CROSS-RELATION-BASED FREQUENCY DOMAIN BLIND CHANNEL ESTIMATION FOR MIMO COMMUNICATION SYSTEMS

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA

Henarath Hettige Samantha Rathnasiri

(09/8432)

Thesis submitted in partial fulfillment of the requirements for the degree Master

of Science in Telecommunications

13 DON 55 2016

EN 03 23

G21.30 "15" G21.39 (043)

TH 3113

Department of Electronic & Telecommunication Engineering

Univ	University of Moratuwa	
Etis	Sri Lanka	
(Jan)	CLASS No.	
	1 0015	

August 2015

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis in whole or in part in print, Electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

80

Date: 07/08/2015

The above candidate had carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

08/ 8/2015

UOM Verified Signature

i

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor Dr. Chandika Wavegedara for the useful comments, remarks and engagement through out the learning process of this master thesis. I would like to thank you for introducing me to the topic and guiding me to the success. Furthermore, I would also like to acknowledge with much appreciation the guidance given by Professor Dileeka Dias and Dr. Ajith Pasqual during the progress reviews.

A special thank goes to my colleague Mr.Priyantha Appuhami who helped me in simulating the proposed model. I also like to express my gratitude to my wife for her understanding, and for providing me with the time and support I needed for my work.

ABSTRACT

Blind channel estimation is attractive for the application of in high-speed wireless communication systems due to its high spectral efficiency. Most of the conventional blind channel identification algorithms are based on the statistical properties of the transmitted signals. However, in practical communication systems, the statistical model of the transmitted signals may not be known or there may not be sufficient data to estimate the statistical properties. Alternatively, we can use Cross Relation (CR) principle for computationally-efficient blind channel estimation. CR principlebased frequency domain blind channel estimation schemes offer good performance when the data length is inevitably short. In this thesis, a frequency-domain CR-based blind channel estimation schemes are developed for both single-carrier and multicarrier multiple-input multiple-output (MIMO) systems. The proposed channel estimation scheme is able to identify the channel using a single received signal block. This channel estimation scheme is accompanied by a simple block pre-coding scheme. The channel is assumed time invariant within the signal block period which depends on the antenna configuration of the system. The numerical simulation shows that the proposed methods perform satisfactorily with only one or very few received signal blocks, with compared to existing correlation based methods which require more data blocks.

Keywords -MIMO, SVD, CR, Channel Estimation

TABLE OF CONTENTS

1

1.	INTRO	DUCTION	1
	1.1	Introduction to Blind Channel Estimation	1
	1.2	Problem Statement – MIMO Channel Estimation Problem	3
	1.3	Objectives	4
	1.4	Methodology	5
	1.5	Scope	5
	1.6	Organization of this Thesis	6
	1.7	Notations	6
2. LITERATURE REVIEW 7			7
	2.1	Wireless System Categorization for Channel Estimation	7
	2.2	Channel Estimation Schemes	8
2.3 Channel Estimation schemes develop for communication systems with			
	dif	ferent antenna configurations	12
	2.3.1	Channel estimation in SISO systems	12
	2.3.2	Channel estimation in SIMO systems	13
	2.3.3	Channel estimation in MIMO systems	14
	2.3.4	Channel estimation in OFDM systems	14
	2.3.5	Channel estimation in SIMO-OFDM systems	14
	2.3.6	Channel estimation in MIMO-OFDM systems	15
	2.4	CR Based Frequency Domain Channel Estimation Scheme	15

3.	3. PROPOSED BLIND CHANNEL ESTIMATION SCHEMES		17
	3.1	CR-based Frequency Domain Channel Estimation Scheme for MIMO	17
	3.2	CR- Based Chanel Estimation Scheme for MIMO OFDM	23

4. SIMULATION RESULTS AND DISCUSSION

4.1	Verification of the system model using the existing results	31
	4.1.1 Verification of the existing results for single carrier SIMO	31
	4.1.2 Verification of the existing results for multicarrier SIMO	34
4.2	Performance investigation of the proposed MIMO CR-based Blind chann	ıel
	estimation scheme	36
4.3	Performance investigation of the proposed MIMO-OFDM CR-based	
	Blind channel estimation scheme	40
CONC	CLUSIONS AND FURTHER RESEARCH	45
5.1	Conclusion	45
5.2	Further Research	46
REFE	RENCES	47

V

REFERENCES

5.

LIST OF FIGURES

Figure 1 Wireless Signal propagation in typical environment	4
Figure 2 Categorization of wireless communication systems for	
channel estimation	7
Figure 3 Multichannel Identification	13
Figure 4 MIMO system model	17
Figure 5 MIMO non-CP OFDM channel model	23
Figure 6 MSE performance of SS and CR based schemes	31
Figure 7 MSE performance for SIMO systems with different number receiver	
antennas	33
Figure 8 MSE performance for SIMO systems with multiple received signal	
blocks	34
Figure 9 MSE performance for SIMO-OFDM systems with different number of	
received antennas	35
Figure 10 MSE performance for SIMO-OFDM systems with multiple received	
Signal blocks	36
Figure 11 MSE performance for MIMO systems with $N_T = 2 \& N_R = 2$	37
Figure 12 MSE performance MIMO systems for different number antennas	38
Figure 13 BER performance comparison for MIMO systems with existing results	39
Figure 14 NRMSE Performance comparison for MIMO OFDM system with CR &	&
Correlation based schemes	40
Figure 15 MSE Performance comparison of CR based MIMO OFDM system with	h
different number of received signal blocks	41
Figure 16 MSE Performance comparison of CR based MIMO OFDM systems wi	th
different number of received signal blocks	42
Figure 17 BER Performance comparison of CR based MIMO OFDM system with	h
different number of received blocks	43

Figure 18 BER Performance comparison of CR based with results in [36] for MIMO OFDM system 43

LIST OF TABLES

1

Table 1 Categorisation of research papers based on the channel estimation type	8
Table 2 Pilot-based channel estimation schemes	9
Table 3 Semi blind channel estimation schemes	10
Table 4 Blind channel estimation schemes	12
Table 5 Summary of the literature of CR scheme	16

LIST OF ABBREVIATIONS

Abbreviation

1

Description

MSE	Mean Squared Error
SNR	Signal to Noise Ratio
FFT	Fast Fourier Transform
CR	Cross Relation
SISO	Single Input Single Output
SIMO	Single Input Multiple Output
MISO	Multiple Input Single Output
MIMO	Multiple Input Multiple Output
OFDM	Orthogonal Frequency Division Multiplexing
SVD	Singular Value Decomposition
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate

LIST OF APPENDICES

Appendix

Description

Page

Appendix – A Detailed Flow Chart of the Matlab Simulation 40

An every part of intellingents the state of a second provide and the second state of a second state of