LB100R110919018

ENHANCING THE WI-FI DIRECT PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Wageesha Nilmini Manamperi

(168070G)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

June 2018

T H3621

621.38 (043)

TH 3621+

CD ROM

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future work (such as articles or books).

Wageestra Signature:

13/06/2018

Date:

The candidate, whose signature appears above, carried out research for the MSc dissertation under my supervision.

Signature: UOM Verified Signature

Signature: UOM Verified Signature

Date:

13/06/2018

Abstract

We present a technique for enhancing Wi-Fi Direct (WD) for vehicular environments. Dedicated short range communication (DSRC) has been standardized for communication in Intelligent Transportation Systems (ITS). However, due to high costs at initiation, alternative communication strategies are of interest in order to facilitate the quick deployment of ITSs. WD, which is a relatively mature technology available in mobile devices, has come across as a possible alternate candidate. However, the presence of large communication delays in the WD protocol stack is a shortcoming in deploying this in highly dynamic vehicular scenarios. The objective of our work is to propose and evaluate a method to overcome some of the large transmission delays in WD. Our proposal is to use a broadcast mechanism in the downlink between the group owner (GO) and the clients of a WD group, as an alternative to the currently used peer-to-peer (P2P) method.

method. We study our technique by simulating a bi-directional highway scenario with multiple lanes. We set up the vehicular channel model using two well-known models: Friis propagation model and the Nakagami fading model. Performance measures such as average total delay, average energy consumption of the GO, average packet loss ratio, and average packet reception ratio are presented.

While the proposed GO Broadcast method reduces the downlink delay, it increases the probability of packet losses due to the lack of retransmissions. Our results demonstrate a gain in terms of average total delay and the average energy consumption of the GO. We use a theoretical analysis as well as a simulation study using OMNeT++. It is also shown that the degradation in performance on the downlink due to packet losses is within tolerable limits, given that the size of the group is selected properly.

Index terms— Broadcast mechanism, Group formation, Peer-to-Peer (P2P), Vehicular Ad-hoc Network (VANET), Wi-Fi Direct (WD)

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors Dr. Tharaka Samarasinghe and Prof. Dileeka Dias for their precious advice, valuable insights, and guidance throughout the research. I thank them for sharing their expertise, and specially for making time in their busy schedules to help me with my Masters.

In addition to my supervisors, I would like to thank Dr. Asanga Udugama, for being my progress committee chair and for his assistance and comments for improving and completing the research. I would also like to thank Dr. Ruwan Udayanga, for being my progress committee member and for providing valuable comments throughout my Masters.

I would like to thank my university, The University of Moratuwa, for providing me financial support throughout this year.

I wish to thank my colleagues who helped me directly and indirectly.

Last but not least, I would like to express my deepest gratitude to my beloved parents, sisters, for their endless support, love, and care.

This work was supported by the Senate Research Committee under grant SR-C/LT/2015/07.

Thank you Wageesha Nilmini Manamperi

Contents

	Dec	elaration	i
	Abs	stract	ii
	Ack	nowledgement	iv
1	Intr	roduction	1
	1.1	VANETs	1
	1.2	Why Wi-Fi direct ?	3
	1.3	Focus of the thesis	4
	1.4	Contributions and the outline of the thesis	5
2	Fun	damentals and Background	7
	2.1	Wi-Fi direct protocol	7
		2.1.1 Group formation	8
		2.1.2 Intent value calculation	11
	2.2	Drawbacks of Wi-Fi direct	12
		2.2.1 High group formation time	12
		2.2.2 High transmission delay	12
		2.2.3 Single point of failure of the group	13
	2.3	Simulator	13
		2.3.1 OMNeT++	13
		2.3.2 INET framework	15
	2.4	Related works	15
3	Sys	tem Model	17
	3.1	Topological model	17
	3.2	Channel model	17
		3.2.1 Path loss model	18
		3.2.2 Fading model	19
	3.3	Communication model	10

		3.3.1 Peer-to-Peer model	20
		3.3.2 Group owner broadcasting model	20
	3.4	Summary	22
4	The	oretical Analysis of Performance Measures	23
	4.1	Average total delay	23
	4.2	Average energy consumption	26
	4.3	Summary	28
5	Sim	ulation Environment and Setup	29
	5.1	Simulation environment	29
	5.2	Simulation setup	31
		5.2.1 Network configuration	31
		5.2.2 Channel modeling	33
		5.2.3 Device configuration	33
		5.2.3.1 IEEE 802.11 NIC module	34
		5.2.3.2 Mobility module	37
		5.2.3.3 Energy consumed module	37
		5.2.3.4 Timeout for GO to initiate data transmission	38
	5.3	Performance evaluation	38
	5.4	Summary	40
6	Res	ults and Discussion	41
	6.1	Average total delay	41
	6.2	Average energy consumption of the group owner	44
	6.3	Average packet loss ratio	47
	6.4	Average packet reception ratio	49
	6.5	Summary	52
7	Con	clusions and Future Work	53
	7.1	Conclusions	53
	7.2	Future work	54
A	ppen	dices	57
A	San	nple codes	58
	A.1	Network Configuration	58
	A.2	Data transmission	66

List of Figures

1.1	Vehicle-to-vehicle communication. Example of an event-driven	
	messages exchange through a highway scenario.	2
2.1	(a) Uplink: between the clients and the GO (b) Downlink: between	
	the GO and the clients.	8
2.2	Example of a device discovery phase for two P2P devices.	9
2.3	Frame exchange sequences in the standard group formation proce-	
	dure [11]	10
2.4	Architecture of OMNeT++	14
3.1	Highway scenario.	18
3.2	P2P model: (a) uplink where clients send its data frames to the GO	
	(b) downlink where GO forwards the received clients data frames	
	and (c) downlink where GO sends its own data frame to the clients.	20
3.3	The information dissemination in the GOB model for the group	
	size of <i>n</i>	21
3.4	GOB model: (a) uplink where clients send its data frames to the	
	GO (b) downlink where GO aggregates all the data into a single	
	frame and broadcasts to the clients	22
4.1	(a) Uplink and (b) downlink frames exchanged inside the group in	
	the standard WD protocol	26
5.1	802.11 LAN module in INET framework of OMNeT++.	31
5.2	Channel model for WD in INET framwork of OMNeT++	33
5.3	Configuration parameters of the channel model in the INET frame-	
	work of OMNeT++.	34
5.4	IEEE 802.11 NIC layered architecture in INET framework of OM-	
	NeT++	35
5.5	Configuration parameters of the agent layer on IEEE 802.11 NIC	
	in the INET framework of OMNeT++.	36

LIST OF FIGURES

5.6	Configuration parameters of the management layer on IEEE 802.11	
	NIC in the INET framework of OMNeT++.	36
5.7	Configuration parameters of the MAC layer on IEEE 802.11 NIC	
	in the INET framework of OMNeT++	36
5.8	Configuration parameters of the radio layer on IEEE 802.11 NIC	
	in the INET framework of OMNeT++	36
5.9	Configuration parameters of the mobility module in the INET	
	framework of OMNeT++	37
5.10	Configuration parameters of the energy consumed module in the	
	INET framework of OMNeT++.	38
5.11	Average delay on the uplink with respect to the number of vehicles	
	in a group	39
6.1	The theoretical analysis of average delay with respect to the num-	
	ber of vehicles in a group.	42
6.2	The behaviour of average delay with respect to the number of vehi-	
	cles in a group for P2P model considering channel and topological	
	models	42
6.3	The behaviour of average delay with respect to the number of vehi-	
	cles in a group for GOB model considering channel and topological	
	models	43
6.4	The behaviour of average delay with respect to the number of	
	vehicles in a group for P2P and GOB models.	45
6.5	The behaviour of average energy consumption of the GO with re-	
	spect to the number of vehicles in a group for both communication	
	models	46
6.6	The behaviour of average received power with respect to the dis-	
	tance to the sender for different values of m	48
6.7	The maximum number of lost packets per one data transmission	
	cycle with respect to the number of vehicles in a group for different	
	values of m	48
6.8	The behaviour of average PLR per vehicular node with respect to	
	the number of vehicles in a group for different values of $m. \ldots$	49
6.9	CDF of the SINR for both different beacon generation time and	
	the different fading intensities	50

6.10	The average number of vehicles successfully received the broadcast	
	frame with respect to the number of vehicles in a group for the	
	beacon generation rate of 5 packets per second.	50
6.11	The behaviour of average PRR with respect to the number of ve-	

hicles in a group for both different beacon generation time and the	
different fading intensities	5

List of Tables

2.1 Delays of WD protocol for the three group formation proc		
	Autonomous, Standard, and Persistent [11].	11
5.1	System parameters for WD.	32
5.2	MAC configuration values for WD	32

List of Abbreviations

Abbreviation Description

ACK	Acknowledgement
AP	Access Point
BPSK	Binary Phase Shift Key
CSMA/CA	Carrier Sense Multiple Access with Collisions Avoidance
CTS	Clear to Send
D2D	Device-to-Device
DHCP	Dynamic Host Configuration Protocol
DSRC	Dedicated Short Range Communication
GO	Group Owner
IEEE	Institute of Electrical and Electronics Engineers
IP	Internet Protocol
ITS	Intelligent Transportation System
IV	Intent Value
LAN	Local Area Network
MAC	Medium Access Control
MANET	Mobile Ad-hoc Network
MTU	Maximum Transmission Unit
NED	NEtwork Description
NIC	Network Interface Controller
OBU	On Board Unit
P2P	Peer To Peer
PLR	Packet Loss Ratio
PRR	Packet Reception Ratio
QoS	Quality of Services
RSSI	Received Signal Strength Indicator
RSU	Road Side Unit
RTS	Request to Send

LIST OF TABLES

Stations Short Retry Count
Vehicle-to-Infrastructure
Vehicle-to-Vehicle
Vehicular Ad-hoc Network
Wi-Fi Direct
Wi-Fi Protected Setup