EVALUATION OF OPTIMUM TIME FOR PLANNING, SCHEDULING AND RESOURCE ALLOCATIONS OF NEW SHIP CONSTRUCTION PROJECT AT COLOMBO DOCK YARD

UNIVERSITY OF MORATUWA SRI LANKA

B.M.C.S.II.Bandara (09/8452)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Operational Research

Department of Mathematics

University of Moratuwa

Sri Lanka

51 14"

107345 CD-ROM

107345

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text

••••••

B.M.C.S.H.Bandara (09/8452)

I have supervised and accepted this thesis for the submission of the degree.

UOM Verified Signature

Mr. T.M.J.A./Cooray (Supervisor) Senior Lecturer Department of Mathematics, Faculty of Engineering, University of Mortuwa.

UOM Verified Signature

Mr. R.M.S.C. Rathnayake BSc. Eng., C.Eng, MBA, MIMarEST Asst. General Manager (New Construction) Colombo Dockyard Limited 10-08-2014

Date

12/08/2014

Date

ABSTRACT

GOOD PLAN OF THE JOB IS HALF THE JOB. As of this statement the present scenario of working scheduling and project tracking is augmented with large projects such as new ship building projects.

Building a new vessel can be considered as a high-tech job which is actually a project with a deadline and a dedicated team. Project manager is the leading person and the holder of the main responsibility to deliver the project under the stipulated time and budget with the required quality. Project manager equipped with the authority to acquire any resource to complete the project by coordinating with the other departments and acts as the operational in charge of every engineer under the other departments in a matrix organizational structure. This is aimed to evaluate optimum time for planning, scheduling and resource allocation for future new ships construction projects at Colombo Dock Yard (CDL).

All the previous data have taken by consecutive past three sister vessels for calculations and Critical Path Method (CPM) and Program Evaluation and Review Technique (PERT) used to find critical path and critical activities. More information about which activities are "critical", meaning that they have to be done on time or else the whole project will take longer. This report indicated that what those are.

Also this report illustrated that the way to schedule human resource without disturbing that critical activities and smoothen the resources accordingly. In addition, though the collection of information the study can emphasize the idea about the CPM and PERT applied in the shipping industry.

The shipbuilding project planner should consider the uncertainty during scheduling and the above results have implications for manager's decision makings.

ACKNOWLADGEMENT

This is an outcome of a collection of long term perennial efforts.

It is a gigantic achievement in my life.

However,

My dear Sirs,

Mr.T.M.J.A.Cooray

Mr.R.M.S.C.Rathnayake

You are the pillars of my achievement

Giving me

Enthusiasm, Encouragement, Supervision and Guidance.

Therefore,

This is the tribute to commemorate your paramount support given to me.

Last but by no means the least I thank to my loving wife, parents, brother & dearest friends for

always being there for me.

Since

This is never become an achievement in my life Without your presence.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLADGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ACRONYMS	ix
LIST OFABBREVIATIONS	x
CHAPTER 1	11
INTRODUCTION	11
1.1 Background of the Study	
1.2 Overview of Colombo Dockyard PLC	
1.2.1 Ship Repair (SR) projects	13
1.3 New Construction (NC) projects	15
1.3.1 CDL Vision	15
1.3.2 CDL Mission	15
1.4 Objectives of the Study	
1.5 Methodology	
1.6 Scope and the Limitation of the Study	
1.7 Content of Thesis	
CHAPTER 2	
LITERATURE REVIEW	19
2.1 Introduction	19
2.2 Literature Review	19
2.3 Activity Definition, Sequencing and Mcthods	21
2.3.1 Activity Sequencing	21
2.3.2 Critical Path Methods (CPM), Arrow Diagramming	21
2.3.3 Precedence Diagramming Method (PDM)	22
2.4 Program Evaluation Review Technique (PERT) networks	
CHAPTER 3	23
METHODOLOGY	23
3.1 Introduction	23
3.2 Steps for CDL New Construction Project	23

3.2.1 Project Structure	23
3.3 Unit/ Block Construction:	24
3.3.1 Unit Construction Location layout	27
3.3.2 The unit construction Process flow chart	
3.3.4 Drawing preparation and Approvals	
3.3.5 Material Ordering/Inspection and Storing	
3.3.6 Sand Blasting and Painting	
3.3.7 Cutting, Sizing and Prefabrication works	
3.3.8 Assembly and the Fit up of the Unit	29
3.3.9 Dry Survey of the Unit	30
3.4 Other Installations	30
3.4.2 Painting, Systems Commissioning, Sca trials and Delivery	31
3.5 Research Method	
3.5.1 CPM & PERT analysis	32
3.5.2 Differences between PERT network and CPM network	33
3.6 D.R.Fulkerson's rule	35
3.7 Critical path	
3.7.1 Find the probability of completing the project	
3.7.2 Central limit theorem	37
3.8 Critical Path Method (CPM) for Calculating Project Completion Time	
3.8.1 Writing the CPM Network	
3.8.2 Time Estimation in CPM	
CHAPTER 4	41
DATA ANALYSIS	41
4.1 Introduction	41
4.2 Data Preparation	41
4.2.1 Project Network Diagram	45
4.3 Network Diagram and List of paths	46
4.4 Summary of Activities' Start, Finish and Slack times	63
4.5 Resource Scheduling for an entire project	66
4.5.1 Loading Chart	72
4.5.1 Shifted Time-Scaled version of the Network	73
CHAPTER 5	74
CONCLUSION	74
5.1 Introduction	

5.2 Conclusion, Limitations and Drawbacks	74
5.3 Suggestions to complete project less than 417 days	77
5.4 Limitations of the study	78
5.5 Recommendation for Future Research	78
5.6 References	79
APPENDIX 1	80

LIST OF TABLES

	i ugo
4-1: Activities for CDL-AHSV Construction Project	41
4-2: List of paths for the CDL New Ship Construction Project	46
4-3: Summery of Activities' Start, Finish and Slack times	63
4-4: Details of Man Power requirement for Unit Fabrication	66
4-5: Details of Man Power requirement for by an activity	68
5-1: Limitations and Drawbacks	75

Dage

LIST OF FIGURES

P	a	ge
		_

Figure 1-1: Machinery Repairs	13
Figure 1-2: Hull Repairs	13
Figure 1-3: Propeller Repaiors	14
Figure 1-4: Cargo Gear Repairs	14
Figure 3-1: The General Arrangement of an Anchor Handling Supply Vessel	25
Figure 3-2: Hull division For Unit Construction of an Anchor Handling Supply Vessel	26
Figure 3-3: Unit Construction Facility Layout	27
Figure 3-4: The Unit Construction Process Flow Chart	28
Figure 3-5: Sample Hull Unit	29
Figure 3-6: The Unit Construction Process Flow Chart for Non-hull Installation	30
Figure 3-7: Pipe and Machinery installation	31
Figure 3-8: Delivery of completed vessel to the owner	31
Figure 3-9: Bar chart	32
Figure 3-10: Milestone chart	32
Figure 3-11: Logical relationship in PERT and CPM.	33
Figure 3-12: Three time estimates	34
Figure 3-13: ß distribution curve	36
Figure 3–14: Network Activity	38
Figure 3–15: Free float	40
Figure 3–17: Independent float	40
Figure 4-1: Network Diagram	45
Figure 4–2: Loading Chart	72
Figure 4-3: Shifted Time-Scaled version of the network	73

LIST OF ACRONYMS

AHSV	-	Anchor Handling Supply Vessel
CDL	-	Colombo Dockyard Limited
СРМ	-	Critical Path Method
CNC	-	Computer Numerical Control
DWT	-	Deadweight Tonnage
DW	-	Durbin-Watson
EST	-	Earliest Starting Time
EFT	-	Earliest Finishing Time
HUC	-	Hull Construction
LST	-	Latest Starting Time
LFT	-	Latest Finishing Time
LRQA	-	Lloyds Register Quality Assurance
LKR	-	Sri Lankan Rupces
MAG	-	Metal Argon Gas
MAO	-	Machinery Out Fitting
MIG	-	Metal Inert Gas
NC	-	New Construction
PERT	-	Program Evaluation and Review Technique
TIG	-	Tungsten Inert Gas
VMS	-	Vessel Management System

LIST OFABBREVIATIONS

A	-	Activity A
В	-	Activity B

- C Activity C
- i Activity Start point
- j Activity End Point
- t_o Optimistic Time
- t_p Pessimistic Time
- t₁ Likely Time
- σ Standard Deviation