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Abstract 
 
With this increased competition among telecom service providers, it has become more 

difficult to retain the existing customers, but when the number of customers reaches 

its peak, finding and securing new customers become increasingly difficult and costly. 

Therefore, it would be better to prioritize the retention of the existing customers, than 

trying to win new ones.  

Customer reviews can be recognized as fruitful information sources for monitoring 

and enhancing customer satisfaction levels as they convey the real voices of actual 

customers expressing relatively unambiguous opinions. 

This research is aimed at mining and measure customer satisfaction toward Telecom 

Service based on reviews and feedbacks from Twitter. This research is mainly focus 

on one of the largest mobile operator in Sri Lanka and the analysis has been done only 

for English language. 

Tweets were classified into three classes as Positive, Negative and Neutral with the 

use of four dictionaries (Lexicon, SentiWordNet, Slangs& Emoticons). The 

framework was built based on six steps and it shows that Lexicon performs well on 

the dataset better than SentiWordNet. After fine-tuning lexicon and stop words 

dictionary and integrating with Slangs dictionary, positive classification shows 

91.98% accuracy without Emoticon dictionary while for negative classification, the 

accuracy is 82.27% with Emoticons dictionary. 
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Chapter 1 
1Introduction 
1.1 Prolegomena 
The main purpose of this research is to design and develop a model for customer 

satisfaction of Telecom Service based on reviews and feedbacks from Twitter. In 

addition to this purpose, this chapter provides all the other objectives of this research 

work and then briefly explains the background and the motivation factors to this 

research. It also defines the problem statement and the research purpose. 

The aim of this research is to design and develop a framework for monitoring 

customer satisfaction of Telecom Service based on reviews and feedbacks from social 

media (Only Twitter feeds written in English will be considered in this research 

work). This model will do a sentiment analysis and will come up with a novel 

approach based on Lexicon based approach. 

 

1.2Problem Statement 
When the number of customers reaches its peak, finding and securing new customers 

become increasingly difficult and costly. Therefore, it would be better to prioritize the 

retention of the existing customers, than trying to win new ones. With the rapid 

growth of mobile services, enhancement of customer satisfaction has become as a 

core issue. Customer reviews can be recognized as fruitful information sources for 

monitoring and enhancing customer satisfaction levels as they convey the real voices 

of actual customers expressing relatively unambiguous opinions. 

Therefore, developing a model, which can be used to measure the customer 

satisfaction, would be very important for the telecom industry especially for their 

survival. In addition to that, by analyzing the satisfaction, the telecom operator would 

be able to identify which services needs to be improved further in order to satisfy the 

existing customer. 

 

1.3Aims &Objectives 
This research is aimed at mining and measure customer satisfaction toward Telecom 

Service based on reviews and feedbacks from Twitter. This research is mainly focus 

on one of the largest mobile operator in Sri Lanka and the analysis has been done only 

for English language.The main objectives of this research work have been given 

below. 

1. Review of the existing customer satisfaction monitoring frameworkbased 
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onanalyzing reviews and feedbacks from Twitter. 

2. In-depth study of technologies used for sentimental analysis. 

3. Design and development a framework for a novel approach for sentimental 

analysis on Twitter feeds. 

4. Evaluate the novel solution. 

 

1.4 Background and Motivation 
The telecommunication industry in Sri Lanka is emerging in the competitive, business 

world increasing the number of service providers. According to the financial analysis 

(2017 June) done by The Telecommunication Regulatory Commission of Sri Lanka, 

there were 28,113,153number of cellular mobile telephone subscriptions as at June 

2017. The cellular subscription growth is shown in Figure 1.1 [1]. 

 

 

 
Figure 1.1: Cellular Mobile Telephone Subscriptions [1] 

 

With this increased competition among telecom service providers, it has become more 

difficult to retain the existing customers. New companies make efforts to concentrate 

on acquiring new customers, while the matured ones try to focus on retention of the 
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existing customers. Defending and protecting the customer base should be the number 

one job in this challenging economic time period. Most companies are unprepared for 

the arrival of the storm and therefore companies allocate some resources from the top 

of the funnel demand creation to customer retention [2]. 

Customer satisfaction is not an easy task as the expectations of the customers are 

difficult to measureand businesses come to know that after the product has already 

been delivered [3]. Despitethe difficulty and cost of measuring it, customer 

satisfaction remains a major concern of businesses because it isconsidered as an 

important tool for securing a competitive advantage [4]. 

Customer sentiment analysis is a method of processing information, generally in text 

format and often from social media sources, in order to determine customer opinions 

and responses. By analyzing this data, organizations are allowed to assess whether 

customer reaction to a new product was positive or negative, or whether owners of a 

product are experiencing major technical difficulties. Analysis of aggregated data 

over time provides insights into trends, while analysis of individual cases in near real 

time lets companies to address and resolve customer issues quickly [5]. 

Text analysis is a complex process based on statistical and linguistic analyses and is 

used for many different applications, including fraud detection and analysis of 

scientific or intelligence data. Many of the social media streams are filled with slang, 

abbreviations and sarcasm, all of which are difficult for analytical tools to process. 

Depending on the application and the software tool, users of customer sentiment 

solutions have varying degrees of success [5]. 

 

1.5Problem in brief 
When the number of customers reaches its peak, finding and securing new customers 

become increasingly difficult and costly. Therefore, it would be better to prioritize the 

retention of the existing customers, than trying to win new ones. With the rapid 

growth of mobile services, enhancement of customer satisfaction has become as a 

core issue and hence developing a model, which can be used to measure the customer 

satisfaction, would be very important for the telecom industry especially for their 

survival. In addition to that, by analyzing the satisfaction, the telecom operator would 

be able to identify which services needs to be improved further in order to satisfy the 

existing customer. 

 



4 
 

1.6Proposed Solution 
The purpose of this research is to design and develop a model for customer 

satisfaction of Telecom Service based on reviews and feedbacks from Twitter. This 

research is aimed at mining tweets toward one of the largest mobile operator in Sri 

Lanka. 

Apart from that, sentimental analysis will be done only for English language. 

 

1.7Structure of the thesis 
The documentation of this thesis is outlined in the following way. Chapter 1 provides 

the background to this research and briefly describes the context of this research. It 

also defines the problem statement and the purpose of this research. Chapter 2 

provides a survey of literature and explains the main phases involved in building a 

model. Chapter 3 specifies the technology adopted for this research work while fourth 

chapter provides the details on the research approaches. The analysis and design part 

are specified in Chapter 5. The next Chapter explains on the implementation 

phase.Last Chapter provides a discussion on the proposed methodologywith an 

evaluation of the approachesand it also provides some insight into the future research 

work.  
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Chapter 2 
2 Literature Review 
2.1 Introduction 
 
The current chapter consists of six main sections which describe the major 

phasesinvolved in developing the customer satisfaction monitoring framework. These 

steps have been identified based on the literature survey done focusing on mining 

customer reviews on social media. Each step will be explained in detail with the 

reference of the previous research work. 

 

2.2 Customer Satisfaction Monitoring Framework 
 
After doing a research on existing approaches for mining reviews of different domains 

[6][7][8], it has been identified that the following steps will be mainly involved in 

sentimental analysis. 

1. Goal Setting 

2. Text Preprocessing 

3. Parsing the content 

4. Text Refinement 

5. Analyzing and Scoring 

6. Finalize and validate the model 

 

2.3 Goal Setting 
This determines the sentiment analysis goal and the scope for the text content [6]. For 

example, sentiment analysis goal can be set to a specific domain and therefore only 

the reviews under that domain will be considered.As well as the goal setting, scope 

for the text content is also important. It would be difficult to do the analysis for a 

larger scope and therefore it is better to define the scope before starting the research. 

For example, the scope for the text content can be defined for a specific language. 

 

2.4 Text Preprocessing 
Twitter feeds have to be collected for the selected telecom operator. Then the 

collected feeds have to be loaded to the processing system (the system, technique to 

be used for the analysis) and unwanted words from the text have to be deleted. Also, 

the emotional symbols that people use in texts have to be organized into words.  
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Removing suffixes from words reduce number of words, tohave exactly matching 

stems, to save memory space andtime. Forexample, as shown in Figure 2.1, the words 

material, materially, materialize etc.,all can bestemmed to the word “material” [9]. 

 

 
Figure 2.1: Stemming Process [9] 

 

The stemming process is done using variousalgorithms. “M.F. PortersAlgorithm" has 

been widely adopted and extended so that it has becomethe standard approach to word 

conflation for information retrieval in a wide range of languages [10]. 

 

2.5 Parsing the content 
This involves segmenting the words based on their polarity, tagging the parts of 

speech used (adjective, noun, etc.) and identifying the terms [6].  

 

For example, there are three reviews (documents) of a book as provided below. 

Document 1: I am an avid fan of this sport book. I love this book. 

Document 2: This book is a must for athletes and sport. 

Document 3: This book tells how to command the sport. 

 

Parsing this document collection (reviews) generates the following term-by-document 

matrix as shown in below figure2.2 [11]. 
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Figure 2.2: Term-By-Document Matrix [11] 

 

2.6 Text Refinement 
This will ensure the correct analysis by finding the stop words and synonyms, etc. [6].  

Most frequently used words in English are useless in text mining and such words are 

called as stop words. Stop words arelanguage specific functional words which carry 

noinformation. It may be of the following types such aspronouns, prepositions, 

conjunctions [9]. 

 

2.7 Analyzing and Scoring 
2.7.1 Analyzing 
With the exponential increase in the internetusage, people prefer to express and share 

informationon different topics. Due to ever increasingexistence of these emotions, 

opinions, views, feedbacksand suggestions on the web, it has become necessary 

toexplore, analyze and organize this information forbetter decision making by 

subsequent users [12].Sentiment analysis or opinion mining is the computational 
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study of people’sopinions, appraisals, attitudes, and emotions toward entities, 

individuals,issues, events, topics and their attributes [13]. 

 

2.7.1.aDifferent Levels of Sentiment Analysis  
Sentiment analysis has been investigated mainly at three levels as provided below. 

 

Document level Sentiment Analysis 
This is the simplest form of classification. The wholedocument of opinionated text is 

considered as basicunit of information. It is assumed that document ishaving opinion 

about single object only (film, book orhotel). This approach is not suitable if 

documentcontains opinions about different objects as in forumsand blogs. 

Classification for full document is done aspositive or negative. Irrelevant sentences 

need to beeliminated before processing. There are twoapproaches to do classification 

[12]. 

1. Supervised machine learning approach 

Given the training data, the system classifiesthe document by using one of the 

common classification algorithms such as Support VectorMachine, Naïve Bayes, K 

Nearest Neighbours, andMaximum Entropy etc. 

 

2. Unsupervised machine learning approach  

In unsupervised approach, SentimentOrientation (SO) of opinion words in document 

isdetermined. If the SO of these words is positive, thenthe document is classified as 

positive otherwisenegative.  

 

Sentence Level Sentiment Analysis 
Sentence level sentiment analysis is the most fine-grainedanalysis of the document. In 

this, polarity iscalculated for each sentence as each sentence isconsidered as separate 

unit and each sentence canhave different opinion. Sentence level sentimentanalysis 

has two tasks [12]. 

1. Subjectivity Classification 

A sentence can be either subjective sentence orobjective sentence. Objective sentence 

contains thefacts. It has no judgment or opinion about the objector entity while 

subjective sentence has opinions. 
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2. Sentiment Classification 

Sentence can be classified as positive, negative orneutral depending upon the opinion 

words present init. 

 

Entity and Aspect level 
Aspect level is the opinion mining and summarization based on feature. The 

classification concerns byidentifying and extracting product features from the source 

data. This type is used when we need sentiments aboutdesired aspect/feature in a 

review [14]. 

 

2.7.1.b Sentiment Classification Techniques 
Mainly approaches are classified into two categories namelylexicon based approach 

and machine learning based approach (Refer Figure 2.3). 

 

 

 
Figure 2.3: Sentiment Classification Techniques [15] 

 

Machine learning is further divided into two category namelysupervised and 

unsupervised learning. Supervised classificationalgorithms are probabilistic classifier, 

linear classifier, decisiontree and rule based classifier. Supervised learning technique 

isbased on labeled dataset which is provided as input to train themodel and this model 
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is applied to test data to generate output.Sentiment classification in machine learning 

consists of twosteps. First one is to extract feature and store in feature vectorand 

second one is to train feature vector by using classificationalgorithms [16]. 

Lexicon based approach is further divided into two categories namely dictionary 

based and corpus based approach. Indictionary based approach, sentiment is identified 

usingsynonym and antonym from lexical dictionary like WordNet. Incorpus based 

approach, it identifies opinion words byconsidering word list. Corpus based approach 

furthermoreclassified as statistical and semantic approach. In statisticalapproach, co-

occurrences of words are calculated to identifysentiment. In semantic approach, terms 

are represented insemantic space to discover relation between terms [17]. 

 

2.7.2 Scoring 
Scoring is the process in which the intensity of the sentiment is analyzed. Finally,each 

customer feeds will be categorized into one of the below labels [6]. 

• Positive 

• Negative 

• Neutral  

An example for scoring is shown in Figure 2.4.First it identifies the sentiments 

bearing phrases from the data and score accordingly.  

 
Figure 2.4: Sample score for sentiment [6] 

 

2.8 Finalize and validate the model 
The performance of sentiment analysis is calculated by usinghelp of confusion matrix 

which is generated when algorithm isimplemented on dataset. Various performance 

measures areused that are Precision, Recall, F-measure and Accuracy [16]. 

In classification problems, the primary source of performance measurementsis a 

coincidence matrix (a.k.a. classification matrix or a contingencytable). The Figure 

shows a coincidence matrix for a two-class classificationproblem (Refer Figure 2.5). 
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The equations of most commonly used metrics that can be calculatedfrom the 

coincidence matrix is also given below [18]. 

 

 
Figure 2.5: Confusion matrix for binary classification [18] 

 

The FP, FN, TP and TN concepts may be described as: 

False positives (FP): examples predicted as positive,which are from the negative 

class. 

False negatives (FN): examples predicted as negative,whose true class is positive. 

True positives (TP): examples correctly predicted as pertainingto the positive class. 

True negatives (TN): examples correctly predicted as belongingto the negative class. 

 

2.8.1 The true positive rate (Hit rate or Recall) of aclassifier 
This is estimated by dividing the correctly classified positives (thetrue positive count) 

by the total positive count. Large recallvalue means few positive cases misclassified 

as a negative[19]. This is also known as Sensitivity. 

 
 

2.8.2 The false positive rate of aclassifier (FPR) 
FPR or false alarm ratio measures the cases classified as positive incorrectly [19]. 
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2.8.3Precision 
This is also called as positive predicted value and it measures the correctness of the 

model. Higher precisionindicates less FP[19]. 

 
 

2.8.4F-Score 
F-score or F1-measure is the harmonic mean of precision and recall [19]. 

 
 

2.9 Summary 
This chapter explains on main steps which can be mainly identified in developing the 

model of customer satisfaction monitoring based on twitter feeds.This also includes 

an explanation of different sentiment classification techniques including machine 

learning and lexicon based approach. Apart from that, it briefs on how to score the 

model and to measure and evaluate the model performance with the use of confusion 

matrix. 

 

 

 

 



13 
 

Chapter 3 
3 Technology 
3.1 Introduction 
For this research work, lexicon based method is used. Application of a lexicon 

involves calculating the sentiment from the semantic orientation of tokenized word or 

phrases that can be found in a text. In this approach a dictionary of positive and 

negative words is required and each of the words will get assigned with a neutral, 

positive or negative sentiment value. In this research work, the following four 

dictionaries will be considered in the classification.  

• Lexicon 

• SentiWordNet 

• Slangs 

• Emoticons 

First it will select the best lexicon resource and then consider the different 

combination of dictionaries in order to come up with a better solution. In each step 

use Lexicon-based method where the semantic orientation of the document is 

calculated by summing the semantic orientation of the words and phrases in the 

document. 

Apart from that, in this research work, tweets were extracted using Rapid Miner. Main 

framework is developed and evaluated on R and only for using SentiWordNet, python 

is used due to some compatibility issues come across with operating system. 

 

3.2 Machine Learning Vs Lexicon Based Method 
Supervised methodsrequire large amounts of labeled training data thatare very 

expensive whereas acquisition of unlabeled data is easy. The main limitation of 

supervisedlearning is that it generally requires large expertannotatedtraining corpora 

to be created from scratch,specifically for the application at hand, and may failwhen 

training data are insufficient [21].For this research scenario, it will be very difficult to 

gather a better training data set.  

 

3.3 Limitations of Lexicon Based Method 
The opinion words that are included in thedictionary are very important for the 

lexicon basedapproach. If the dictionary contains less words orthorough, one risks the 

chance of over or underanalyzing the results, leading to a decrease inperformance. 
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Another significant challenge to thisapproach is that the polarity of many words is 

domainand context dependent. For example, ‘funny movie’is positive in movie 

domain and ‘funny taste’ isnegative in food domain. Such words are associatedwith 

sentiment in a particular domain. Currentsentiment lexicons do not capture such 

domain andcontext sensitivities of sentiment expressions.Without a comprehensive 

lexicon, the sentimentanalysis results will suffer. The lexicon-basedapproach can 

result in low recall for sentimentanalysis [21]. 

 

3.4 Summary 
Lexicon based approaches often reply on sentiment lexicons for sentiment analysis 

and hence training from labeled instances does not require. For this research scenario, 

it will be very difficult to gather a better training data set and therefore this approach 

has been selected and applied in this framework. Apart from that, if the overall model 

to be performed well, the training dataset should be in better quality. If its quality is 

not good, the accuracy of the model will also be affected badly. In such a situation, it 

is better to go with Lexicon approach in which the accuracy of the model will be 

mainly based on the dictionaries used.  
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Chapter 4 
4 Approach 
4.1 Introduction 
Development of a methodology which is capable of accurately monitoring the 

customer satisfaction could prevent significant loss of revenue. This chapter discusses 

the methodology which has guided the main activities of thisresearch. This also 

includes the inputs and outputs of this analysis and then provides the details of the 

high-level process, which uses four dictionaries. 

The following six steps will be followed up in this research work and will select the 

best combination of dictionaries accordingly.  

Step 01: After pre-processing and refinement of Twitter Feeds, it will select the best 

lexicon resource (Lexicon vs SentiWordNet). 

Step 02: Performance measures were checked after fine-tuning the selected lexicon 

resource. 

Step 03: Performance measures were checked after fine-tuning Stop Words 

Dictionary. 

Step 04: Check whether the Hybrid Approach (Using both Lexicon & SentiWordNet) 

will perform well. 

Step 05: Performance measures were checked with Lexicon dictionary after Slang 

Replacements. 

Step 06: Performance measures were checked with Lexicon dictionary after Slang 

Replacements and also integrating with Emoticons. 

 

4.2 Hypothesis 
Main goal of this research is to aim at mining tweets toward one of the largest mobile 

operator in Sri Lanka.Apart from that, sentimental analysis will be done only for 

English language. 

 

4.3 Input 
Main input of this research is Twitter feeds which is extracted using Rapid Miner 

Tool and then these twitter feeds are then loaded to R for further processing. There 

were 1450 tweets which were collected randomly during 2nd February 2017 to 15th 

January 2018. From the collected tweets, only 740 tweets were filtered out as only 

English tweets were considered in this research work.  
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4.4 Output 
Most of the researchers have focused on binary classification as multi class 

classification is quite difficult to evaluate. In this research work, Twitter feeds will be 

classified into threeclasses as negative, positive and neutral. Therefore, the model has 

to be evaluated as a 3X3 matrix and this has to be used three confusion matrices for 

each class in order to calculate the accuracy. 

 

4.5 Process 
This research work will carry out mainly based on four dictionaries (Lexicon, 

SentiWordNet, Slangs and Emoticons).First it will select the best lexicon resource and 

then consider the different combination of dictionaries in order to come up with a 

better solution. In each step use Lexicon-based method where the semantic orientation 

of the document is calculated by summing the SO of the words and phrases in the 

document.Before data is subjected to analyze, they will undergo a set of text 

preprocessing tasks.  

 

Then all tweets are scored as positive, negative, or neutral and after that each step will 

be evaluated using following performance metrics. 

1. Accuracy 

2. Precision 

3. Recall 

4. F-Measure 

 
4.6 Summary 
This chapter describes the high-level solution approach of this research work. This 

provides an understanding on the input to this model and what will be the outcome of 

this model which is useful for the customer satisfaction identification. The next 

chapter will explain this process with more details. 
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Chapter 5 
5 Analysis & Design 
5.1 Introduction 
In this chapter, the proposed solution will be shown using a high-level diagram and 

each module will be explained in detail under the later sections of this chapter. This 

chapter also provides the details of all the dictionaries used in this research work. In 

addition to that, it explains how to measure the accuracy of the three-dimensional 

classification using confusion matrix concept. 

 

5.2 High-Level Solution Diagram 
Proposed solution consists of four major modules as shown in Figure 5.1.  

 
 

Figure 5.1: High Level Solution Diagram 
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5.2.1 Text Preprocessing Module 
The data is extracted from Twitter feeds using Rapid Miner Tool. There were 1450 

tweets which were collected randomly during 2nd February 2017 to 15th January 2018. 

From the collected tweets, only 740 tweets were filtered out as only English tweets 

were considered in this research work. These twitter feeds are then loaded to R using 

“fread” function which comes under “data.table” library. 

Example: 

x <- fread ("C:\\Users\\MscProject\\TwitterFeeds\\TestData01.txt", header = TRUE, 

select = c("Text","Rating")) 

 

Then the collected tweets were then pre-processed using the following ways. 

 

5.2.1.a Removal of Duplicates 
Duplicate of any tweet are deleted from the data set.“duplicated” function will remove 

the duplicated rows from the dataset. Removal of duplicate feeds will reduce the 

unnecessary processing time on the model.  

Example: 

x <- x[!duplicated(x), ] 

 

5.2.1.bRemoval of Retweets 
Retweets (reposting or forwarding a tweet which is posted by another user) entries are 

removed from the data set and this can be done using “gsub” function available with 

R. 

Example: 

x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text) 

 

5.2.1.cRemoval of HTML Links 
HTML links are removed from the data set and for this, “rm_url” function can be used 

as mentioned on the below example. 

Example: 

x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url")) 

 

5.2.1.dRemoval of @people 
@Users are removed from the data set. Same “gsub” function can also be used to 

remove @people from the tweets and an example is given below. 
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Example: 

x$Text <- gsub("@\\w+", "", x$Text) 

 

5.2.1.e Removal of Stop Words 
Most frequently used words in English which are called as stop words are removed 

from the data set. They are language specific functional words ("a", "and", "but", 

"how", "or", and "what” etc.) which carry no information. 

The following “rm_words” function can be used to remove stop words from the 

tweets.  

rm_words <- function(string, words) { 

stopifnot(is.character(string), is.character(words)) 

spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup 

vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "), 

character(1)) 

} 

 

Once created the above function, it can be called and applied on tweets with the Stop 

Words dictionary (“stopwords”) which is provided with “tm” package. The below 

example extracts only the stop words related to English Dictionary by specifying “en” 

as this research is considering only English tweets. 

Example: 

x$Text <-  rm_words(x$Text, tm::stopwords("en")) 

 

5.2.2 Content Parsing Module 
5.2.2.aTokenization 
The process of breaking a stream of text into words, phrases, symbols, or other 

meaningful elementsis called as tokens.The aim of the tokenization is the exploration 

of the words in a sentence. The list of tokens becomes input for further processing 

such as parsingor text mining. 

 

5.2.3Lexicon Module 
This module is based on the integration of different opinion lexicons and dictionary 

resources for sentiments. Following lexicons and dictionaries are used in this research 

work. 
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5.2.3.aLexicon Dictionary 
This contains a list of positive and negative words. This research uses a dictionary of 

1980 number of positive words and 4800 number of negative words. 

 
5.2.3.bEmoticons Dictionary 
This contains a list of emoticons. Emoticons are mainly face-basedand represent 

happy or sad feelings, although a wide range ofnon-facial variations also exist. For 

example, <3 represents a heartand expresses love or affection. In this research, 750 

number of emoticons are used in the model [6].  

 

5.2.3.cSentiWordNet 
This is a lexical resource and an extension of WordNet [20].Thedictionary groups 

adjectives and nouns and other parts ofspeech in sets with similar meaning words 

which are called as‘synsets’(Synonym sets). SentiWordNet does the scoring ofthe 

words from the sets to indicate the sentiment as positive, negative or neutral [6]. 

 

5.2.3.dSlang Dictionary 
People use slang words such as “OMG” and “LOL” to express their feelings and 

therefore,identifying slang sentiment words can be an advantage to accurately 

discovering sentiment hidden in tweets and customer reviews. For this analysis, 5400 

number of slangs have been collected from the web and used for scoring in this 

research work. 

 

5.2.4Scoring Module 
Each dictionary contributes to the final score as mentioned in the below sections. 
 
5.2.4.a Lexicon Score 
Score is modified by assigning +1 for positive words and -1 for negative words in the 

lexicon dictionary.   

 

5.2.4.b Emoticon Score 
Score is assigned either as +1 for positive and -1 for negative emoticons as in the 

dictionary. 
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5.2.4.c SentiWordNet Score 
This associates each Wordnet synset withthree numerical scores as positive, negative 

and objective. These scores range from 0.0 to 1.0 and sum of scoresfor each synset is 

1. 

 

5.2.4.d Slang Score 
Slang dictionary supports to identify the slangs and then translate them in to 

meaningful words and compiled with their translation for scoring. 

 

5.2.6Finalize and validate the model 
In order to validate the approaches, all tweets are manually labeled as positive, 

negative, or neutral and hence the confusion matrix needs to be developed as a 3x3 

matrix. As shown in Table 5.1, 5.2 and 5.3, three matrices will be generated for eight 

approaches. 

 

5.2.6.aConfusion Matrix for Positive Reviews  
 

 Predicted Class for  

Positive Reviews 

True Class for 

Positive Reviews 

 Positive Other 

Positive TP1 FN1 

Other FP1 TN1 

  

Table 5.1: Confusion Matrix for Positive Reviews 

 

5.2.6.b Confusion Matrix for Negative Reviews  
 

 Predicted Class for  

Negative Reviews 

True Class for 

Negative Reviews 

 Negative Other 

Negative TP2 FN2 

Other FP2 TN2 

 

Table 5.2: Confusion Matrix for Negative Reviews 
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5.2.6.c Confusion Matrix for Neutral Reviews  
 

 Predicted Class for  

Neutral Reviews 

True Class for 

Neutral Reviews 

 Neutral Other 

Neutral TP3 FN3 

Other FP3 TN3 

 

Table 5.3: Confusion Matrix for Neutral Reviews 

 

Then the validation of the model is done by analyzingthe following performance 

metrics for the above values of each confusion matrix. 

1. Accuracy 

2. Precision 

3. Recall 

4. F-Measure 

 

5.3 Summary 
This chapter provides an explanation on the design approach in each module and in 

the final section, it shows how to do the model validation with the use of confusion 

matrix and the relevant performance metrics. Since three class classification has to be 

facilitated in this research, three confusion matrixes have to be used in getting the 

accuracy of each class. The next chapter provides an explanation on the 

implementation process of this model.  



23 
 

Chapter 6 
 
6 Implementation 
6.1 Introduction 
This chapter provides the details of the implementation phase of the proposed 

solution. Implementation was done based on six steps which uses different 

combinations of dictionaries or with fine-tuned dictionaries. Scoring process has been 

describedusing pseudocodes for each step.  

 

6.2 Approach 
The following steps were considered in order to identify the most accurate model for 

this analysis. Outcome of these steps are separately validated and compared. 

 

Step No Description 

01 Select the best lexicon resource (Lexicon vs SentiWordNet) 

after pre-processing and refinement of Twitter Feeds 

02 Feeds with Fine-tuned Lexicon Resource 

03 Feeds with Fine-tuned Stop Words Dictionary 

04 Hybrid Approach (Using both Lexicon & SentiWordNet) 

05 Feeds with Lexicon with Slang Replacements 

06 Feeds with Lexicon with Slang Replacements and 

Emoticons 

Table 6.1: Main Approaches 

  

6.3 Dataset 
Twitter feeds from the selected telecom provider are extracted from Rapid Miner and 

it containstweets which were collected randomly during 2nd February 2017 to 

15thJanuary 2018. There were 1450 tweets which were collected randomly during 2nd 

February 2017 to 15th January 2018. From the collected tweets, only 740 tweets were 

filtered out as only English tweets were considered in this research work. 

 

6.4 Text Preprocessing Module 
Extracted Twitter feeds are loaded to R for further processing.  

• Install & Load required R packages 
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• Import Twitter Feeds 

• Remove Duplicate Tweets 

• Duplicate “Text” field to another column (To keep the original text for 

references) 

 

The collected tweets were then pre-processed using the flowing steps. 

• Removal of Retweets 

• Removal of HTML Links 

• Removal of @People 

• Removal of Stop words 

 

6.5 Content Parsing Module 
Tweet comments were split into words before applying the Lexicon module. This 

process is called as text tokenization process. 

 

6.6 Lexicon Module 
In this module, the following four dictionaries were used. 

• Lexicon Dictionary 

• Emoticons Dictionary 

• Slang Dictionary 

• SentiWordNet 

 

6.7 Scoring Module 
Pseudocodes for sentiment scoring algorithms for each approach are provided below. 

 
6.7.1 Algorithm for using Lexicon Dictionary only 
This uses Lexicon dictionary only. 

Input: Tweets 

Output: Sentiment Score 

Function_Score(tweet) 

ptext = preprocessor(tweet) 

tokens = tokenize(ptext) 

For word in tokens 

If word found in Lexicon DictionaryThen 
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Score = Score + Lexicon Score 

Else 

Score = 0 

End If 

Next  

If Score > 0 Then 

Tweet = Positive 

If Score < 0 Then 

Tweet = Negative 

If Score = 0 Then 

Tweet = Neutral 

End If 

End Function 

 

 

6.7.2 Algorithm for using SentiWordNet only 
This uses SentiWordNet Dictionary only. 

 
Input: Tweets 

Output: Sentiment Score 

Function_Score(tweet) 

ptext = preprocessor(tweet) 

tokens = tokenize(ptext) 

For word in tokens 

Ifword found in SentiWordNetThen 

Score = Score + SentiWordNet Score 

Else 

Score = 0 

End If 

Next  

If Score > 0 Then 

Tweet = Positive 

If Score < 0 Then 

Tweet = Negative 
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If Score = 0 Then 

Tweet = Neutral 

End If 

End Function 

6.7.3 Algorithm for using both Lexicon and SentiWordNet 
This uses Lexicon & SentiWordNet Dictionaries. 

 
Input: Tweets 

Output: Sentiment Score 

Function_Score(tweet) 

ptext = preprocessor(tweet) 

tokens = tokenize(ptext) 

For word in tokens 

If word found in Lexicon DictionaryThen 

Score = Score + Lexicon Score 

Else Ifword found in SentiWordNetThen 

Score = Score + SentiWordNet Score 

Else 

Score = 0 

End If 

Next  

If Score > 0 Then 

Tweet = Positive 

If Score < 0 Then 

Tweet = Negative 

If Score = 0 Then 

Tweet = Neutral 

End If 

End Function 

 

 

6.7.4 Algorithm for using Lexicon with Slang Replacements 
This uses Lexicon & Slang Dictionaries. 

 
Input: Tweets 
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Output: Sentiment Score 

Function_Score(tweet) 

ptext = preprocessor(tweet) 

tokens = tokenize(ptext) 

For word in tokens 

Ifword found in Slang DictionaryThen 

Replace text with Slang Text 

stext = SlangText 

tokens = tokens + tokenize(stext) 

If word found in Lexicon DictionaryThen 

Score = Score + Lexicon Score 

Else 

Score = 0 

End If 

  End If 

Next  

If Score > 0 Then 

Tweet = Positive 

If Score < 0 Then 

Tweet = Negative 

If Score = 0 Then 

Tweet = Neutral 

End If 

End Function 

 

6.7.5 Algorithm for using Lexicon with Slang Replacements and Emoticons 
Dictionary 
This uses Lexicon, Slang& Emoticon Dictionaries. 

 
Input: Tweets 

Output: Sentiment Score 

Function_Score(tweet) 

ptext = preprocessor(tweet) 

tokens = tokenize(ptext) 
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For word in tokens 

Ifword found in Slang DictionaryThen 

Replace text with Slang Text 

stext = SlangText 

tokens = tokens + tokenize(stext) 

If word found in Emoticons DictionaryThen 

Score =Score + Emoticon Score 

Else 

If word found in Lexicon DictionaryThen 

Score = Score + Lexicon Score 

Else 

Score = 0 

End If 

  End If 

Next  

If Score > 0 Then 

Tweet = Positive 

If Score < 0 Then 

Tweet = Negative 

If Score = 0 Then 

Tweet = Neutral 

End If 

End Function 

 

6.8 Summary 
This chapter provides the implementation details and provide the pseudocodes for 

sentiment scoring of sixsteps. The next chapter will provide the results and 

evaluations of all these combinations. 
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Chapter 7 
7 Discussion 
7.1 Introduction 
This chapter provides the details of the evaluation phase with the results of the 

selected performance metrics. This supports to get an understanding on to what 

extend accuracy is enhanced from each dictionary. Evaluation is mainly done based 

on the six steps mentioned in implementation chapter and four performance matrixes 

have been calculated to understand the performance of each step. 

 

7.2 Results & Analysis 
After preprocessing the twitter feeds, SentiWordNet and Lexicon dictionaries were 

applied on the feeds separately and classified the feeds as positive, negative or 

neutral. Table 7.1 shows the performance measures for the both approaches and as per 

that, Lexicon dictionary performs well on this classification.  

 

 
Table 7.1: Lexicon vs SentiWordNet 

 

Lexicon dictionary was fine-tuned further in order to align to Telecom domain and 

some of the modifications done were shown on Table 7.2. 
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Table 7.2: Samples of Fine-tuned Words 

 

After fine-tuning Lexicon Dictionary, the accuracy of Positive, Negative and Neutral 

Segments has been increased by 5.16%, 2.59% and 3.67% respectively (Refer Table 

7.3).  

 

 
Table 7.3: Lexicon vs Fine-tuned Lexicon 

 

 

Same measures were extracted after removing “No” word from the Stop Words 

Dictionary and as per that (Refer Table 7.4), accuracy of Positive, Negative and 

Neutral classifications have been increased by 0.82%, 0.02% and 0.13% respectively. 
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Table 7.4: Fine-tuned Lexicon vs Fine-tuned Lexicon with Stop Words Changes 

 

All the measures taken based on fine-tuned Lexicon dictionary (With the changes in 

Stop Words Dictionary) were then compared with the measures taken after applying 

both Lexicon and SentiWordNet together. According to the result in Table 7.5, this 

hybrid approach has not been performed well on the feeds.  

 

 
Table 7.5: Hybrid Approach (Both Lexicon and SentiWordNet) 
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After that some words in the twitter feeds were replaced based on Slang Dictionary 

and then Lexicon dictionary were applied on the feeds with replaced words. As per 

Table 7.6, it shows that there is an increase in accuracy for Positive, Negative and 

Neutral classifications by 0.81%, 0.59% and 1.09% respectively.  

 

 

Table 7.6: Lexicon vs Lexicon with Slang Replacements 

 

Feeds with Slangs replacements classified with Lexicon dictionary were then 

compared with the results of the same approach with Emoticons also. According to 

Table 7.7, it shows an increase in accuracy for Negative segment by 0.47% while 

decreasing the accuracy of Positive Class by 0.95%. 
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Table 7.7: Lexicon with Slang Replacements and Emoticons 

 

Figure 7.8 shows the accuracy comparison of Positive Class for Lexicon, Lexicon 

with Slang replacement and Lexicon with Slang replacement and Emoticons. 

According to that comparison, if positive comments need to be extracted, it is better to 

exclude Emoticon Dictionary as it shows the highest accuracy without that dictionary.  

 

 

 
Figure 7.1: Comparison of Positive Classification Accuracy for each step 
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It would be advantageous to analyze the negative comments specially for getting an 

understanding on the products and service provided by the telecom operator. This 

kind of in depth analysis can be used for business decisions on products and service 

enhancements. As per Figure 7.9, if negative comments only are taken in to 

consideration, it would be better to go with Lexicon and Emoticon Dictionaries after 

replacing the slangs. 

 

 

 
Figure 7.2: Comparison of Negative Classification Accuracy for each step 

 

7.3 Model Validation with existing tools/APIs 
There are some general sentiment analysis tools/APIs can be found in the internet and 

therefore it would be better to compare the accuracy level of these readily available 

tools/APIs with the proposed model. But most of these tools/APIs are provided an 

interface where only one comment at a time can be given to get the sentiment or it 

may give one sentiment score for all comments, not for each comment. This is one of 

the biggest limitation in these kinds of sentiment analysis tools/APIs. The accuracy of 

the proposed model has been validated with the results of two APIs as mentioned in 

the below sections. 

 

7.3.1 Google Cloud Natural Language API 
Google Cloud Platform provides Natural Language API and from that, users are able 

to provide their dataset and get the relevant sentiment score (Refer Figure 7.3). As per 
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Google definition, if the score is less than -0.25, it is considered as a negative text and 

if the score is between -0.25 to 0.25, it is taken as a neutral text. If the score is more 

than 0.25, then the text will be tagged as positive. 

 

 

 
Figure 7.3: Snapshot of Sentiment Score on Google Cloud API 

 

Using this API, three class classification were done on the same dataset which has 

been used in this research work and evaluate the accuracy of the classification with 

that API. As per Table 7.8, it shows that the model built for this research work has 

been shown higher accuracy level compared with the cloud natural language API. 

 

 
Table 7.8: Accuracy Comparison with Google Cloud API 

 

7.3.2 tap.aylien.com API 
tap.aylien.com has provided an interface to the users to do the sentiment analysis of 

the given dataset on their web site itself (Refer Figure 7.4). 
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Figure 7.4: Snapshot of tap.aylien.com API 

 

 

As per Table 7.9, it shows that the proposed model has been shown a higher accuracy 

level compared with the results of this API. 

 

 
Table 7.9: Accuracy comparison with tap.aylien.com API 

 

 

7.3Research Limitations 
Some of the limitations faced during the research are mentioned below. 

Twitter feeds extracted during some seasonal months (for example in Wesak Season), 

most of the comments were not worth for analyzing for customer satisfaction as they 

were about some decorations, travels etc. Therefore, this kind of tweets especially 

taken during seasonal months were removed from the dataset. 
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7.4 Suggestions for Further Research 
Four dictionaries were involved in this research work and if they get fine-tuned 

further, the accuracy may be increased more. Spelling checker also can be used and 

see whether the accuracy can be enhanced further. 

This research was done in order to analyze all tweets together, but if this framework 

can be enhanced to get the customer satisfaction for products, packages etc. and this 

would be a great support for the company to evaluate these individual items. 

In this research work, it has only been considered the tweets tagged under English 

language, but there are many tweets which might be worth for analyzing, were written 

in Sinhala language. The framework developed can be further extended to read these 

tweets also. 

The accuracy of this work can be compared and evaluated with the following 

approaches also. 

• Using machine learning methods to train a model 

• Using a hybrid approach (with both machine learning and lexicon 

dictionaries) 

 

7.5 Summary 
This chapter shows that for all three classes (Positives, Negative and Neutral) have 

been classified better with fine-tuned Lexicon and Stop Words Dictionary with Slang 

replacements. Also, it shows that hybrid approach (Lexicon and SentiWordNet 

together) has not performed well on the dataset. 

If positive comments needto be extracted along, it is better to exclude Emoticon 

Dictionary as it shows the highest accuracy without that dictionary. If negative 

comments are taken in to consideration, it would be better to go with Lexicon and 

Emoticon Dictionaries after replacing the slangs. This chapter also discusses on the 

research limitations and the future research works also. 
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Appendixes 
Appendix A – R code for using only Lexicon Dictionary 

 
#Install & Load Required R packages 
#install.packages("data.table") 
library(data.table) 
library(qdapRegex) 
library(plyr) 
library(stringr) 
library(qdap) 
 
 
#Import Twitter Feeds 
x <- fread ("C:\\Users\\Sachi\\Desktop\\MscProject\\TwitterFeeds\\TestData01.txt", 
header = TRUE, select = c("Text","Rating")) 
 
#Remove Duplicate tweets 
x <- x[!duplicated(x), ] 
 
#Duplicate "Text" field column  
x$OriginalText = x$Text 
 
#Lower all the letters 
x$Text <- tolower(x$Text) 
 
#Text Preprocessing 
##Removal of Retweets 
x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text) 
 
##Removal of HTML Links - Need qdapRegex Package to use rm_url 
x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url")) 
 
##Removal of @People 
x$Text <- gsub("@\\w+", "", x$Text) 
 
##Removal of Special Characters ?& . 
x$Text <- gsub("?", " ", x$Text, fixed = TRUE) 
x$Text <- gsub(".", " ", x$Text, fixed = TRUE) 
x$Text <- gsub("!", " ", x$Text, fixed = TRUE) 
x$Text <- gsub("\"", " ", x$Text, fixed = TRUE) 
 
 
#Text Refinement 
#Remove Stop words 
rm_words <- function(string, words) { 
stopifnot(is.character(string), is.character(words)) 
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup 
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "), 
character(1)) 
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} 
 
x$Text <-  rm_words(x$Text, tm::stopwords("en")) 
 
 
#Function for Positive & Negative Words match 
score.sentiment = function(sentences, pos.words, neg.words, .progress='none') 
{ 
require(plyr) 
require(stringr) 
 
 
scores = laply(sentences, function(sentence, pos.words, neg.words) {         
 
    # convert to lower case: 
sentence = tolower(sentence) 
 
    # split into words. str_split is in the stringr package 
    word.list = str_split(sentence, '\\s+') 
    # sometimes a list() is one level of hierarchy too much 
words = unlist(word.list) 
 
    # compare our words to the dictionaries of positive & negative terms 
    pos.matches = match(words, pos.words) 
    neg.matches = match(words, neg.words) 
 
    # match() returns the position of the matched term or NA 
    # we just want a TRUE/FALSE: 
    pos.matches = !is.na(pos.matches) 
    neg.matches = !is.na(neg.matches) 
 
    # and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum(): 
score = sum(pos.matches) - sum(neg.matches) 
 
return(score) 
  }, pos.words, neg.words, .progress=.progress ) 
 
  scores.df = data.frame(score=scores, text=sentences) 
return(scores.df) 
} 
 
#Import Positive & Negative Words 
pos_words <- 
scan("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Positive.txt", 
what='character', comment.char=';') 
 
neg_words <- 
scan("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Negative.txt", 
what='character', comment.char=';') 
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#Add additional words to dictionaries 
#neg_words = c(neg_words,'no') 
 
#Score based on Positive & Negative words 
result1 <- score.sentiment( x$Text, pos_words, neg_words) 
 
#Calculate Lexicon Score 
x$Lexicon = result1$score 
 
#Calculate Total Score  
x$TotalScore = (x$Lexicon) 
 
#Assign Predicted Rating  
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
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Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
 
#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric 
Performance_matrix_Step01_Lexicon = Performance_matrix 
Performance_matrix_Step01_Lexicon 
 
 
 
 
 
  



44 
 

Appendix B – R code for using SentiWordNet 
 
#Step 01 - Run Python Script 
import pandas as pd  
 
x = pd.read_csv('C:/Users/Sachi/Desktop/MscProject/TwitterFeeds/TestData01.txt', 
sep='\t' , encoding='latin-1', skiprows=1, names = ["Text", "Rating"]) 
 
x = x.fillna('') 
 
def sentiwordnet_python(doc): 
import nltk 
from nltk.corpus import sentiwordnet as swn 
    #doc=   "Nice and friendly place with excellent food and friendly and helpful staff. 
You need a car though. The children wants to go back! Playground and animals 
entertained them and they felt like at home. I also recommend the dinner! Great value 
for the price!" 
sentences = nltk.sent_tokenize(doc) 
stokens = [nltk.word_tokenize(sent) for sent in sentences] 
taggedlist=[] 
for stoken in stokens:         
taggedlist.append(nltk.pos_tag(stoken)) 
wnl = nltk.WordNetLemmatizer() 
 
    score_list=[] 
for idx,taggedsent in enumerate(taggedlist): 
        score_list.append([]) 
for idx2,t in enumerate(taggedsent): 
newtag='' 
lemmatized=wnl.lemmatize(t[0]) 
if t[1].startswith('NN'): 
newtag='n' 
elif t[1].startswith('JJ'): 
newtag='a' 
elif t[1].startswith('V'): 
newtag='v' 
elif t[1].startswith('R'): 
newtag='r' 
else: 
newtag=''        
if(newtag!=''):     
synsets = list(swn.senti_synsets(lemmatized, newtag)) 
                #Getting average of all possible sentiments, as you requested         
score=0 
if(len(synsets)>0): 
for syn in synsets: 
score+=syn.pos_score()-syn.neg_score() 
                    score_list[idx].append(score/len(synsets)) 
 
    #print(score_list) 
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    sentence_sentiment=[] 
 
for score_sent in score_list: 
if len(score_sent)>0: 
            sentence_sentiment.append(sum([word_score for word_score in 
score_sent])/len(score_sent)) 
        #print("Sentiment for each sentence for:"+doc) 
        #print(sentence_sentiment) 
return sentence_sentiment 
 
for row in x.itertuples(): 
x['SentiWordNetScore'] = x.apply(lambda row: sentiwordnet_python(row.Text), 
axis=1) 
 
x.to_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/step01_sentiwordnet.txt', 
sep='\t', encoding='latin-1') 
 
 
 
 
 
#Step 02 - Evaluation on R 
 
#Calculate Sentiwordnet 
y <- fread ("C:/Users/Sachi/Desktop/MscProject/Outputs/step01_sentiwordnet.txt", 
header = TRUE, select = c("Text", "Rating", "SentiWordNetScore")) 
 
#Remove Null values 
y$SentiWordNetScore <- gsub("[[]]", "0.0", y$SentiWordNetScore) 
 
#Remove Special characters from score column 
y$SentiWordNetScore <- gsub("[[]", "", y$SentiWordNetScore) 
y$SentiWordNetScore <- gsub("[]]", "", y$SentiWordNetScore) 
 
 
#Assign to x 
x <- y 
 
#Convert SentiWordNet Score to numeric value 
x$SentiWordNetScore = as.numeric(x$SentiWordNetScore) 
 
#Replace NUll values to 01m1q  
x$SentiWordNetScore = ifelse(is.na(x$SentiWordNetScore) == 'TRUE', 0.00, 
x$SentiWordNetScore) 
 
#Calculate Total Score 
x$TotalScore = (x$SentiWordNetScore) 
 
#Assign Predicted Rating 
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x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
 
#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
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Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric 
Performance_matrix_Step01_SentiWordNet = Performance_matrix 
Performance_matrix_Step01_SentiWordNet 
 
 
 
 
 
 
  



48 
 

Appendix C – R code for using Lexicon Dictionary with Stop Words Amendments 
 
#Import Twitter Feeds 
x <- fread ("C:\\Users\\Sachi\\Desktop\\MscProject\\TwitterFeeds\\TestData01.txt", 
header = TRUE, select = c("Text","Rating")) 
 
#Remove Duplicate tweets 
x <- x[!duplicated(x), ] 
 
#Duplicate "Text" field column  
x$OriginalText = x$Text 
 
#Lower all the letters 
x$Text <- tolower(x$Text) 
 
#Text Preprocessing 
##Removal of Retweets 
x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text) 
 
##Removal of HTML Links - Need qdapRegex Package to use rm_url 
x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url")) 
 
##Removal of @People 
x$Text <- gsub("@\\w+", "", x$Text) 
 
##Removal of Special Characters ?& . 
x$Text <- gsub("?", " ", x$Text, fixed = TRUE) 
x$Text <- gsub(".", " ", x$Text, fixed = TRUE) 
x$Text <- gsub("!", " ", x$Text, fixed = TRUE) 
x$Text <- gsub("\"", " ", x$Text, fixed = TRUE) 
 
 
#Text Refinement 
#Remove Stop words 
rm_words <- function(string, words) { 
stopifnot(is.character(string), is.character(words)) 
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup 
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "), 
character(1)) 
} 
 
#Customize the stop words 
exceptions<- c("no") 
my_stopwords <- setdiff(tm::stopwords("en"), exceptions) 
 
#x$Text <-  rm_words(x$Text, tm::stopwords("en")) 
x$Text <-  rm_words(x$Text, my_stopwords) 
 
#Score based on Positive & Negative words 
result1 <- score.sentiment( x$Text, pos_words, neg_words) 
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#Calculate Lexicon Score 
x$Lexicon = result1$score 
 
#Calculate Total Score 
x$TotalScore = (x$Lexicon) 
 
#Assign Predicted Rating 
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
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FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
 
#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric 
Performance_matrix_Step03_Lexicon_StopWords = Performance_matrix 
Performance_matrix_Step03_Lexicon_StopWords 
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Appendix D – R code for comparing Lexicon Dictionary with SentiWordNet 
 
#Step 01-Input to Python 
 
library(NLP) 
library(tm) 
library(regexr) 
 
# Loading Negative words into two files 
# Here *words have to be removed such as d*mn 
neg_words_part1 <- 
scan("C:/Users/Sachi/Desktop/MscProject/Dictionaries/Negative_Part1.txt", 
what='character', comment.char=';') 
neg_words_part2 <- 
scan("C:/Users/Sachi/Desktop/MscProject/Dictionaries/Negative_Part2.txt", 
what='character', comment.char=';') 
 
# Remove positive words 
a = removeWords(x$Text,pos_words) 
 
# Remove negative words 
b = removeWords(a,neg_words_part1) 
x$SentiWordNet_Text = removeWords(b,neg_words_part2) 
 
 
# Export data to a text file 
write.table(x, "C:/Users/Sachi/Desktop/MscProject/Outputs/rdata_Step04.txt", 
sep="\t",row.names=F) 
 
 
#Step 02 - Run Python Script 
import pandas as pd  
 
x = pd.read_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/rdata_Step04.txt', 
sep='\t' , encoding='latin-1', skiprows=1, names = ["Text", "Rating", "OriginalText", 
"Lexicon", "TotalScore", "PredictedRating", "SentiWordNet_Text"]) 
 
x = x.fillna('') 
 
def sentiwordnet_python(doc): 
import nltk 
from nltk.corpus import sentiwordnet as swn 
    #doc=   "Nice and friendly place with excellent food and friendly and helpful staff. 
You need a car though. The children wants to go back! Playground and animals 
entertained them and they felt like at home. I also recommend the dinner! Great value 
for the price!" 
sentences = nltk.sent_tokenize(doc) 
stokens = [nltk.word_tokenize(sent) for sent in sentences] 
taggedlist=[] 
for stoken in stokens:         
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taggedlist.append(nltk.pos_tag(stoken)) 
wnl = nltk.WordNetLemmatizer() 
 
    score_list=[] 
for idx,taggedsent in enumerate(taggedlist): 
        score_list.append([]) 
for idx2,t in enumerate(taggedsent): 
newtag='' 
lemmatized=wnl.lemmatize(t[0]) 
if t[1].startswith('NN'): 
newtag='n' 
elif t[1].startswith('JJ'): 
newtag='a' 
elif t[1].startswith('V'): 
newtag='v' 
elif t[1].startswith('R'): 
newtag='r' 
else: 
newtag=''        
if(newtag!=''):     
synsets = list(swn.senti_synsets(lemmatized, newtag)) 
                #Getting average of all possible sentiments, as you requested         
score=0 
if(len(synsets)>0): 
for syn in synsets: 
score+=syn.pos_score()-syn.neg_score() 
                    score_list[idx].append(score/len(synsets)) 
 
    #print(score_list) 
    sentence_sentiment=[] 
 
for score_sent in score_list: 
if len(score_sent)>0: 
            sentence_sentiment.append(sum([word_score for word_score in 
score_sent])/len(score_sent)) 
        #print("Sentiment for each sentence for:"+doc) 
        #print(sentence_sentiment) 
return sentence_sentiment 
 
for row in x.itertuples(): 
x['SentiWordNetScore'] = x.apply(lambda row: 
sentiwordnet_python(row.SentiWordNet_Text), axis=1) 
 
x.to_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/step04_sentiwordnet.txt', 
sep='\t', encoding='latin-1') 
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#Step 03 - Evaluation on R 
 
#Calculate Sentiwordnet 
y <- fread ("C:/Users/Sachi/Desktop/MscProject/Outputs/step04_sentiwordnet.txt", 
header = TRUE, select = c("Text", "Rating", "OriginalText", "Lexicon", "TotalScore", 
"PredictedRating", "SentiWordNet_Text", "SentiWordNetScore")) 
 
#Remove Null values 
y$SentiWordNetScore <- gsub("[[]]", "0.0", y$SentiWordNetScore) 
 
#Remove Special characters from score column 
y$SentiWordNetScore <- gsub("[[]", "", y$SentiWordNetScore) 
y$SentiWordNetScore <- gsub("[]]", "", y$SentiWordNetScore) 
 
 
#Assign to x 
x <- y 
 
#Convert SentiWordNet Score to numeric value 
x$SentiWordNetScore = as.numeric(x$SentiWordNetScore) 
 
#Replace NULL values to 0 
x$SentiWordNetScore = ifelse(is.na(x$SentiWordNetScore) == 'TRUE', 0.00, 
x$SentiWordNetScore) 
 
#Calculate Total Score 
x$TotalScore = (x$Lexicon)+(x$SentiWordNetScore) 
 
#Assign Predicted Rating 
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
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Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
 
#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric 
Performance_matrix_Step04_Lexicon_SentiWordNet = Performance_matrix 
Performance_matrix_Step04_Lexicon_SentiWordNet 
 
 
 
  



55 
 

Appendix E – R code for using Lexicon Dictionary with Slang Replacements 
 
#Import Slang Dictionary-special charators  
slangs_sc <- fread 
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\slangs_specialchar.csv", 
header = TRUE, select = c("Slang","Slang_Desc")) 
 
slangs_other <- fread 
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\slangs_others.csv", header = 
TRUE, select = c("Slang","Slang_Desc")) 
 
slangs_sc$Slang <- tolower(slangs_sc$Slang) 
slangs_other$Slang <- tolower(slangs_other$Slang) 
 
z <- x 
 
#Duplicate "Text" field column  
#z$OriginalText = z$Text 
 
 
#Replace twitter feeds with slangs 
for (q in 1:nrow(z)) 
for(t in 1:nrow(slangs_sc))    
    #For special characters 
  { z[q,1] <- gsub((str_c(" \\", slangs_sc[t,1]," ")), str_c(" ", slangs_sc[t,2]," "), 
z[q,1])}  
 
for (q in 1:nrow(z)) 
z[q,1] <- gsub(":\\)", "Positive", z[q,1]) 
 
for (q in 1:nrow(z)) 
z[q,1] <- gsub(":\\(", "Negative", z[q,1]) 
 
for (q in 1:nrow(z)) 
z[q,1] <- gsub(":p", "Positive", z[q,1]) 
 
for (q in 1:nrow(z)) 
z[q,1] <- gsub(":d", "Positive", z[q,1]) 
 
#for (q in 1:nrow(z)) 
#z[q,1] <- gsub("xd", "Positive", z[q,1]) 
 
 
 
for (q in 1:nrow(z)) 
for(t in 1:nrow(slangs_other)) 
    #For others characters 
  { z[q,1] <- gsub((str_c(" ",slangs_other[t,1]," ")),  (str_c(" ", slangs_other[t,2]," ")), 
z[q,1])} 
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#Replace twitter feeds with slangs 
#for (q in 1:nrow(z)) 
# for(t in 1:nrow(slangs)) 
#  #For special characters 
# if (substring(slangs[t,1], 1, 1) %in% c("$","*","/","<",">","?","@","^",":")) 
#{ z[q,1] <- gsub((str_c(" \\", slangs[t,1]," ")), str_c(" ", slangs[t,2]," "), z[q,1])} else { 
z[q,1] <- gsub((str_c(" ",slangs[t,1]," ")),  (str_c(" ", slangs[t,2]," ")), z[q,1])} 
 
 
x$Slangs_Text <- tolower(z$Text) 
 
#Text Preprocessing 
##Removal of Retweets 
x$Slangs_Text <- gsub("RT @[a-z,A-Z]*:", "", x$Slangs_Text) 
 
##Removal of HTML Links - Need qdapRegex Package to use rm_url 
x$Slangs_Text <- rm_url(x$Slangs_Text, pattern=pastex("@rm_twitter_url", 
"@rm_url")) 
 
##Removal of @People 
x$Slangs_Text <- gsub("@\\w+", "", x$Slangs_Text) 
 
##Removal of Special Characters ?& . 
x$Slangs_Text <- gsub("?", " ", x$Slangs_Text, fixed = TRUE) 
x$Slangs_Text <- gsub(".", " ", x$Slangs_Text, fixed = TRUE) 
x$Slangs_Text <- gsub("!", " ", x$Slangs_Text, fixed = TRUE) 
x$Slangs_Text <- gsub("\"", " ", x$Slangs_Text, fixed = TRUE) 
 
#Text Refinement 
#Remove Stop words 
rm_words <- function(string, words) { 
stopifnot(is.character(string), is.character(words)) 
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup 
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "), 
character(1)) 
} 
#Customize the stop words 
exceptions<- c("no") 
my_stopwords <- setdiff(tm::stopwords("en"), exceptions) 
 
#x$Text <-  rm_words(x$Text, tm::stopwords("en")) 
x$Slangs_Text <-  rm_words(x$Slangs_Text, my_stopwords) 
 
#Score based on Positive & Negative words 
result1 <- score.sentiment(x$Slangs_Text, pos_words, neg_words) 
 
#Calculate Lexicon Score 
x$Lexicon_Slangs_Score = result1$score 
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#Calculate Total Score 
x$TotalScore = (x$Lexicon_Slangs_Score) 
 
#Assign Predicted Rating  
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
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#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric 
Performance_matrix_Step05_Lexicon_Slang = Performance_matrix 
Performance_matrix_Step05_Lexicon_Slang 
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Appendix F – R code for using Lexicon Dictionary with Slang Replacements and 
Emoticons 

 
#Import Emoticon Dictionary 
emoticons<- fread 
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Emoticons.txt", header = 
TRUE, select = c("Emoticon","Sentiment_score")) 
 
emoticons$Tag <- "" 
 
#Tag Positive & Negative Emoticons 
for (q in 1:nrow(emoticons)) 
  emoticons[q,3] <- 
ifelse(emoticons[q,2]>0,"Positive",ifelse(emoticons[q,2]==0,"Neutral","Negative")) 
 
emoticons_pos <-  emoticons[emoticons$Tag %in% "Positive"] 
emoticons_neg <-  emoticons[emoticons$Tag %in% "Negative"] 
 
 
#Score based on Emoticons 
result2 <- score.sentiment(x$Text, tolower(emoticons_pos$Emoticon), 
tolower(emoticons_neg$Emoticon)) 
 
#Calculate Lexicon Score 
x$Emoticons = result2$score 
 
#Calculate Total Score  
x$TotalScore = x$Lexicon_Slangs_Score  + x$Emoticons 
 
#Assign Predicted Rating 
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative', 
(ifelse(x$TotalScore==0,'Neutral','Positive'))) 
 
#Calculate Performance Matrix 
#For Positive Reviews 
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0)) 
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0)) 
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0)) 
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0)) 
 
Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE) 
rownames(Performance_matrix) <- c("Positive","Negative","Neutral") 
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure") 
 
#Performance Metrics 
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1) 
Performance_matrix[1,2] = TP1/(TP1+FP1) 
Performance_matrix[1,3] = TP1/(TP1+FN1) 
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Performance_matrix[1,4]= 
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3]) 
 
 
#For Negative Reviews 
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0)) 
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0)) 
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0)) 
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0)) 
 
 
#Performance Metrics 
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2) 
Performance_matrix[2,2] = TP2/(TP2+FP2) 
Performance_matrix[2,3] = TP2/(TP2+FN2) 
Performance_matrix[2,4]= 
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3]) 
 
#For Neutral Reviews 
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0)) 
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0)) 
 
#Performance Metrics 
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3) 
Performance_matrix[3,2] = TP3/(TP3+FP3) 
Performance_matrix[3,3] = TP3/(TP3+FN3) 
Performance_matrix[3,4]= 
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3]) 
 
#Label the Performance Metric  
Performance_matrix_Step06_Lexicon_Slang_Emoticons = Performance_matrix 
Performance_matrix_Step06_Lexicon_Slang_Emoticons 
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