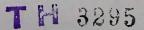
18/00m/20/207


Designing sales data mart system for ease of analysis and developing data mining model to enhance the promotional strategies for Gamma Pizza hut

> LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

> > S.Shamaran

129171M


004 "16" 004 (043)

TH 3095 . + CD - ROM

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of Master of Science in Information Technology.

November 2016

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been duly acknowledged in the text and a list of references is given.

S.Shamaran

Name of Student

Supervised by

Mr.Saminda Premaratne

Name of Supervisor

UOM Verified Signature

S Shamar or J Signature of Student

Date: 26/11/2016

Signature of Supervisor

Date: 21/12/2016

Dedication

THIS THESIS IS DEDICATED TO MY PARENTS AND MY SISTER SHANTHIPAA FAMILY AND BROTHER SHATHULAN FAMILY

Acknowledgement

It is a great pleasure to me thanks the many people who made this thesis possible.

My sincere gratitude and thanks to Mr.Samida Premaratne, the supervisor for this project and Course coordinator MSC in IT, for the tremendous guidance, motivation and corporation given throughout the project.

Heartfelt thanks to my parents, my sister family, and my brother family for their support and encouragement during the development of this project.

Special thanks to previous working colleagues and managers (Buddhika, Chithara, Dinith) of Scienter Technologies Pte Ltd.

Grateful thanks to current working colleagues and Sujeewa Fernando, Head of Dot Net development at Mazarin.

And lastly gratitude thanks to my wife Hamshine and his family for in order to able to continue my project after wedding on this year.

Abstract

Making effective business decisions with the data is the key to succeeding in today's competitive environment. Organizations are now looking to improve their decision-making ability with their current data, but unfortunately operational systems have limited features and various ad-hoc reports for same data. This unsatisfactory & frustration lead the managers and IT industry to find new level of applications. These applications focused on ease of analysis on the single screen to make effective decisions at the time and mining techniques help to generate new business opportunities by providing prediction of trends and behaviors as well as discovery of previously unknown or hidden patterns.

The DSS/BI systems should have more analyzing features and structured data. But current OLTP data and its database design not give much more analyzing power. In order to that OLAP architecture has built from various database vendors to make to use by DSS /BI systems. The developing of a data warehouse database and Data Mart database with suitable schema and approaching with relevant architecture is make a foundation for DSS/BI systems

The Data warehouse database makes on available history data as possible of getting last update record. The fact and dimension structure are used when designing database schema for Data Warehouse. ETL process generate a data to warehouse from various data sources. The Data Marts are used for holding various subject areas like sales, purchase, production, finance, etc. But here only considering about sales and delivery data only. The Data Cube Technology (OLAP technology) is used for end user to viewing data with various dimensional and drill-down drill-up processes within the application.

Finally those data are used to mining frequent patterns, Associations and Correlations between items in menu orders by using apriori algorithm (Microsoft Association algorithm) and forecasting Predictive sales for each item by using ARIMA algorithm (Mircosoft Time Series)

The data warehouse solution can be made from by integrating various database technologies in the middle; those technologies include SQL Server Management Studio (SSMS), SQL Server Integration Services (SSIS), SQL Server Analysis Server (SSAS), SQL Server Report Service (SSRS) and SQL Server Data Tools for Visual Studio used to create Analyzing project and Data mining project. C# language, DMX and MDX queries are used to build the simple mining application.

TABLE OF CONTENTS

Chapter 1- Introduction	
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 The Problem Domain	2 3 3 4
1.4 The solution address by others	3
1.5 Aim & Objective	3
1.6 Solution in brief	4
1.7 Structure of Dissertation	4
Chapter 2 – Review of Others Work's	
2.1 Introduction	6
2.2 Background	6
2.3 Decision Support System Concept	6
2.4 Database and Data Mining for Coffee shops in Egypt	7
2.5 Data mining on time series:	8
2.6 Summary	9
Chapter 3 - Technology Adapted	
3.1 Introduction	10
3.2 Data warehouse Technology	10
3.3 Data warehouse	10
3.3.1 Basic elements of Data warehouse	11
3.3.2 Data warehouse management	12
3.4 Data base Design	14
3.4.1 Logical design	14
3.4.2 Physical Design	15
3.5 OLAP Technology	16
3.6 OLAP Server/models	17
3.6.1 The ROLAP Model	17
3.6.2 The MOLAP Model	17
3.6.3 The HOLAP Model	17
3.7 Data Warehouse Architecture	18
3.7.1 Conceptual view	18
3.7.2 Physical view	19
3.7.2.1 Centralized Architecture	19
3.7.2.2 Federated Architecture	19
3.7.2.3 Tiered Architecture	20
3.8 Data Warehouse models	20
3.9 DMX	20
3.10 MDX	21
3.11 Summary	21
Chapter 4 – Data Mining Algorithms	22
4.1 Introduction	22
4.2 Frequent Itemset mining	22
4.2.1 Association rules	22
4.2.2 Apriori algorithm	23
4.3 Sales Trend Analysis	24
4.3.1 ARIMA model	24

4.3.1.1 Autoregressive model	25
4.3.1.2 Moving Average model	25
4.4 How to apply	26
4.5 Summary	26
Chapter 5 – Theoretical Foundation of .NET	27
5.1 Introduction	27
5.2 Benefits of .NET framework	27
5.3 Integration with .NET	28
5.4 How to apply	29
5.5 Summary	29
0.0 0	
Chapter 6 – Development Methodologies	30
6.1 Introduction	30
6.2 Overview of Approaches	30
6.3 The Bottom-Up approach	30
6.4 The Top-Down approach	31
	32
6.5 Comparison between Top down Vs Bottom Up	32
6.6 Software process model	
6.7 My Approach	33
6.8 Data warehousing development process	33
9.9 Summary	35
Chapter 7 – Analysis	36
7.1 Introduction	36
7.2 Requirement Analysis	36
	36
7.2.1 Existing system architecture	37
7.2.2 Business parameters	
7.3 Source data analysis	39
7.3.1 Source conceptual schema	40
7.3.2 Hierarchical levels	41
7.3.3 Drill down analysis	41
7.4 ETL process	42
7.5 Data changing process	42
7.6 Tool Selection	43
7.6.1 Microsoft Corporation	43
7.6.2 Microsoft Data Warehousing Framework	43
7.6.3 Framework components	44
7.6.4 Business Intelligent Development Studio	44
7.6.5 SQL Server Integration Services	45
7.6.6 Microsoft Data mining Life Cycle	45
7.7 Summary	46
Chapter -8 Design	47
8.1 Introduction	47
8.2 Use Case Diagram	47
8.3 Matrix Design	48
8.3.1 Dimensions	48
8.3.2 Facts	48
8.3.3 Measures	48
8.4 Design decisions	49
8.5 The Constellation Schema	49
8.5.1 Data warehouse conceptual schema	50

8.6 Proposed architecture	51
8.6.1 The Logical Overview 8.7 Summary	52 52
	50
Chapter – 9 Implementation	53 53
9.1 Introduction 9.2 ETL Process	53
9.2 ETL Flocess 9.2.1 Develop SSIS Package	53
9.3 Build & Populate Data Cubes	54
9.3.1 Develop SSAS project	55
9.3.1.1 Create Sales Cube	55
9.3.1.2 Create Delivery Cube	56
9.4 Data mining project	56
9.4.1 Mining data with Microsoft Association Rule	56
9.4.1.1 Mining results	57
9.4.1.2 Dependency Network	58
9.4.2 Mining data with Microsoft Time Series	60
9.5 User Interface developments for Data Mining	62
9.6 User Interface developments for ETL process	65
9.7 Summary	66
Chapter – 10 Testing	67
10.1 Introduction	67
10.2 Testing Sales value with predicted values	67
Chapter – 11 Conclusion	69
11.1 Introduction	69
11.2 Achievements	69
11.3 Problem Encountered	69
11.4 Limitations	70 70
11.5 Lesson Learnt 11.6 Further works	70 70
11.0 Further works	70
Appendix A – Matrix Design	73
Appendix B – Diagrams	74
Appendic C – Stored proc	75
Appendix D- MDX Queries	77
Appendix E – Implementing steps of Association rule	79
Appendix F – Strongest to Lowest Associate itemset	81
Appendix G - Coding for ETL package execution through Win App	82
Appendix H - Coding of Mining user interface	83
Appendix I – Test results	91

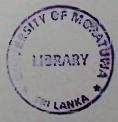

List of Tables

Table 3.1 Definitions of basic elements of the data warehouse	12
Table 6.1 Comparison of essential features of Inmon's and Kimbal's	32
Table 9.1 Association Rule -Mining Structure	57
Table 9.2 Association Rule - Algorithm Parameters	57
Table 9.3 Mining rules from Association algorithm	58
Table 9.4 Mining rules Item set	58
Table 9.5 Time Series - Mining Structure	61
Table 9.6 Time Series - Mining Algorithms	61
Table 10.1 Test Results	68

List of Figures

	Page
Figure 2.1: Decision Support system architecture	7
Figure 3.1: Collection of Data warehouse Tools	12
Figure 3.2: General features of OLAP	16
Figure 3.3: MOALP vs RLOAP	17
Figure 3.4: Conceptually Comparison of Data Warehouse Architecture	18
Figure 3.5: Physical View of Centralized Architecture	19
Figure 3.6: Physical View of Federated Architecture	19
Figure 3.7: Physical View of Tiered Architecture	20
Figure 6.1: The Bottom-up approach	31
Figure 6.2: The Top-Down approach	31
Figure 6.3: Data warehouse Development process	34
Figure 7.1 Existing system architecture	37
Figure 7.2Source conceptual schema	40
Figure 7.3 Hierarchical levels	41
Figure 7.4 Drill down analysis steps	41
Figure 7.5 Data warehouse Database Vendors	43
Figure 7.6Data changing process	44
Figure 7.7 Microsoft Data Mining Life Cycle	45
Figure 8.1 Use Case Diagram	47
Figure 8.2 Dimension, facts, matrix	48

Figure 8.3 Data warehouse conceptual schema	50
Figure 8.4 Proposed Data Warehouse Architecture	51
Figure 8.5 Logical Overview of the proposed solution	52
Figure 9.1 Conceptual Data flow	53
Figure 9.2 SSIS- Data Flow Task for migrating sales data	54
Figure 9.3 Sales Cubes – Data Source View	55
Figure 9.4 Date Hierarchy	55
Figure 9.5 Delivery Cubes – Data Source View	56
Figure 9.6 Dependency Network	59
Figure 9.7 Sum of Item sales by Month	60
Figure 9.8 Time Series Graph	62
Figure 9.9 Mining Results Interface	62

List of Abbreviations

- **BI Business Intelligence**
- DSS Decision Support System
- KDD Knowledge Discovery Data
- ARIMA Autoregressive -- Integrated moving average
- MDX Multi Dimensional Query
- DMC Data Mining Query
- OLAP On Line Analytical Processing
- ROLAP Relational On Line Analytical Processing
- MOLAP Multidimensional On Line Analytical Processing
- HOLAP Hybrid on Line Analytical Processing
- ETL Extract, Transform, Load
- SSIS SQL Server Integration Service
- SSAS SQL Server Analytical Server
- SSRS SQL Server Reporting Service
- BIDS Business Intelligent Development Studio
- DLL Dynamic Link Library