

MSc In Information Technology

Customer Satisfaction Monitoring with Sentiment Analysis Based on

Twitter Feeds in Telecom Domain

Prepared by

A.P.L.D. Sachith Chamara

(158752P)

Supervised by

Mr. S.C. Premaratne

Faculty of Information Technology

University of Moratuwa

2018

2

MSc In Information Technology

Customer Satisfaction Monitoring with Sentiment Analysis Based on

Twitter Feeds in Telecom Domain

Prepared by

A.P.L.D. Sachith Chamara

(158752P)

Supervised by

Mr. S.C. Premaratne

Faculty of Information Technology

University of Moratuwa

2018

i

Declaration

I declare that this thesis/dissertation does not incorporate without

acknowledgementany material, previously submitted for a Degree or Diploma in any

University or otherinstitute of higher learning and to the best of my knowledge and

belief it does notcontain any material previously published or written by another

person except where the acknowledgement is made in the text.

A.P.L.D. Sachith Chamara

(158752P)

2018/05

I have supervised and accepted this thesis for the submission of the degree.

Mr. S.C. Premaratne

(Main Supervisor)

2018/05

ii

Acknowledgements

I would like to take this opportunity to thank my supervisor, Mr. S.C. Premaratne for

all his dedicated support and guidance throughout this research. His guidance and

inspiration are the key factors that enabled the successful completion of this research.

I would like to express my sincere thanks to Mr. Ian Ramsden (F IDM) for providing

an excellent introduction to this research area.His valuable discussions and comments

were also effective stimuli to this research work.

My deepest thanks go to my family for their assistance, encouragement and

unwavering belief in me. Finally, I would like to thank all the staff of University of

Moratuwa who helped me directly or indirectly to carry out this research work.

iii

Abstract

With this increased competition among telecom service providers, it has become more

difficult to retain the existing customers, but when the number of customers reaches

its peak, finding and securing new customers become increasingly difficult and costly.

Therefore, it would be better to prioritize the retention of the existing customers, than

trying to win new ones.

Customer reviews can be recognized as fruitful information sources for monitoring

and enhancing customer satisfaction levels as they convey the real voices of actual

customers expressing relatively unambiguous opinions.

This research is aimed at mining and measure customer satisfaction toward Telecom

Service based on reviews and feedbacks from Twitter. This research is mainly focus

on one of the largest mobile operator in Sri Lanka and the analysis has been done only

for English language.

Tweets were classified into three classes as Positive, Negative and Neutral with the

use of four dictionaries (Lexicon, SentiWordNet, Slangs& Emoticons). The

framework was built based on six steps and it shows that Lexicon performs well on

the dataset better than SentiWordNet. After fine-tuning lexicon and stop words

dictionary and integrating with Slangs dictionary, positive classification shows

91.98% accuracy without Emoticon dictionary while for negative classification, the

accuracy is 82.27% with Emoticons dictionary.

Keywords:Twitter Feeds,Telecom Industry, Sentiment Analysis, Lexicon

iv

Table ofContents
Declaration .. i

Acknowledgements ... ii

Abstract .. iii

List of Figures ... vi

List of Tables .. vi

1 Introduction ... 1
1.1 Prolegomena .. 1
1.2 Problem Statement .. 1
1.3 Aims & Objectives ... 1
1.4 Background and Motivation ... 2
1.5 Problem in brief .. 3
1.6 Proposed Solution .. 4
1.7 Structure of the thesis... 4

2 Literature Review.. 5
2.1 Introduction ... 5
2.2 Customer Satisfaction Monitoring Framework ... 5
2.3 Goal Setting ... 5
2.4 Text Preprocessing .. 5
2.5 Parsing the content .. 6
2.6 Text Refinement ... 7
2.7 Analyzing and Scoring .. 7

2.7.1 Analyzing .. 7
2.7.2 Scoring ...10

2.8 Finalize and validate the model .. 10
2.8.1 The true positive rate (Hit rate or Recall) of a classifier...11
2.8.2 The false positive rate of a classifier (FPR) ..11
2.8.3 Precision ...12
2.8.4 F-Score ...12

2.9 Summary ... 12

3 Technology ... 13
3.1 Introduction ... 13
3.2 Machine Learning Vs Lexicon Based Method ... 13
3.3 Limitations of Lexicon Based Method ... 13
3.4 Summary ... 14

4 Approach ... 15
4.1 Introduction ... 15
4.2 Hypothesis .. 15
4.3 Input .. 15
4.4 Output ... 16
4.5 Process ... 16
4.6 Summary ... 16

5 Analysis & Design .. 17
5.1 Introduction ... 17
5.2 High-Level Solution Diagram ... 17

5.2.1 Text Preprocessing Module ..18
5.2.2 Content Parsing Module ...19
5.2.3 Lexicon Module ..19

v

5.2.4 Scoring Module...20
5.2.6 Finalize and validate the model ..21

5.3 Summary ... 22

6 Implementation ... 23
6.1 Introduction ... 23
6.2 Approach ... 23
6.3 Dataset.. 23
6.4 Text Preprocessing Module .. 23
6.5 Content Parsing Module ... 24
6.6 Lexicon Module ... 24
6.7 Scoring Module .. 24

6.7.1 Algorithm for using Lexicon Dictionary only...24
6.7.2 Algorithm for using SentiWordNet only ..25
6.7.3 Algorithm for using both Lexicon and SentiWordNet..26
6.7.4 Algorithm for using Lexicon with Slang Replacements ...26
6.7.5 Algorithm for using Lexicon with Slang Replacements and Emoticons
Dictionary ..27

6.8 Summary ... 28

7 Discussion ... 29
7.1 Introduction ... 29
7.2 Results & Analysis .. 29
7.3 Model Validation with existing tools/APIs.. 34

7.3.1 Google Cloud Natural Language API ..34
7.3.2 tap.aylien.com API ..35

7.3 Research Limitations .. 36
7.4 Suggestions for Further Research .. 37
7.5 Summary ... 37

References .. 38

Appendixes .. 40
Appendix A – R code for using only Lexicon Dictionary .. 40
Appendix B – R code for using SentiWordNet .. 44
Appendix C – R code for using Lexicon Dictionary with Stop Words Amendments 48
Appendix D – R code for comparing Lexicon Dictionary with SentiWordNet 51
Appendix E – R code for using Lexicon Dictionary with Slang Replacements 55
Appendix F – R code for using Lexicon Dictionary with Slang Replacements and
Emoticons .. 59

vi

List of Figures

Figure 1.1: Cellular Mobile Telephone Subscriptions [1] ... 2
Figure 2.1: Stemming Process [9]... 6
Figure 2.2: Term-By-Document Matrix [11] .. 7
Figure 2.3: Sentiment Classification Techniques [15] .. 9
Figure 2.4: Sample score for sentiment [6] .. 10
Figure 2.5: Confusion matrix for binary classification [18] .. 11
Figure 5.1: High Level Solution Diagram .. 17
Figure 7.1: Comparison of Positive Classification Accuracy for each step 33
Figure 7.2: Comparison of Negative Classification Accuracy for each step 34
Figure 7.3: Snapshot of Sentiment Score on Google Cloud API....................................... 35
Figure 7.4: Snapshot of tap.aylien.com API .. 36

List of Tables

Table 5.1: Confusion Matrix for Positive Reviews ... 21
Table 5.2: Confusion Matrix for Negative Reviews ... 21
Table 5.3: Confusion Matrix for Neutral Reviews .. 22
Table 6.1: Main Approaches .. 23
Table 7.1: Lexicon vs SentiWordNet .. 29
Table 7.2: Samples of Fine-tuned Words ... 30
Table 7.3: Lexicon vs Fine-tuned Lexicon... 30
Table 7.4: Fine-tuned Lexicon vs Fine-tuned Lexicon with Stop Words Changes 31
Table 7.5: Hybrid Approach (Both Lexicon and SentiWordNet) 31
Table 7.6: Lexicon vs Lexicon with Slang Replacements ... 32
Table 7.7: Lexicon with Slang Replacements and Emoticons ... 33
Table 7.8: Accuracy Comparison with Google Cloud API ... 35
Table 7.9: Accuracy comparison with tap.aylien.com API ... 36

1

Chapter 1
1Introduction
1.1 Prolegomena
The main purpose of this research is to design and develop a model for customer

satisfaction of Telecom Service based on reviews and feedbacks from Twitter. In

addition to this purpose, this chapter provides all the other objectives of this research

work and then briefly explains the background and the motivation factors to this

research. It also defines the problem statement and the research purpose.

The aim of this research is to design and develop a framework for monitoring

customer satisfaction of Telecom Service based on reviews and feedbacks from social

media (Only Twitter feeds written in English will be considered in this research

work). This model will do a sentiment analysis and will come up with a novel

approach based on Lexicon based approach.

1.2Problem Statement
When the number of customers reaches its peak, finding and securing new customers

become increasingly difficult and costly. Therefore, it would be better to prioritize the

retention of the existing customers, than trying to win new ones. With the rapid

growth of mobile services, enhancement of customer satisfaction has become as a

core issue. Customer reviews can be recognized as fruitful information sources for

monitoring and enhancing customer satisfaction levels as they convey the real voices

of actual customers expressing relatively unambiguous opinions.

Therefore, developing a model, which can be used to measure the customer

satisfaction, would be very important for the telecom industry especially for their

survival. In addition to that, by analyzing the satisfaction, the telecom operator would

be able to identify which services needs to be improved further in order to satisfy the

existing customer.

1.3Aims &Objectives
This research is aimed at mining and measure customer satisfaction toward Telecom

Service based on reviews and feedbacks from Twitter. This research is mainly focus

on one of the largest mobile operator in Sri Lanka and the analysis has been done only

for English language.The main objectives of this research work have been given

below.

1. Review of the existing customer satisfaction monitoring frameworkbased

2

onanalyzing reviews and feedbacks from Twitter.

2. In-depth study of technologies used for sentimental analysis.

3. Design and development a framework for a novel approach for sentimental

analysis on Twitter feeds.

4. Evaluate the novel solution.

1.4 Background and Motivation
The telecommunication industry in Sri Lanka is emerging in the competitive, business

world increasing the number of service providers. According to the financial analysis

(2017 June) done by The Telecommunication Regulatory Commission of Sri Lanka,

there were 28,113,153number of cellular mobile telephone subscriptions as at June

2017. The cellular subscription growth is shown in Figure 1.1 [1].

Figure 1.1: Cellular Mobile Telephone Subscriptions [1]

With this increased competition among telecom service providers, it has become more

difficult to retain the existing customers. New companies make efforts to concentrate

on acquiring new customers, while the matured ones try to focus on retention of the

3

existing customers. Defending and protecting the customer base should be the number

one job in this challenging economic time period. Most companies are unprepared for

the arrival of the storm and therefore companies allocate some resources from the top

of the funnel demand creation to customer retention [2].

Customer satisfaction is not an easy task as the expectations of the customers are

difficult to measureand businesses come to know that after the product has already

been delivered [3]. Despitethe difficulty and cost of measuring it, customer

satisfaction remains a major concern of businesses because it isconsidered as an

important tool for securing a competitive advantage [4].

Customer sentiment analysis is a method of processing information, generally in text

format and often from social media sources, in order to determine customer opinions

and responses. By analyzing this data, organizations are allowed to assess whether

customer reaction to a new product was positive or negative, or whether owners of a

product are experiencing major technical difficulties. Analysis of aggregated data

over time provides insights into trends, while analysis of individual cases in near real

time lets companies to address and resolve customer issues quickly [5].

Text analysis is a complex process based on statistical and linguistic analyses and is

used for many different applications, including fraud detection and analysis of

scientific or intelligence data. Many of the social media streams are filled with slang,

abbreviations and sarcasm, all of which are difficult for analytical tools to process.

Depending on the application and the software tool, users of customer sentiment

solutions have varying degrees of success [5].

1.5Problem in brief
When the number of customers reaches its peak, finding and securing new customers

become increasingly difficult and costly. Therefore, it would be better to prioritize the

retention of the existing customers, than trying to win new ones. With the rapid

growth of mobile services, enhancement of customer satisfaction has become as a

core issue and hence developing a model, which can be used to measure the customer

satisfaction, would be very important for the telecom industry especially for their

survival. In addition to that, by analyzing the satisfaction, the telecom operator would

be able to identify which services needs to be improved further in order to satisfy the

existing customer.

4

1.6Proposed Solution
The purpose of this research is to design and develop a model for customer

satisfaction of Telecom Service based on reviews and feedbacks from Twitter. This

research is aimed at mining tweets toward one of the largest mobile operator in Sri

Lanka.

Apart from that, sentimental analysis will be done only for English language.

1.7Structure of the thesis
The documentation of this thesis is outlined in the following way. Chapter 1 provides

the background to this research and briefly describes the context of this research. It

also defines the problem statement and the purpose of this research. Chapter 2

provides a survey of literature and explains the main phases involved in building a

model. Chapter 3 specifies the technology adopted for this research work while fourth

chapter provides the details on the research approaches. The analysis and design part

are specified in Chapter 5. The next Chapter explains on the implementation

phase.Last Chapter provides a discussion on the proposed methodologywith an

evaluation of the approachesand it also provides some insight into the future research

work.

5

Chapter 2
2 Literature Review
2.1 Introduction

The current chapter consists of six main sections which describe the major

phasesinvolved in developing the customer satisfaction monitoring framework. These

steps have been identified based on the literature survey done focusing on mining

customer reviews on social media. Each step will be explained in detail with the

reference of the previous research work.

2.2 Customer Satisfaction Monitoring Framework

After doing a research on existing approaches for mining reviews of different domains

[6][7][8], it has been identified that the following steps will be mainly involved in

sentimental analysis.

1. Goal Setting

2. Text Preprocessing

3. Parsing the content

4. Text Refinement

5. Analyzing and Scoring

6. Finalize and validate the model

2.3 Goal Setting
This determines the sentiment analysis goal and the scope for the text content [6]. For

example, sentiment analysis goal can be set to a specific domain and therefore only

the reviews under that domain will be considered.As well as the goal setting, scope

for the text content is also important. It would be difficult to do the analysis for a

larger scope and therefore it is better to define the scope before starting the research.

For example, the scope for the text content can be defined for a specific language.

2.4 Text Preprocessing
Twitter feeds have to be collected for the selected telecom operator. Then the

collected feeds have to be loaded to the processing system (the system, technique to

be used for the analysis) and unwanted words from the text have to be deleted. Also,

the emotional symbols that people use in texts have to be organized into words.

6

Removing suffixes from words reduce number of words, tohave exactly matching

stems, to save memory space andtime. Forexample, as shown in Figure 2.1, the words

material, materially, materialize etc.,all can bestemmed to the word “material” [9].

Figure 2.1: Stemming Process [9]

The stemming process is done using variousalgorithms. “M.F. PortersAlgorithm" has

been widely adopted and extended so that it has becomethe standard approach to word

conflation for information retrieval in a wide range of languages [10].

2.5 Parsing the content
This involves segmenting the words based on their polarity, tagging the parts of

speech used (adjective, noun, etc.) and identifying the terms [6].

For example, there are three reviews (documents) of a book as provided below.

Document 1: I am an avid fan of this sport book. I love this book.

Document 2: This book is a must for athletes and sport.

Document 3: This book tells how to command the sport.

Parsing this document collection (reviews) generates the following term-by-document

matrix as shown in below figure2.2 [11].

7

Figure 2.2: Term-By-Document Matrix [11]

2.6 Text Refinement
This will ensure the correct analysis by finding the stop words and synonyms, etc. [6].

Most frequently used words in English are useless in text mining and such words are

called as stop words. Stop words arelanguage specific functional words which carry

noinformation. It may be of the following types such aspronouns, prepositions,

conjunctions [9].

2.7 Analyzing and Scoring
2.7.1 Analyzing
With the exponential increase in the internetusage, people prefer to express and share

informationon different topics. Due to ever increasingexistence of these emotions,

opinions, views, feedbacksand suggestions on the web, it has become necessary

toexplore, analyze and organize this information forbetter decision making by

subsequent users [12].Sentiment analysis or opinion mining is the computational

8

study of people’sopinions, appraisals, attitudes, and emotions toward entities,

individuals,issues, events, topics and their attributes [13].

2.7.1.aDifferent Levels of Sentiment Analysis
Sentiment analysis has been investigated mainly at three levels as provided below.

Document level Sentiment Analysis
This is the simplest form of classification. The wholedocument of opinionated text is

considered as basicunit of information. It is assumed that document ishaving opinion

about single object only (film, book orhotel). This approach is not suitable if

documentcontains opinions about different objects as in forumsand blogs.

Classification for full document is done aspositive or negative. Irrelevant sentences

need to beeliminated before processing. There are twoapproaches to do classification

[12].

1. Supervised machine learning approach

Given the training data, the system classifiesthe document by using one of the

common classification algorithms such as Support VectorMachine, Naïve Bayes, K

Nearest Neighbours, andMaximum Entropy etc.

2. Unsupervised machine learning approach

In unsupervised approach, SentimentOrientation (SO) of opinion words in document

isdetermined. If the SO of these words is positive, thenthe document is classified as

positive otherwisenegative.

Sentence Level Sentiment Analysis
Sentence level sentiment analysis is the most fine-grainedanalysis of the document. In

this, polarity iscalculated for each sentence as each sentence isconsidered as separate

unit and each sentence canhave different opinion. Sentence level sentimentanalysis

has two tasks [12].

1. Subjectivity Classification

A sentence can be either subjective sentence orobjective sentence. Objective sentence

contains thefacts. It has no judgment or opinion about the objector entity while

subjective sentence has opinions.

9

2. Sentiment Classification

Sentence can be classified as positive, negative orneutral depending upon the opinion

words present init.

Entity and Aspect level
Aspect level is the opinion mining and summarization based on feature. The

classification concerns byidentifying and extracting product features from the source

data. This type is used when we need sentiments aboutdesired aspect/feature in a

review [14].

2.7.1.b Sentiment Classification Techniques
Mainly approaches are classified into two categories namelylexicon based approach

and machine learning based approach (Refer Figure 2.3).

Figure 2.3: Sentiment Classification Techniques [15]

Machine learning is further divided into two category namelysupervised and

unsupervised learning. Supervised classificationalgorithms are probabilistic classifier,

linear classifier, decisiontree and rule based classifier. Supervised learning technique

isbased on labeled dataset which is provided as input to train themodel and this model

10

is applied to test data to generate output.Sentiment classification in machine learning

consists of twosteps. First one is to extract feature and store in feature vectorand

second one is to train feature vector by using classificationalgorithms [16].

Lexicon based approach is further divided into two categories namely dictionary

based and corpus based approach. Indictionary based approach, sentiment is identified

usingsynonym and antonym from lexical dictionary like WordNet. Incorpus based

approach, it identifies opinion words byconsidering word list. Corpus based approach

furthermoreclassified as statistical and semantic approach. In statisticalapproach, co-

occurrences of words are calculated to identifysentiment. In semantic approach, terms

are represented insemantic space to discover relation between terms [17].

2.7.2 Scoring
Scoring is the process in which the intensity of the sentiment is analyzed. Finally,each

customer feeds will be categorized into one of the below labels [6].

• Positive

• Negative

• Neutral

An example for scoring is shown in Figure 2.4.First it identifies the sentiments

bearing phrases from the data and score accordingly.

Figure 2.4: Sample score for sentiment [6]

2.8 Finalize and validate the model
The performance of sentiment analysis is calculated by usinghelp of confusion matrix

which is generated when algorithm isimplemented on dataset. Various performance

measures areused that are Precision, Recall, F-measure and Accuracy [16].

In classification problems, the primary source of performance measurementsis a

coincidence matrix (a.k.a. classification matrix or a contingencytable). The Figure

shows a coincidence matrix for a two-class classificationproblem (Refer Figure 2.5).

11

The equations of most commonly used metrics that can be calculatedfrom the

coincidence matrix is also given below [18].

Figure 2.5: Confusion matrix for binary classification [18]

The FP, FN, TP and TN concepts may be described as:

False positives (FP): examples predicted as positive,which are from the negative

class.

False negatives (FN): examples predicted as negative,whose true class is positive.

True positives (TP): examples correctly predicted as pertainingto the positive class.

True negatives (TN): examples correctly predicted as belongingto the negative class.

2.8.1 The true positive rate (Hit rate or Recall) of aclassifier
This is estimated by dividing the correctly classified positives (thetrue positive count)

by the total positive count. Large recallvalue means few positive cases misclassified

as a negative[19]. This is also known as Sensitivity.

2.8.2 The false positive rate of aclassifier (FPR)
FPR or false alarm ratio measures the cases classified as positive incorrectly [19].

12

2.8.3Precision
This is also called as positive predicted value and it measures the correctness of the

model. Higher precisionindicates less FP[19].

2.8.4F-Score
F-score or F1-measure is the harmonic mean of precision and recall [19].

2.9 Summary
This chapter explains on main steps which can be mainly identified in developing the

model of customer satisfaction monitoring based on twitter feeds.This also includes

an explanation of different sentiment classification techniques including machine

learning and lexicon based approach. Apart from that, it briefs on how to score the

model and to measure and evaluate the model performance with the use of confusion

matrix.

13

Chapter 3
3 Technology
3.1 Introduction
For this research work, lexicon based method is used. Application of a lexicon

involves calculating the sentiment from the semantic orientation of tokenized word or

phrases that can be found in a text. In this approach a dictionary of positive and

negative words is required and each of the words will get assigned with a neutral,

positive or negative sentiment value. In this research work, the following four

dictionaries will be considered in the classification.

• Lexicon

• SentiWordNet

• Slangs

• Emoticons

First it will select the best lexicon resource and then consider the different

combination of dictionaries in order to come up with a better solution. In each step

use Lexicon-based method where the semantic orientation of the document is

calculated by summing the semantic orientation of the words and phrases in the

document.

Apart from that, in this research work, tweets were extracted using Rapid Miner. Main

framework is developed and evaluated on R and only for using SentiWordNet, python

is used due to some compatibility issues come across with operating system.

3.2 Machine Learning Vs Lexicon Based Method
Supervised methodsrequire large amounts of labeled training data thatare very

expensive whereas acquisition of unlabeled data is easy. The main limitation of

supervisedlearning is that it generally requires large expertannotatedtraining corpora

to be created from scratch,specifically for the application at hand, and may failwhen

training data are insufficient [21].For this research scenario, it will be very difficult to

gather a better training data set.

3.3 Limitations of Lexicon Based Method
The opinion words that are included in thedictionary are very important for the

lexicon basedapproach. If the dictionary contains less words orthorough, one risks the

chance of over or underanalyzing the results, leading to a decrease inperformance.

14

Another significant challenge to thisapproach is that the polarity of many words is

domainand context dependent. For example, ‘funny movie’is positive in movie

domain and ‘funny taste’ isnegative in food domain. Such words are associatedwith

sentiment in a particular domain. Currentsentiment lexicons do not capture such

domain andcontext sensitivities of sentiment expressions.Without a comprehensive

lexicon, the sentimentanalysis results will suffer. The lexicon-basedapproach can

result in low recall for sentimentanalysis [21].

3.4 Summary
Lexicon based approaches often reply on sentiment lexicons for sentiment analysis

and hence training from labeled instances does not require. For this research scenario,

it will be very difficult to gather a better training data set and therefore this approach

has been selected and applied in this framework. Apart from that, if the overall model

to be performed well, the training dataset should be in better quality. If its quality is

not good, the accuracy of the model will also be affected badly. In such a situation, it

is better to go with Lexicon approach in which the accuracy of the model will be

mainly based on the dictionaries used.

15

Chapter 4
4 Approach
4.1 Introduction
Development of a methodology which is capable of accurately monitoring the

customer satisfaction could prevent significant loss of revenue. This chapter discusses

the methodology which has guided the main activities of thisresearch. This also

includes the inputs and outputs of this analysis and then provides the details of the

high-level process, which uses four dictionaries.

The following six steps will be followed up in this research work and will select the

best combination of dictionaries accordingly.

Step 01: After pre-processing and refinement of Twitter Feeds, it will select the best

lexicon resource (Lexicon vs SentiWordNet).

Step 02: Performance measures were checked after fine-tuning the selected lexicon

resource.

Step 03: Performance measures were checked after fine-tuning Stop Words

Dictionary.

Step 04: Check whether the Hybrid Approach (Using both Lexicon & SentiWordNet)

will perform well.

Step 05: Performance measures were checked with Lexicon dictionary after Slang

Replacements.

Step 06: Performance measures were checked with Lexicon dictionary after Slang

Replacements and also integrating with Emoticons.

4.2 Hypothesis
Main goal of this research is to aim at mining tweets toward one of the largest mobile

operator in Sri Lanka.Apart from that, sentimental analysis will be done only for

English language.

4.3 Input
Main input of this research is Twitter feeds which is extracted using Rapid Miner

Tool and then these twitter feeds are then loaded to R for further processing. There

were 1450 tweets which were collected randomly during 2nd February 2017 to 15th

January 2018. From the collected tweets, only 740 tweets were filtered out as only

English tweets were considered in this research work.

16

4.4 Output
Most of the researchers have focused on binary classification as multi class

classification is quite difficult to evaluate. In this research work, Twitter feeds will be

classified into threeclasses as negative, positive and neutral. Therefore, the model has

to be evaluated as a 3X3 matrix and this has to be used three confusion matrices for

each class in order to calculate the accuracy.

4.5 Process
This research work will carry out mainly based on four dictionaries (Lexicon,

SentiWordNet, Slangs and Emoticons).First it will select the best lexicon resource and

then consider the different combination of dictionaries in order to come up with a

better solution. In each step use Lexicon-based method where the semantic orientation

of the document is calculated by summing the SO of the words and phrases in the

document.Before data is subjected to analyze, they will undergo a set of text

preprocessing tasks.

Then all tweets are scored as positive, negative, or neutral and after that each step will

be evaluated using following performance metrics.

1. Accuracy

2. Precision

3. Recall

4. F-Measure

4.6 Summary
This chapter describes the high-level solution approach of this research work. This

provides an understanding on the input to this model and what will be the outcome of

this model which is useful for the customer satisfaction identification. The next

chapter will explain this process with more details.

17

Chapter 5
5 Analysis & Design
5.1 Introduction
In this chapter, the proposed solution will be shown using a high-level diagram and

each module will be explained in detail under the later sections of this chapter. This

chapter also provides the details of all the dictionaries used in this research work. In

addition to that, it explains how to measure the accuracy of the three-dimensional

classification using confusion matrix concept.

5.2 High-Level Solution Diagram
Proposed solution consists of four major modules as shown in Figure 5.1.

Figure 5.1: High Level Solution Diagram

18

5.2.1 Text Preprocessing Module
The data is extracted from Twitter feeds using Rapid Miner Tool. There were 1450

tweets which were collected randomly during 2nd February 2017 to 15th January 2018.

From the collected tweets, only 740 tweets were filtered out as only English tweets

were considered in this research work. These twitter feeds are then loaded to R using

“fread” function which comes under “data.table” library.

Example:

x <- fread ("C:\\Users\\MscProject\\TwitterFeeds\\TestData01.txt", header = TRUE,

select = c("Text","Rating"))

Then the collected tweets were then pre-processed using the following ways.

5.2.1.a Removal of Duplicates
Duplicate of any tweet are deleted from the data set.“duplicated” function will remove

the duplicated rows from the dataset. Removal of duplicate feeds will reduce the

unnecessary processing time on the model.

Example:

x <- x[!duplicated(x),]

5.2.1.bRemoval of Retweets
Retweets (reposting or forwarding a tweet which is posted by another user) entries are

removed from the data set and this can be done using “gsub” function available with

R.

Example:

x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text)

5.2.1.cRemoval of HTML Links
HTML links are removed from the data set and for this, “rm_url” function can be used

as mentioned on the below example.

Example:

x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url"))

5.2.1.dRemoval of @people
@Users are removed from the data set. Same “gsub” function can also be used to

remove @people from the tweets and an example is given below.

19

Example:

x$Text <- gsub("@\\w+", "", x$Text)

5.2.1.e Removal of Stop Words
Most frequently used words in English which are called as stop words are removed

from the data set. They are language specific functional words ("a", "and", "but",

"how", "or", and "what” etc.) which carry no information.

The following “rm_words” function can be used to remove stop words from the

tweets.

rm_words <- function(string, words) {

stopifnot(is.character(string), is.character(words))

spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup

vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "),

character(1))

}

Once created the above function, it can be called and applied on tweets with the Stop

Words dictionary (“stopwords”) which is provided with “tm” package. The below

example extracts only the stop words related to English Dictionary by specifying “en”

as this research is considering only English tweets.

Example:

x$Text <- rm_words(x$Text, tm::stopwords("en"))

5.2.2 Content Parsing Module
5.2.2.aTokenization
The process of breaking a stream of text into words, phrases, symbols, or other

meaningful elementsis called as tokens.The aim of the tokenization is the exploration

of the words in a sentence. The list of tokens becomes input for further processing

such as parsingor text mining.

5.2.3Lexicon Module
This module is based on the integration of different opinion lexicons and dictionary

resources for sentiments. Following lexicons and dictionaries are used in this research

work.

20

5.2.3.aLexicon Dictionary
This contains a list of positive and negative words. This research uses a dictionary of

1980 number of positive words and 4800 number of negative words.

5.2.3.bEmoticons Dictionary
This contains a list of emoticons. Emoticons are mainly face-basedand represent

happy or sad feelings, although a wide range ofnon-facial variations also exist. For

example, <3 represents a heartand expresses love or affection. In this research, 750

number of emoticons are used in the model [6].

5.2.3.cSentiWordNet
This is a lexical resource and an extension of WordNet [20].Thedictionary groups

adjectives and nouns and other parts ofspeech in sets with similar meaning words

which are called as‘synsets’(Synonym sets). SentiWordNet does the scoring ofthe

words from the sets to indicate the sentiment as positive, negative or neutral [6].

5.2.3.dSlang Dictionary
People use slang words such as “OMG” and “LOL” to express their feelings and

therefore,identifying slang sentiment words can be an advantage to accurately

discovering sentiment hidden in tweets and customer reviews. For this analysis, 5400

number of slangs have been collected from the web and used for scoring in this

research work.

5.2.4Scoring Module
Each dictionary contributes to the final score as mentioned in the below sections.

5.2.4.a Lexicon Score
Score is modified by assigning +1 for positive words and -1 for negative words in the

lexicon dictionary.

5.2.4.b Emoticon Score
Score is assigned either as +1 for positive and -1 for negative emoticons as in the

dictionary.

21

5.2.4.c SentiWordNet Score
This associates each Wordnet synset withthree numerical scores as positive, negative

and objective. These scores range from 0.0 to 1.0 and sum of scoresfor each synset is

1.

5.2.4.d Slang Score
Slang dictionary supports to identify the slangs and then translate them in to

meaningful words and compiled with their translation for scoring.

5.2.6Finalize and validate the model
In order to validate the approaches, all tweets are manually labeled as positive,

negative, or neutral and hence the confusion matrix needs to be developed as a 3x3

matrix. As shown in Table 5.1, 5.2 and 5.3, three matrices will be generated for eight

approaches.

5.2.6.aConfusion Matrix for Positive Reviews

 Predicted Class for

Positive Reviews

True Class for

Positive Reviews

 Positive Other

Positive TP1 FN1

Other FP1 TN1

Table 5.1: Confusion Matrix for Positive Reviews

5.2.6.b Confusion Matrix for Negative Reviews

 Predicted Class for

Negative Reviews

True Class for

Negative Reviews

 Negative Other

Negative TP2 FN2

Other FP2 TN2

Table 5.2: Confusion Matrix for Negative Reviews

22

5.2.6.c Confusion Matrix for Neutral Reviews

 Predicted Class for

Neutral Reviews

True Class for

Neutral Reviews

 Neutral Other

Neutral TP3 FN3

Other FP3 TN3

Table 5.3: Confusion Matrix for Neutral Reviews

Then the validation of the model is done by analyzingthe following performance

metrics for the above values of each confusion matrix.

1. Accuracy

2. Precision

3. Recall

4. F-Measure

5.3 Summary
This chapter provides an explanation on the design approach in each module and in

the final section, it shows how to do the model validation with the use of confusion

matrix and the relevant performance metrics. Since three class classification has to be

facilitated in this research, three confusion matrixes have to be used in getting the

accuracy of each class. The next chapter provides an explanation on the

implementation process of this model.

23

Chapter 6

6 Implementation
6.1 Introduction
This chapter provides the details of the implementation phase of the proposed

solution. Implementation was done based on six steps which uses different

combinations of dictionaries or with fine-tuned dictionaries. Scoring process has been

describedusing pseudocodes for each step.

6.2 Approach
The following steps were considered in order to identify the most accurate model for

this analysis. Outcome of these steps are separately validated and compared.

Step No Description

01 Select the best lexicon resource (Lexicon vs SentiWordNet)

after pre-processing and refinement of Twitter Feeds

02 Feeds with Fine-tuned Lexicon Resource

03 Feeds with Fine-tuned Stop Words Dictionary

04 Hybrid Approach (Using both Lexicon & SentiWordNet)

05 Feeds with Lexicon with Slang Replacements

06 Feeds with Lexicon with Slang Replacements and

Emoticons

Table 6.1: Main Approaches

6.3 Dataset
Twitter feeds from the selected telecom provider are extracted from Rapid Miner and

it containstweets which were collected randomly during 2nd February 2017 to

15thJanuary 2018. There were 1450 tweets which were collected randomly during 2nd

February 2017 to 15th January 2018. From the collected tweets, only 740 tweets were

filtered out as only English tweets were considered in this research work.

6.4 Text Preprocessing Module
Extracted Twitter feeds are loaded to R for further processing.

• Install & Load required R packages

24

• Import Twitter Feeds

• Remove Duplicate Tweets

• Duplicate “Text” field to another column (To keep the original text for

references)

The collected tweets were then pre-processed using the flowing steps.

• Removal of Retweets

• Removal of HTML Links

• Removal of @People

• Removal of Stop words

6.5 Content Parsing Module
Tweet comments were split into words before applying the Lexicon module. This

process is called as text tokenization process.

6.6 Lexicon Module
In this module, the following four dictionaries were used.

• Lexicon Dictionary

• Emoticons Dictionary

• Slang Dictionary

• SentiWordNet

6.7 Scoring Module
Pseudocodes for sentiment scoring algorithms for each approach are provided below.

6.7.1 Algorithm for using Lexicon Dictionary only
This uses Lexicon dictionary only.

Input: Tweets

Output: Sentiment Score

Function_Score(tweet)

ptext = preprocessor(tweet)

tokens = tokenize(ptext)

For word in tokens

If word found in Lexicon DictionaryThen

25

Score = Score + Lexicon Score

Else

Score = 0

End If

Next

If Score > 0 Then

Tweet = Positive

If Score < 0 Then

Tweet = Negative

If Score = 0 Then

Tweet = Neutral

End If

End Function

6.7.2 Algorithm for using SentiWordNet only
This uses SentiWordNet Dictionary only.

Input: Tweets

Output: Sentiment Score

Function_Score(tweet)

ptext = preprocessor(tweet)

tokens = tokenize(ptext)

For word in tokens

Ifword found in SentiWordNetThen

Score = Score + SentiWordNet Score

Else

Score = 0

End If

Next

If Score > 0 Then

Tweet = Positive

If Score < 0 Then

Tweet = Negative

26

If Score = 0 Then

Tweet = Neutral

End If

End Function

6.7.3 Algorithm for using both Lexicon and SentiWordNet
This uses Lexicon & SentiWordNet Dictionaries.

Input: Tweets

Output: Sentiment Score

Function_Score(tweet)

ptext = preprocessor(tweet)

tokens = tokenize(ptext)

For word in tokens

If word found in Lexicon DictionaryThen

Score = Score + Lexicon Score

Else Ifword found in SentiWordNetThen

Score = Score + SentiWordNet Score

Else

Score = 0

End If

Next

If Score > 0 Then

Tweet = Positive

If Score < 0 Then

Tweet = Negative

If Score = 0 Then

Tweet = Neutral

End If

End Function

6.7.4 Algorithm for using Lexicon with Slang Replacements
This uses Lexicon & Slang Dictionaries.

Input: Tweets

27

Output: Sentiment Score

Function_Score(tweet)

ptext = preprocessor(tweet)

tokens = tokenize(ptext)

For word in tokens

Ifword found in Slang DictionaryThen

Replace text with Slang Text

stext = SlangText

tokens = tokens + tokenize(stext)

If word found in Lexicon DictionaryThen

Score = Score + Lexicon Score

Else

Score = 0

End If

 End If

Next

If Score > 0 Then

Tweet = Positive

If Score < 0 Then

Tweet = Negative

If Score = 0 Then

Tweet = Neutral

End If

End Function

6.7.5 Algorithm for using Lexicon with Slang Replacements and Emoticons
Dictionary
This uses Lexicon, Slang& Emoticon Dictionaries.

Input: Tweets

Output: Sentiment Score

Function_Score(tweet)

ptext = preprocessor(tweet)

tokens = tokenize(ptext)

28

For word in tokens

Ifword found in Slang DictionaryThen

Replace text with Slang Text

stext = SlangText

tokens = tokens + tokenize(stext)

If word found in Emoticons DictionaryThen

Score =Score + Emoticon Score

Else

If word found in Lexicon DictionaryThen

Score = Score + Lexicon Score

Else

Score = 0

End If

 End If

Next

If Score > 0 Then

Tweet = Positive

If Score < 0 Then

Tweet = Negative

If Score = 0 Then

Tweet = Neutral

End If

End Function

6.8 Summary
This chapter provides the implementation details and provide the pseudocodes for

sentiment scoring of sixsteps. The next chapter will provide the results and

evaluations of all these combinations.

29

Chapter 7
7 Discussion
7.1 Introduction
This chapter provides the details of the evaluation phase with the results of the

selected performance metrics. This supports to get an understanding on to what

extend accuracy is enhanced from each dictionary. Evaluation is mainly done based

on the six steps mentioned in implementation chapter and four performance matrixes

have been calculated to understand the performance of each step.

7.2 Results & Analysis
After preprocessing the twitter feeds, SentiWordNet and Lexicon dictionaries were

applied on the feeds separately and classified the feeds as positive, negative or

neutral. Table 7.1 shows the performance measures for the both approaches and as per

that, Lexicon dictionary performs well on this classification.

Table 7.1: Lexicon vs SentiWordNet

Lexicon dictionary was fine-tuned further in order to align to Telecom domain and

some of the modifications done were shown on Table 7.2.

30

Table 7.2: Samples of Fine-tuned Words

After fine-tuning Lexicon Dictionary, the accuracy of Positive, Negative and Neutral

Segments has been increased by 5.16%, 2.59% and 3.67% respectively (Refer Table

7.3).

Table 7.3: Lexicon vs Fine-tuned Lexicon

Same measures were extracted after removing “No” word from the Stop Words

Dictionary and as per that (Refer Table 7.4), accuracy of Positive, Negative and

Neutral classifications have been increased by 0.82%, 0.02% and 0.13% respectively.

31

Table 7.4: Fine-tuned Lexicon vs Fine-tuned Lexicon with Stop Words Changes

All the measures taken based on fine-tuned Lexicon dictionary (With the changes in

Stop Words Dictionary) were then compared with the measures taken after applying

both Lexicon and SentiWordNet together. According to the result in Table 7.5, this

hybrid approach has not been performed well on the feeds.

Table 7.5: Hybrid Approach (Both Lexicon and SentiWordNet)

32

After that some words in the twitter feeds were replaced based on Slang Dictionary

and then Lexicon dictionary were applied on the feeds with replaced words. As per

Table 7.6, it shows that there is an increase in accuracy for Positive, Negative and

Neutral classifications by 0.81%, 0.59% and 1.09% respectively.

Table 7.6: Lexicon vs Lexicon with Slang Replacements

Feeds with Slangs replacements classified with Lexicon dictionary were then

compared with the results of the same approach with Emoticons also. According to

Table 7.7, it shows an increase in accuracy for Negative segment by 0.47% while

decreasing the accuracy of Positive Class by 0.95%.

33

Table 7.7: Lexicon with Slang Replacements and Emoticons

Figure 7.8 shows the accuracy comparison of Positive Class for Lexicon, Lexicon

with Slang replacement and Lexicon with Slang replacement and Emoticons.

According to that comparison, if positive comments need to be extracted, it is better to

exclude Emoticon Dictionary as it shows the highest accuracy without that dictionary.

Figure 7.1: Comparison of Positive Classification Accuracy for each step

89.50%

90.00%

90.50%

91.00%

91.50%

92.00%

Fine-tuned
Lexicon

Fine-tuned
Lexicon with
Stop Words

Changes

Lexicon with
Slang

Replacement

Lexicon with
Slang

Replacement +
Emoticons

90.35%

91.17%

91.98%

91.03%

Positive Classification

34

It would be advantageous to analyze the negative comments specially for getting an

understanding on the products and service provided by the telecom operator. This

kind of in depth analysis can be used for business decisions on products and service

enhancements. As per Figure 7.9, if negative comments only are taken in to

consideration, it would be better to go with Lexicon and Emoticon Dictionaries after

replacing the slangs.

Figure 7.2: Comparison of Negative Classification Accuracy for each step

7.3 Model Validation with existing tools/APIs
There are some general sentiment analysis tools/APIs can be found in the internet and

therefore it would be better to compare the accuracy level of these readily available

tools/APIs with the proposed model. But most of these tools/APIs are provided an

interface where only one comment at a time can be given to get the sentiment or it

may give one sentiment score for all comments, not for each comment. This is one of

the biggest limitation in these kinds of sentiment analysis tools/APIs. The accuracy of

the proposed model has been validated with the results of two APIs as mentioned in

the below sections.

7.3.1 Google Cloud Natural Language API
Google Cloud Platform provides Natural Language API and from that, users are able

to provide their dataset and get the relevant sentiment score (Refer Figure 7.3). As per

80.80%
81.00%
81.20%
81.40%
81.60%
81.80%
82.00%
82.20%
82.40%
82.60%

Fine-tuned
Lexicon

Fine-tuned
Lexicon with
Stop Words

Changes

Lexicon with
Slang

Replacement

Lexicon with
Slang

Replacement +
Emoticons

81.39% 81.41%

82.00%

82.47%

Negative Classification

35

Google definition, if the score is less than -0.25, it is considered as a negative text and

if the score is between -0.25 to 0.25, it is taken as a neutral text. If the score is more

than 0.25, then the text will be tagged as positive.

Figure 7.3: Snapshot of Sentiment Score on Google Cloud API

Using this API, three class classification were done on the same dataset which has

been used in this research work and evaluate the accuracy of the classification with

that API. As per Table 7.8, it shows that the model built for this research work has

been shown higher accuracy level compared with the cloud natural language API.

Table 7.8: Accuracy Comparison with Google Cloud API

7.3.2 tap.aylien.com API
tap.aylien.com has provided an interface to the users to do the sentiment analysis of

the given dataset on their web site itself (Refer Figure 7.4).

36

Figure 7.4: Snapshot of tap.aylien.com API

As per Table 7.9, it shows that the proposed model has been shown a higher accuracy

level compared with the results of this API.

Table 7.9: Accuracy comparison with tap.aylien.com API

7.3Research Limitations
Some of the limitations faced during the research are mentioned below.

Twitter feeds extracted during some seasonal months (for example in Wesak Season),

most of the comments were not worth for analyzing for customer satisfaction as they

were about some decorations, travels etc. Therefore, this kind of tweets especially

taken during seasonal months were removed from the dataset.

37

7.4 Suggestions for Further Research
Four dictionaries were involved in this research work and if they get fine-tuned

further, the accuracy may be increased more. Spelling checker also can be used and

see whether the accuracy can be enhanced further.

This research was done in order to analyze all tweets together, but if this framework

can be enhanced to get the customer satisfaction for products, packages etc. and this

would be a great support for the company to evaluate these individual items.

In this research work, it has only been considered the tweets tagged under English

language, but there are many tweets which might be worth for analyzing, were written

in Sinhala language. The framework developed can be further extended to read these

tweets also.

The accuracy of this work can be compared and evaluated with the following

approaches also.

• Using machine learning methods to train a model

• Using a hybrid approach (with both machine learning and lexicon

dictionaries)

7.5 Summary
This chapter shows that for all three classes (Positives, Negative and Neutral) have

been classified better with fine-tuned Lexicon and Stop Words Dictionary with Slang

replacements. Also, it shows that hybrid approach (Lexicon and SentiWordNet

together) has not performed well on the dataset.

If positive comments needto be extracted along, it is better to exclude Emoticon

Dictionary as it shows the highest accuracy without that dictionary. If negative

comments are taken in to consideration, it would be better to go with Lexicon and

Emoticon Dictionaries after replacing the slangs. This chapter also discusses on the

research limitations and the future research works also.

38

References

[1] Telecommunication Regulatory Commission of Sri Lanka (TRCSL), “Financial

Analysis of the Telecom Sector,”June, 2017.

[2] Ed. King, Staying In Droves: How to Win the Customer Retention Revolution,

2009.

[3] Bamfo, A. “Exploring the relationship between customer satisfaction and loyalty

in the mobiletelecommunication industry in Ghana,”Indian Journal of Economics and

Business, vol. 8, no. 20, pp. 299-311, 2009.

[4] Metzler, K., & Hinterhuber, H. “How to make product development projects more

successful byintegrating Kano's model of customer satisfaction into quality function

deployment,”Technovation, vol. 18, no. 1, pp.25-38, 1998.

[5]Judith Lamont, P. “Customer sentiment analysis: A shift to customer service,”

KMWorld Magazine, vol. 22, no. 2, pp.8, 2013.

[6] Manasee Godsay. “The Process of Sentiment Analysis: A Study,”International

Journal of Computer Applications, vol. 126, no. 7, pp. 26-30, 2015.

[7] L. Almuqren and A. I. Cristea, “Twitter analysis to predict the satisfaction of

telecom company customers,” in Late-breaking Results, Demos, Doctoral

Consortium, Workshops Proceedings and Creative Track of the 27th ACM

Conference on Hypertext and Social Media, 2016.

[8] W. Kasper and M. Vela, “Sentiment analysis for hotel reviews,”inProceedings of

the Computational Linguistics-Applications Conference, 2011.

[9]C. Ramasubramanian and R. Ramya, “Effective Pre-Processing Activities in Text

Miningusing Improved Porter’s Stemming Algorithm,” International Journal of

Advanced Research in Computer and Communication Engineering, vol. 2, no. 12,

2013.

[10] P. Willett, “The Porter stemming algorithm: then and now,” Program:

electronic library and information systems, vol. 40, no. 3, pp.219-223, 2006.

[11] G. Chakraborty, M. Pagou and S. Garla, Text Mining and Analysis: Practical

Methods, Examples, and Case Studies Using SAS. Cary, North Carolina, USA, 2013.

[12] S. Kolkur, G. Dantal and R. Mahe, “Study of Different Levels for Sentiment

Analysis,” International Journal of Current Engineering and Technology,vol. 5, no.

2, 2015.

39

[13] B. Liu and L. Zhang, “A Survey of Opinion Mining and Sentiment

Analysis,”inProceedings of Mining Text Data, 2013.

[14] P. Patil and P. Yalagi, “Sentiment Analysis Levels and Techniques: A Survey,”

International Journal of Innovations in Engineering and Technology, vol. 6, no. 4, pp.

523-528, 2016.

[15]W. Medhat, A. Hassan and H. Korashy, “Sentiment analysis algorithms and

applications: A survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093-1113,

2014.

[16] V. B. Vaghela and B. M. Jadav, “Analysis of Various Sentiment

ClassificationTechniques,” International Journal of Computer Applications, vol. 140,

no. 3, pp. 22-27, 2016.

[17] M. W. Berry, A. Mohammed and B.W. Yap, “Soft Computing in Data

Science,”inProceedings of Soft Computing in Data Science,Putrajaya, Malaysia,

2015.

[18] D. L. Olson andD. Delen, “Performance Evaluation for Predictive Modeling,” in

Advanced Data Mining Techniques, Springer-Verlag Berlin Heidelberg, pp. 137-139.

[19]F. M. Kundi, A. Khan, S. Ahmad, M. Z. Asghar, “Lexicon-Based Sentiment

Analysis in the Social,” Journal of Basic and Applied Scientific Research, vol. 4, no.

6, pp. 238-248, 2014.

[20] A. Esuli ,F. Sebastiani, “Senti Word Net: A Publicly Available Lexical Resource

for Opinion Mining,” InProceedings of International Conference on Language

Resources and Evaluation (LREC), 2006, pp. 417-422.

[21] S. M. Vohira and J. B. Teraiya, “A Comparative Study of Sentiment Analysis

Techniques,” Journal of Information, Knowledge and Research in Computer

Engineering, vol. 2, no. 2, pp. 313-317, 2013.

40

Appendixes
Appendix A – R code for using only Lexicon Dictionary

#Install & Load Required R packages
#install.packages("data.table")
library(data.table)
library(qdapRegex)
library(plyr)
library(stringr)
library(qdap)

#Import Twitter Feeds
x <- fread ("C:\\Users\\Sachi\\Desktop\\MscProject\\TwitterFeeds\\TestData01.txt",
header = TRUE, select = c("Text","Rating"))

#Remove Duplicate tweets
x <- x[!duplicated(x),]

#Duplicate "Text" field column
x$OriginalText = x$Text

#Lower all the letters
x$Text <- tolower(x$Text)

#Text Preprocessing
##Removal of Retweets
x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text)

##Removal of HTML Links - Need qdapRegex Package to use rm_url
x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url"))

##Removal of @People
x$Text <- gsub("@\\w+", "", x$Text)

##Removal of Special Characters ?& .
x$Text <- gsub("?", " ", x$Text, fixed = TRUE)
x$Text <- gsub(".", " ", x$Text, fixed = TRUE)
x$Text <- gsub("!", " ", x$Text, fixed = TRUE)
x$Text <- gsub("\"", " ", x$Text, fixed = TRUE)

#Text Refinement
#Remove Stop words
rm_words <- function(string, words) {
stopifnot(is.character(string), is.character(words))
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "),
character(1))

41

}

x$Text <- rm_words(x$Text, tm::stopwords("en"))

#Function for Positive & Negative Words match
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)

scores = laply(sentences, function(sentence, pos.words, neg.words) {

 # convert to lower case:
sentence = tolower(sentence)

 # split into words. str_split is in the stringr package
 word.list = str_split(sentence, '\\s+')
 # sometimes a list() is one level of hierarchy too much
words = unlist(word.list)

 # compare our words to the dictionaries of positive & negative terms
 pos.matches = match(words, pos.words)
 neg.matches = match(words, neg.words)

 # match() returns the position of the matched term or NA
 # we just want a TRUE/FALSE:
 pos.matches = !is.na(pos.matches)
 neg.matches = !is.na(neg.matches)

 # and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)

return(score)
 }, pos.words, neg.words, .progress=.progress)

 scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}

#Import Positive & Negative Words
pos_words <-
scan("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Positive.txt",
what='character', comment.char=';')

neg_words <-
scan("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Negative.txt",
what='character', comment.char=';')

42

#Add additional words to dictionaries
#neg_words = c(neg_words,'no')

#Score based on Positive & Negative words
result1 <- score.sentiment(x$Text, pos_words, neg_words)

#Calculate Lexicon Score
x$Lexicon = result1$score

#Calculate Total Score
x$TotalScore = (x$Lexicon)

#Assign Predicted Rating
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)
Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)

43

Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)
Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step01_Lexicon = Performance_matrix
Performance_matrix_Step01_Lexicon

44

Appendix B – R code for using SentiWordNet

#Step 01 - Run Python Script
import pandas as pd

x = pd.read_csv('C:/Users/Sachi/Desktop/MscProject/TwitterFeeds/TestData01.txt',
sep='\t' , encoding='latin-1', skiprows=1, names = ["Text", "Rating"])

x = x.fillna('')

def sentiwordnet_python(doc):
import nltk
from nltk.corpus import sentiwordnet as swn
 #doc= "Nice and friendly place with excellent food and friendly and helpful staff.
You need a car though. The children wants to go back! Playground and animals
entertained them and they felt like at home. I also recommend the dinner! Great value
for the price!"
sentences = nltk.sent_tokenize(doc)
stokens = [nltk.word_tokenize(sent) for sent in sentences]
taggedlist=[]
for stoken in stokens:
taggedlist.append(nltk.pos_tag(stoken))
wnl = nltk.WordNetLemmatizer()

 score_list=[]
for idx,taggedsent in enumerate(taggedlist):
 score_list.append([])
for idx2,t in enumerate(taggedsent):
newtag=''
lemmatized=wnl.lemmatize(t[0])
if t[1].startswith('NN'):
newtag='n'
elif t[1].startswith('JJ'):
newtag='a'
elif t[1].startswith('V'):
newtag='v'
elif t[1].startswith('R'):
newtag='r'
else:
newtag=''
if(newtag!=''):
synsets = list(swn.senti_synsets(lemmatized, newtag))
 #Getting average of all possible sentiments, as you requested
score=0
if(len(synsets)>0):
for syn in synsets:
score+=syn.pos_score()-syn.neg_score()
 score_list[idx].append(score/len(synsets))

 #print(score_list)

45

 sentence_sentiment=[]

for score_sent in score_list:
if len(score_sent)>0:
 sentence_sentiment.append(sum([word_score for word_score in
score_sent])/len(score_sent))
 #print("Sentiment for each sentence for:"+doc)
 #print(sentence_sentiment)
return sentence_sentiment

for row in x.itertuples():
x['SentiWordNetScore'] = x.apply(lambda row: sentiwordnet_python(row.Text),
axis=1)

x.to_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/step01_sentiwordnet.txt',
sep='\t', encoding='latin-1')

#Step 02 - Evaluation on R

#Calculate Sentiwordnet
y <- fread ("C:/Users/Sachi/Desktop/MscProject/Outputs/step01_sentiwordnet.txt",
header = TRUE, select = c("Text", "Rating", "SentiWordNetScore"))

#Remove Null values
y$SentiWordNetScore <- gsub("[[]]", "0.0", y$SentiWordNetScore)

#Remove Special characters from score column
y$SentiWordNetScore <- gsub("[[]", "", y$SentiWordNetScore)
y$SentiWordNetScore <- gsub("[]]", "", y$SentiWordNetScore)

#Assign to x
x <- y

#Convert SentiWordNet Score to numeric value
x$SentiWordNetScore = as.numeric(x$SentiWordNetScore)

#Replace NUll values to 01m1q
x$SentiWordNetScore = ifelse(is.na(x$SentiWordNetScore) == 'TRUE', 0.00,
x$SentiWordNetScore)

#Calculate Total Score
x$TotalScore = (x$SentiWordNetScore)

#Assign Predicted Rating

46

x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)
Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)
Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)

47

Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step01_SentiWordNet = Performance_matrix
Performance_matrix_Step01_SentiWordNet

48

Appendix C – R code for using Lexicon Dictionary with Stop Words Amendments

#Import Twitter Feeds
x <- fread ("C:\\Users\\Sachi\\Desktop\\MscProject\\TwitterFeeds\\TestData01.txt",
header = TRUE, select = c("Text","Rating"))

#Remove Duplicate tweets
x <- x[!duplicated(x),]

#Duplicate "Text" field column
x$OriginalText = x$Text

#Lower all the letters
x$Text <- tolower(x$Text)

#Text Preprocessing
##Removal of Retweets
x$Text <- gsub("RT @[a-z,A-Z]*:", "", x$Text)

##Removal of HTML Links - Need qdapRegex Package to use rm_url
x$Text <- rm_url(x$Text, pattern=pastex("@rm_twitter_url", "@rm_url"))

##Removal of @People
x$Text <- gsub("@\\w+", "", x$Text)

##Removal of Special Characters ?& .
x$Text <- gsub("?", " ", x$Text, fixed = TRUE)
x$Text <- gsub(".", " ", x$Text, fixed = TRUE)
x$Text <- gsub("!", " ", x$Text, fixed = TRUE)
x$Text <- gsub("\"", " ", x$Text, fixed = TRUE)

#Text Refinement
#Remove Stop words
rm_words <- function(string, words) {
stopifnot(is.character(string), is.character(words))
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "),
character(1))
}

#Customize the stop words
exceptions<- c("no")
my_stopwords <- setdiff(tm::stopwords("en"), exceptions)

#x$Text <- rm_words(x$Text, tm::stopwords("en"))
x$Text <- rm_words(x$Text, my_stopwords)

#Score based on Positive & Negative words
result1 <- score.sentiment(x$Text, pos_words, neg_words)

49

#Calculate Lexicon Score
x$Lexicon = result1$score

#Calculate Total Score
x$TotalScore = (x$Lexicon)

#Assign Predicted Rating
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)
Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)
Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))

50

FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)
Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step03_Lexicon_StopWords = Performance_matrix
Performance_matrix_Step03_Lexicon_StopWords

51

Appendix D – R code for comparing Lexicon Dictionary with SentiWordNet

#Step 01-Input to Python

library(NLP)
library(tm)
library(regexr)

Loading Negative words into two files
Here *words have to be removed such as d*mn
neg_words_part1 <-
scan("C:/Users/Sachi/Desktop/MscProject/Dictionaries/Negative_Part1.txt",
what='character', comment.char=';')
neg_words_part2 <-
scan("C:/Users/Sachi/Desktop/MscProject/Dictionaries/Negative_Part2.txt",
what='character', comment.char=';')

Remove positive words
a = removeWords(x$Text,pos_words)

Remove negative words
b = removeWords(a,neg_words_part1)
x$SentiWordNet_Text = removeWords(b,neg_words_part2)

Export data to a text file
write.table(x, "C:/Users/Sachi/Desktop/MscProject/Outputs/rdata_Step04.txt",
sep="\t",row.names=F)

#Step 02 - Run Python Script
import pandas as pd

x = pd.read_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/rdata_Step04.txt',
sep='\t' , encoding='latin-1', skiprows=1, names = ["Text", "Rating", "OriginalText",
"Lexicon", "TotalScore", "PredictedRating", "SentiWordNet_Text"])

x = x.fillna('')

def sentiwordnet_python(doc):
import nltk
from nltk.corpus import sentiwordnet as swn
 #doc= "Nice and friendly place with excellent food and friendly and helpful staff.
You need a car though. The children wants to go back! Playground and animals
entertained them and they felt like at home. I also recommend the dinner! Great value
for the price!"
sentences = nltk.sent_tokenize(doc)
stokens = [nltk.word_tokenize(sent) for sent in sentences]
taggedlist=[]
for stoken in stokens:

52

taggedlist.append(nltk.pos_tag(stoken))
wnl = nltk.WordNetLemmatizer()

 score_list=[]
for idx,taggedsent in enumerate(taggedlist):
 score_list.append([])
for idx2,t in enumerate(taggedsent):
newtag=''
lemmatized=wnl.lemmatize(t[0])
if t[1].startswith('NN'):
newtag='n'
elif t[1].startswith('JJ'):
newtag='a'
elif t[1].startswith('V'):
newtag='v'
elif t[1].startswith('R'):
newtag='r'
else:
newtag=''
if(newtag!=''):
synsets = list(swn.senti_synsets(lemmatized, newtag))
 #Getting average of all possible sentiments, as you requested
score=0
if(len(synsets)>0):
for syn in synsets:
score+=syn.pos_score()-syn.neg_score()
 score_list[idx].append(score/len(synsets))

 #print(score_list)
 sentence_sentiment=[]

for score_sent in score_list:
if len(score_sent)>0:
 sentence_sentiment.append(sum([word_score for word_score in
score_sent])/len(score_sent))
 #print("Sentiment for each sentence for:"+doc)
 #print(sentence_sentiment)
return sentence_sentiment

for row in x.itertuples():
x['SentiWordNetScore'] = x.apply(lambda row:
sentiwordnet_python(row.SentiWordNet_Text), axis=1)

x.to_csv('C:/Users/Sachi/Desktop/MscProject/Outputs/step04_sentiwordnet.txt',
sep='\t', encoding='latin-1')

53

#Step 03 - Evaluation on R

#Calculate Sentiwordnet
y <- fread ("C:/Users/Sachi/Desktop/MscProject/Outputs/step04_sentiwordnet.txt",
header = TRUE, select = c("Text", "Rating", "OriginalText", "Lexicon", "TotalScore",
"PredictedRating", "SentiWordNet_Text", "SentiWordNetScore"))

#Remove Null values
y$SentiWordNetScore <- gsub("[[]]", "0.0", y$SentiWordNetScore)

#Remove Special characters from score column
y$SentiWordNetScore <- gsub("[[]", "", y$SentiWordNetScore)
y$SentiWordNetScore <- gsub("[]]", "", y$SentiWordNetScore)

#Assign to x
x <- y

#Convert SentiWordNet Score to numeric value
x$SentiWordNetScore = as.numeric(x$SentiWordNetScore)

#Replace NULL values to 0
x$SentiWordNetScore = ifelse(is.na(x$SentiWordNetScore) == 'TRUE', 0.00,
x$SentiWordNetScore)

#Calculate Total Score
x$TotalScore = (x$Lexicon)+(x$SentiWordNetScore)

#Assign Predicted Rating
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)

54

Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)
Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)
Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step04_Lexicon_SentiWordNet = Performance_matrix
Performance_matrix_Step04_Lexicon_SentiWordNet

55

Appendix E – R code for using Lexicon Dictionary with Slang Replacements

#Import Slang Dictionary-special charators
slangs_sc <- fread
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\slangs_specialchar.csv",
header = TRUE, select = c("Slang","Slang_Desc"))

slangs_other <- fread
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\slangs_others.csv", header =
TRUE, select = c("Slang","Slang_Desc"))

slangs_sc$Slang <- tolower(slangs_sc$Slang)
slangs_other$Slang <- tolower(slangs_other$Slang)

z <- x

#Duplicate "Text" field column
#z$OriginalText = z$Text

#Replace twitter feeds with slangs
for (q in 1:nrow(z))
for(t in 1:nrow(slangs_sc))
 #For special characters
 { z[q,1] <- gsub((str_c(" \\", slangs_sc[t,1]," ")), str_c(" ", slangs_sc[t,2]," "),
z[q,1])}

for (q in 1:nrow(z))
z[q,1] <- gsub(":\\)", "Positive", z[q,1])

for (q in 1:nrow(z))
z[q,1] <- gsub(":\\(", "Negative", z[q,1])

for (q in 1:nrow(z))
z[q,1] <- gsub(":p", "Positive", z[q,1])

for (q in 1:nrow(z))
z[q,1] <- gsub(":d", "Positive", z[q,1])

#for (q in 1:nrow(z))
#z[q,1] <- gsub("xd", "Positive", z[q,1])

for (q in 1:nrow(z))
for(t in 1:nrow(slangs_other))
 #For others characters
 { z[q,1] <- gsub((str_c(" ",slangs_other[t,1]," ")), (str_c(" ", slangs_other[t,2]," ")),
z[q,1])}

56

#Replace twitter feeds with slangs
#for (q in 1:nrow(z))
for(t in 1:nrow(slangs))
#For special characters
if (substring(slangs[t,1], 1, 1) %in% c("$","*","/","<",">","?","@","^",":"))
#{ z[q,1] <- gsub((str_c(" \\", slangs[t,1]," ")), str_c(" ", slangs[t,2]," "), z[q,1])} else {
z[q,1] <- gsub((str_c(" ",slangs[t,1]," ")), (str_c(" ", slangs[t,2]," ")), z[q,1])}

x$Slangs_Text <- tolower(z$Text)

#Text Preprocessing
##Removal of Retweets
x$Slangs_Text <- gsub("RT @[a-z,A-Z]*:", "", x$Slangs_Text)

##Removal of HTML Links - Need qdapRegex Package to use rm_url
x$Slangs_Text <- rm_url(x$Slangs_Text, pattern=pastex("@rm_twitter_url",
"@rm_url"))

##Removal of @People
x$Slangs_Text <- gsub("@\\w+", "", x$Slangs_Text)

##Removal of Special Characters ?& .
x$Slangs_Text <- gsub("?", " ", x$Slangs_Text, fixed = TRUE)
x$Slangs_Text <- gsub(".", " ", x$Slangs_Text, fixed = TRUE)
x$Slangs_Text <- gsub("!", " ", x$Slangs_Text, fixed = TRUE)
x$Slangs_Text <- gsub("\"", " ", x$Slangs_Text, fixed = TRUE)

#Text Refinement
#Remove Stop words
rm_words <- function(string, words) {
stopifnot(is.character(string), is.character(words))
spltted<- strsplit(string, " ", fixed = TRUE) # fixed = TRUE for speedup
vapply(spltted, function(x) paste(x[!tolower(x) %in% words], collapse = " "),
character(1))
}
#Customize the stop words
exceptions<- c("no")
my_stopwords <- setdiff(tm::stopwords("en"), exceptions)

#x$Text <- rm_words(x$Text, tm::stopwords("en"))
x$Slangs_Text <- rm_words(x$Slangs_Text, my_stopwords)

#Score based on Positive & Negative words
result1 <- score.sentiment(x$Slangs_Text, pos_words, neg_words)

#Calculate Lexicon Score
x$Lexicon_Slangs_Score = result1$score

57

#Calculate Total Score
x$TotalScore = (x$Lexicon_Slangs_Score)

#Assign Predicted Rating
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)
Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)
Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

58

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)
Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step05_Lexicon_Slang = Performance_matrix
Performance_matrix_Step05_Lexicon_Slang

59

Appendix F – R code for using Lexicon Dictionary with Slang Replacements and
Emoticons

#Import Emoticon Dictionary
emoticons<- fread
("C:\\Users\\Sachi\\Desktop\\MscProject\\Dictionaries\\Emoticons.txt", header =
TRUE, select = c("Emoticon","Sentiment_score"))

emoticons$Tag <- ""

#Tag Positive & Negative Emoticons
for (q in 1:nrow(emoticons))
 emoticons[q,3] <-
ifelse(emoticons[q,2]>0,"Positive",ifelse(emoticons[q,2]==0,"Neutral","Negative"))

emoticons_pos <- emoticons[emoticons$Tag %in% "Positive"]
emoticons_neg <- emoticons[emoticons$Tag %in% "Negative"]

#Score based on Emoticons
result2 <- score.sentiment(x$Text, tolower(emoticons_pos$Emoticon),
tolower(emoticons_neg$Emoticon))

#Calculate Lexicon Score
x$Emoticons = result2$score

#Calculate Total Score
x$TotalScore = x$Lexicon_Slangs_Score + x$Emoticons

#Assign Predicted Rating
x$PredictedRating = ifelse(x$TotalScore < 0, 'Negative',
(ifelse(x$TotalScore==0,'Neutral','Positive')))

#Calculate Performance Matrix
#For Positive Reviews
TP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating == 'Positive', 1, 0))
FP1 = sum(ifelse(x$PredictedRating == 'Positive' & x$Rating != 'Positive', 1, 0))
FN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating == 'Positive', 1, 0))
TN1 = sum(ifelse(x$PredictedRating != 'Positive' & x$Rating != 'Positive', 1, 0))

Performance_matrix <- matrix(ncol=4,nrow=3,byrow=TRUE)
rownames(Performance_matrix) <- c("Positive","Negative","Neutral")
colnames(Performance_matrix) <- c("Accuracy","Precision","Recall","F_Measure")

#Performance Metrics
Performance_matrix[1,1] = (TP1+TN1)/(TP1+FP1+FN1+TN1)
Performance_matrix[1,2] = TP1/(TP1+FP1)
Performance_matrix[1,3] = TP1/(TP1+FN1)

60

Performance_matrix[1,4]=
(2*Performance_matrix[1,2]*Performance_matrix[1,3])/(Performance_matrix[1,2]+P
erformance_matrix[1,3])

#For Negative Reviews
TP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating == 'Negative', 1, 0))
FP2 = sum(ifelse(x$PredictedRating == 'Negative' & x$Rating != 'Negative', 1, 0))
FN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating == 'Negative', 1, 0))
TN2 = sum(ifelse(x$PredictedRating != 'Negative' & x$Rating != 'Negative', 1, 0))

#Performance Metrics
Performance_matrix[2,1] = (TP2+TN2)/(TP2+FP2+FN2+TN2)
Performance_matrix[2,2] = TP2/(TP2+FP2)
Performance_matrix[2,3] = TP2/(TP2+FN2)
Performance_matrix[2,4]=
(2*Performance_matrix[2,2]*Performance_matrix[2,3])/(Performance_matrix[2,2]+P
erformance_matrix[2,3])

#For Neutral Reviews
TP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating == 'Neutral', 1, 0))
FP3 = sum(ifelse(x$PredictedRating == 'Neutral' & x$Rating != 'Neutral', 1, 0))
FN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating == 'Neutral', 1, 0))
TN3 = sum(ifelse(x$PredictedRating != 'Neutral' & x$Rating != 'Neutral', 1, 0))

#Performance Metrics
Performance_matrix[3,1] = (TP3+TN3)/(TP3+FP3+FN3+TN3)
Performance_matrix[3,2] = TP3/(TP3+FP3)
Performance_matrix[3,3] = TP3/(TP3+FN3)
Performance_matrix[3,4]=
(2*Performance_matrix[3,2]*Performance_matrix[3,3])/(Performance_matrix[3,2]+P
erformance_matrix[3,3])

#Label the Performance Metric
Performance_matrix_Step06_Lexicon_Slang_Emoticons = Performance_matrix
Performance_matrix_Step06_Lexicon_Slang_Emoticons

	Declaration
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1Introduction
	1.1 Prolegomena
	1.2Problem Statement
	1.3Aims &Objectives
	1.4 Background and Motivation
	1.5Problem in brief
	1.6Proposed Solution
	1.7Structure of the thesis

	2 Literature Review
	2.1 Introduction
	2.2 Customer Satisfaction Monitoring Framework
	2.3 Goal Setting
	2.4 Text Preprocessing
	2.5 Parsing the content
	2.6 Text Refinement
	2.7 Analyzing and Scoring
	2.7.1 Analyzing
	2.7.1.aDifferent Levels of Sentiment Analysis
	Document level Sentiment Analysis
	Sentence Level Sentiment Analysis
	Entity and Aspect level

	2.7.1.b Sentiment Classification Techniques

	2.7.2 Scoring

	2.8 Finalize and validate the model
	2.8.1 The true positive rate (Hit rate or Recall) of aclassifier
	2.8.2 The false positive rate of aclassifier (FPR)
	2.8.3Precision
	2.8.4F-Score

	2.9 Summary

	3 Technology
	3.1 Introduction
	3.2 Machine Learning Vs Lexicon Based Method
	3.3 Limitations of Lexicon Based Method
	3.4 Summary

	4 Approach
	4.1 Introduction
	4.2 Hypothesis
	4.3 Input
	4.4 Output
	4.5 Process
	4.6 Summary

	5 Analysis & Design
	5.1 Introduction
	5.2 High-Level Solution Diagram
	5.2.1 Text Preprocessing Module
	5.2.1.a Removal of Duplicates
	5.2.1.bRemoval of Retweets
	5.2.1.cRemoval of HTML Links
	5.2.1.dRemoval of @people
	5.2.1.e Removal of Stop Words

	5.2.2 Content Parsing Module
	5.2.2.aTokenization

	5.2.3Lexicon Module
	5.2.3.aLexicon Dictionary
	5.2.3.bEmoticons Dictionary
	5.2.3.cSentiWordNet
	5.2.3.dSlang Dictionary

	5.2.4Scoring Module
	5.2.4.a Lexicon Score
	5.2.4.b Emoticon Score
	5.2.4.c SentiWordNet Score
	5.2.4.d Slang Score

	5.2.6Finalize and validate the model
	5.2.6.aConfusion Matrix for Positive Reviews
	5.2.6.b Confusion Matrix for Negative Reviews
	5.2.6.c Confusion Matrix for Neutral Reviews

	5.3 Summary

	6 Implementation
	6.1 Introduction
	6.2 Approach
	6.3 Dataset
	6.4 Text Preprocessing Module
	6.5 Content Parsing Module
	6.6 Lexicon Module
	6.7 Scoring Module
	6.7.1 Algorithm for using Lexicon Dictionary only
	6.7.2 Algorithm for using SentiWordNet only
	6.7.3 Algorithm for using both Lexicon and SentiWordNet
	6.7.4 Algorithm for using Lexicon with Slang Replacements
	6.7.5 Algorithm for using Lexicon with Slang Replacements and Emoticons Dictionary

	6.8 Summary

	7 Discussion
	7.1 Introduction
	7.2 Results & Analysis
	7.3 Model Validation with existing tools/APIs
	7.3.1 Google Cloud Natural Language API
	7.3.2 tap.aylien.com API

	7.3Research Limitations
	7.4 Suggestions for Further Research
	7.5 Summary

	References
	Appendixes
	Appendix A – R code for using only Lexicon Dictionary
	Appendix B – R code for using SentiWordNet
	Appendix C – R code for using Lexicon Dictionary with Stop Words Amendments
	Appendix D – R code for comparing Lexicon Dictionary with SentiWordNet
	Appendix E – R code for using Lexicon Dictionary with Slang Replacements
	Appendix F – R code for using Lexicon Dictionary with Slang Replacements and Emoticons

