each independent variable to dependent variable
of Berth Allocation. Thus; based on the interpreted data which are gathered from the
questionnaire; circulated among 10 container terminals, Regression question has been derived as follows ... 114

4.5.1. Regression & Correlation Analysis for Deciding on the Efficiency of Berth Allocation ... 114

4.5.2. Regression Analysis .. 115

Multiple Regression Equation .. 115

4.5.3. Measuring the significance of the Model .. 115

4.5.4. Descriptive Statistics .. 116

4.5.5. Correlation Analysis .. 117

4.5.6. Determining the Coefficient of parameters .. 118

4.5.7. Relationship between Berth Allocation and Berthing Pro-Forma .. 118

H01 There is no relationship between Berth Allocation and Berthing Pro-Forma 118

Ha1 There is a relationship between Berth Allocation and Berthing Pro-Forma 118

As per the analysis, Pearson Correlation of between Berth Allocation and Berthing Pro-Forma is 0.612 .. 118

4.5.8. Relationship between Berth Allocation and Commercial Aspect 119

4.5.9. Relationship between Punctuality of Service and Berth Allocation 119

4.5.10. Relationship between Berth Allocation and Liner connectivity 120

4.5.11. Relationship between Punctuality of Service and Berth Allocation 120

4.5.12. Relationship between Berth Allocation and Investment in Terminal 121

4.5.13. Summary of the outcome of relationship status .. 122

4.6. Application of the AHP rankings to the real-world scenario in berth Allocation 123

5. Conclusion .. 127

5.1. Introduction .. 127

5.2. Summary of Research Findings .. 127

5.3. Conclusions .. 128
5.4. Research Limitations.. 129

5.5. Future research directions ... 130

5.6. Chapter Summary.. 130

References.. 131

Annex 01: Questionnaire to Shipping Lines.. 135

Annex 2: Questionnaire to Terminal... 144

Annex 3: Output of the SPSS Analysis... 157

Annex 4: Sample Berthing Pro-Forma of a container Terminal... 160
List of Tables

Table 1.1.1-1: Source of Schedule Unreliability, on the East Asia – Europe route – fourth quarter 2004 (Notteboom, 2006) ... 1
Table 2.12.2-1: Notations for different types of Berth allocation, Survey Metaheuristic Approaches for the Berth Allocation Problem, Natasa K, 2016.. 47
Table 4.2-3.7.1-1: Criteria consider by Transshipment container terminal operators in Berth Allocation.. 67
Table 4.3-3.7.1-1: Criteria consider by main container shipping lines when requesting for berths .. 68
Table 4.3.2-1: Characteristics of four allocation policies – Hong Kong International Terminals Ltd, Hong Kong. A Study of container berth allocation, K.K.Lai and Katharine Shih, 2010..... 73
Table 4.3.4-1: Container shipping volume (TEU) growth on major trade lanes liked to Asia, Crucial Perspective, 2017 .. 77
Table 4.4.1.1-1: Pairwise Comparison Matrix for the aggregated responds of Terminal operators (M1) ... 83
Table 4.4.1.1-3: Normalized Matrix for the aggregated responds of Terminal operators’......... 83
Table 4.4.1.1-4: Relative Weights for criteria consider by container terminal operators when allocating berths ... 84
Table 4.4.1.2-1: Pair wise comparison matrix for sub criteria under “Commercial aspects”...... 85
Table 4.4.1.2-2: Normalized matrix for sub criteria under “Commercial aspects”................. 85
Table 4.4.1.2-3: Relative Weights for sub criteria under main criteria – Commercial aspects: ... 86
Table 4.4.1.2-4: Pair wise comparison matrix for sub criteria under “Punctuality of Service” ... 86
Table 4.4.1.2-5: Normalized matrix for sub criteria under “Punctuality of Service”.............. 86
Table 4.4.1.2-6: Relative Weights for sub criteria under main criteria – Punctuality of Service. 87
Table 4.4.1.2-7: Pair wise comparison matrix for sub criteria under “Response to the special requirements”.. 87
Table 4.4.1.2-8: Normalized matrix for sub criteria under “Response to the special requirements” ... 87
Table 4.4.1.2-9: Relative Weights for sub criteria under main criteria – Response to Special requirements... 88
Table 4.4.1.2-10: Pair wise comparison matrix for sub criteria under main criteria berthing Pro-Forma

Table 4.4.1.2-11: Normalized matrix for sub criteria under main criteria berthing Pro-Forma

Table 4.4.1.2-12: Relative Weights for sub criteria under main criteria- Berthing Pro-Forma

Table 4.4.1.2-13: Pairwise comparison matrix for sub criteria under “Service agreements and policies”

Table 4.4.1.2-14: Normalized matrix for sub criteria under “Service agreements and policies”

Table 4.4.1.2-15: Relative Weights for sub criteria under main criteria – Service agreements and policies

Table 4.4.1.2-16: Pairwise comparison matrix for sub criteria under “Customer service”

Table 4.4.1.2-17: Normalized matrix for sub criteria under “Customer service”

Table 4.4.1.2-18: Relative Weights for sub criteria under main criteria - Customer service

Table 4.4.1.2-19: Pairwise comparison matrix for sub criteria under “Liner Connectivity”

Table 4.4.1.2-20: Normalized matrix for sub criteria under “Liner Connectivity”

Table 4.4.1.2-21: Relative Weights for sub criteria under main criteria – Liner Connectivity

Table 4.4.1.2-22: Pairwise comparison matrix for sub criteria under “Investment in Terminal”

Table 4.4.1.2-23: Normalized matrix for sub criteria under “Investment in Terminal”

Table 4.4.1.2-24: Relative Weights for sub criteria under main criteria – Investment in Terminal

Table 4.4.1.3-1: Summery and Analyzing of the result – Terminal operators’ perspective

Table 4.4.2.1-1: Pair wise comparison matrix for aggregated responds of major Shipping lines (M2)

Table 4.4.2.1-2: Normalized matrix for aggregated responds of major Shipping lines

Table 4.4.2.1-3: Relative Weights for criteria consider by Major Container Shipping Lines when requesting for berths in transshipment container terminals

Table 4.4.2.2-1: Pairwise comparison matrix for sub criteria under “Punctuality of Service”

Table 4.4.2.2-2: Normalized matrix for sub criteria under “Punctuality of Service”

Table 4.4.2.2-3: Relative Weights for sub criteria under main criteria – Punctuality of Service

Table 4.4.2.2-4: Pairwise comparison matrix for sub criteria under “Special Requirements”

Table 4.4.2.2-5: Normalized matrix for sub criteria under “Special Requirements”

Table 4.4.2.2-6: Relative Weights for sub criteria under main criteria – Special Requirements
Table 4.4.2.2-7: Pairwise comparison matrix for sub criteria under “Pro-Forma” 101
Table 4.4.2.2-8: Normalized matrix for sub criteria under “Berthing Pro-Forma” 102
Table 4.4.2.2-9: Relative Weights for sub criteria under main criteria – Berthing Pro-Forma 102
Table 4.4.2.2-10: Pairwise comparison matrix for sub criteria under “Service agreements and policies” .. 102
Table 4.4.2.2-11: Normalized matrix for sub criteria under “Service Agreements and Policies” .. 103
Table 4.4.2.2-12: Relative Weights for sub criteria under main criteria – Service Agreements and Policies .. 103
Table 4.4.2.2-13: Pairwise comparison matrix for sub criteria under “Relationship and market power” .. 103
Table 4.4.2.2-14: Normalized matrix for sub criteria under “Relationship and Market power” 104
Table 4.4.2.2-15: Relative Weights for sub criteria under main criteria – Relationship and Market power .. 104
Table 4.4.2.2-16: Pairwise comparison matrix for sub criteria under “Commercial aspects” 104
Table 4.4.2.2-17: Normalized matrix for sub criteria under “Commercial aspects” 105
Table 4.4.2.2-18: Relative Weights for sub criteria under main criteria – Commercial aspects 105
Table 4.4.2.2-19: Pairwise comparison matrix for sub criteria under “Liner Connectivity” 105
Table 4.4.2.2-20: Normalized matrix for sub criteria under “Liner Connectivity” 106
Table 4.4.2.2-21: Relative Weights for sub criteria under main criteria – Liner Connectivity .. 106
Table 4.4.2.2-22: Pairwise comparison matrix for sub criteria under “Investment in Terminal” .. 106
Table 4.4.2.2-23: Normalized matrix for sub criteria under “Investment in Terminal” 107
Table 4.4.2.2-24: Relative Weights for sub criteria under main criteria – Investment in Terminal .. 107
Table 4.4.2.3-1: Summery and Analyzing of the results- Shipping Lines’ perspective 108
Table 4.4.2.4-1: Pairwise Comparison matrix – Combined perspective of Terminal operators and Shipping Lines .. 112
Table 4.4.2.4-2: Normalized matrix – Combined perspective of Terminal operators and Shipping Lines .. 112
Table 4.5-1: Regression Output ... 115
Table 4.5-2: Descriptive data Analysis of the Study...116
Table 4.5-3: Correlation Output..117
Table 4.6-1: Details relevant to berthing for the Liner services A and B.......................... 123
Table 4.6-2: Comparison and ranking of the both liner services A and B......................... 124
Table 4.6-3: Pairwise comparison and Normalized matrixes... 125
Table 4.6-4: Average weights generated for Liner Service A and B................................. 126
List of Figures

Figure 2-1: Export commodities and raw materials in world based on the geographical distribution, CIA Fact book, 2014 ... 10
Figure 2-2: Functional integration of Supply Chain ... 11
Figure 2-3: CMA CGM Multimodal Solution ... 12
Figure 2-4: Organization for Economic Cooperation and Development industrial production index and indices for world gross domestic product, seaborne trade and merchandise trade, 1975–2015 .. 13
Figure 2-5: Top container ship trade routes ... 14
Figure 2-6: Estimated containerized cargo flows on major container trade routes in 2015 15
Figure 2-7: World Transshipment hub, Geography of Transport systems 16
Figure 2-8: Three forms of transshipment in maritime transport 18
Figure 2-9: Container terminal operations layout .. 20
Figure 2-10: Operational procedure of container terminal, Evaluating Container Terminal Transshipment Operational Policies: An Agent-Based Simulation Approach, Lawrence H 20
Figure 2-11: Operational procedure of container terminal, Evaluating Container Terminal Transshipment Operational Policies: An Agent-Based Simulation Approach, Lawrence H 23
Figure 2-12: Summary of Container Alliances, Port Technology, 2017 25
Figure 2-13: Fifty years of container Ships growth, Allianz Global corporate & Specialty 26
Figure 2-14: The process of Liner Service design, Own elaboration based on insights from Notteboom (2009) and Notteboom and Vernimmen (2009) ... 28
Figure 2-15: Operating margins of container carriers, Alphaliner Annual report, McKinsey analysis, 2016 ... 29
Figure 2-16: Round the World Service, Own elaboration based on insights from Notteboom (2009) and Notteboom and Vernimmen (2009) ... 33
Figure 2-17: Line Bundling Service, Own elaboration based on insights from Notteboom (2009) and Notteboom and Vernimmen (2009) ... 34
Figure 2-18: Pendulum services, Own elaboration based on insights from Notteboom (2009) and Notteboom and Vernimmen (2009) ... 34
Figure 2-19: Hub and Feeder Network, Own elaboration based on insights from Notteboom (2009) and Notteboom and Vernimmen (2009) ... 34

xx
Figure 4-5: Main and Feeder Line connectivity in container shipping, Hub and Spoke liner shipping network design, Tingsong W, 2013 ... 78

Figure 4-6: Overseas investment in terminal by COSCO line, China, Cosco Line official website ... 81