A STATISTICAL MODEL TO IDENTIFY THE INFLUENCE OF MATHEMATICS ON STUDENTS' PERFORMANCE IN ENGINEERING PROGRAMS

Kurukula Arachchige Dona Sajeeka Antonette Nanayakkara

(148051G)

Degree of Master of Philosophy

Department of Mathematics

University of Moratuwa Sri Lanka

November 2017

A STATISTICAL MODEL TO IDENTIFY THE INFLUENCE OF MATHEMATICS ON STUDENTS' PERFORMANCE IN ENGINEERING PROGRAMS

Kurukula Arachchige Dona Sajeeka Antonette Nanayakkara

(148051G)

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy

Department of Mathematics

University of Moratuwa Sri Lanka

November 2017

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text."

"Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the MPhil Dissertation under my supervision.

Signature of the supervisor:

Date:

ABSTRACT

Mathematics plays a major role in higher education as it is particularly essential to develop the analytical thinking of students in a wide range of disciplines, especially, in engineering sciences. Therefore, exploring the student academic performance has been a crucial aspect of the educational research recently. In this study, the impact of mathematics in Level 1 and Level 2 on student engineering performance in Level 2 was investigated for seven engineering disciplines at the Faculty of Engineering, University of Moratuwa, Sri Lanka under two scenarios: (i) effect of mathematics in Level 1 and Level 2 simultaneously and (ii) effect of mathematics in Level 1 and Level 2 separately by using unadjusted and adjusted Canonical Correlation Analysis (CCA). A theoretical model underlying relationship between two measurements, mathematics performance and engineering performance was developed based on literature review. The Structural Equation Modeling based on Partial Least Squares (PLS-SEM) technique was used to validate the conceptual model and proposed an index to measure the mathematical influence on student engineering performance. The first canonical variate of engineering was found to be the best proxy indicator for the engineering performance. The impact of mathematics in semester 2 is significantly higher compared with the impact of mathematics in semester 1 on engineering performance in Level 2. The mathematics in Level 1 and Level 2 jointly influenced on the engineering performance in Level 2 irrespective of the engineering disciplines and the level of impact of mathematics varies among engineering disciplines. The individual effect of mathematics in Level 2 is significantly higher compared to the individual effect of mathematics in Level 1 on engineering performance in Level 2. The mathematics in Level 1 is still important in affecting students' engineering performance in Level 2 as there is a significant effect indirectly. The results obtained in this study can be utilized in curriculum development in mathematics modules.

Keywords: canonical correlation analysis; engineering mathematics; structural equation modeling; student academic performance

ACKNOWLEDGEMENTS

I would like to convey my heartiest gratitude for all the eminent people who helped me to make this research study successfully. Firstly, I express my sincere thanks to my supervisor, Prof. T.S.G. Peiris, the Head of the Department of Mathematics, Faculty of Engineering, University of Moratuwa, whose vast knowledge, experience and valuable guidance helped me immensely to complete this research successfully.

I acknowledge and value the support of the Senate Research Committee, University of Moratuwa for offering me a research grant (Grant No. SRC/LT/2014/04) in providing this opportunity and financially supporting my study.

My heartiest appreciation to Prof. Thomas Mathew, University of Maryland Baltimore Country (UMBC), United States and Dr. N.P. Jayamaha, Massey University, New Zealand for providing their valuable advice and suggestions related to my research. Also, my heartiest gratitude to the progress review committee, Dr. (Mrs.) N.R. Abeynayake, Dr. (Mrs.) D.D.M. Jayasundara and Dr. P.M. Edirisinghe for their valuable suggestions and comments to improve the quality of my research.

I am greatly indebted to Mrs. P.K.B.N.M. Pallawala, Mrs. N.V. Chandrasekara and Mrs. H.P.T.N. Silva, who always encouraged me throughout the period of research by sharing their knowledge and providing their valuable suggestions related to the research. I would also like to thank all the academic and non-academic members of the Department of Mathematics, for their assistance throughout my study.

Last but not least, I am ever grateful to my husband, my parents, my parents-in-law and my sisters for their support and encouragement.

K.A.D.S.A. Nanayakkara

TABLE OF CONTENTS

DEC	CLARATION	ii
ABS	TRACT	iii
ACK	KNOWLEDGEMENTS	iv
TAB	BLE OF CONTENTS	V
LIST	ΓOF TABLES	xi
LIST	Γ OF FIGURES	XV
LIST	Γ OF ABBREVIATIONS	xvi
1.	INTRODUCTION	
1.1.	Background	1
1.2.	Objectives of the Study	4
1.3.	Significance of the Study	4
1.4.	Outline of the Thesis	5
2.	LITERATURE REVIEW	
2.1.	Importance of Mathematics in Higher Education	6
2.2.	Importance of Mathematics in Engineering Education	6
2.3.	Statistical Analysis of Student Academic Performance	8
	2.3.1. Correlation Coefficient	8
	2.3.2. Generalized Linear Models using One-way ANOVA	10
	2.3.3. Linear Regression Models	10
	2.3.4. Clustering and Classification	11
2.4.	Canonical Correlation Analysis	11
2.5.	Chapter Summary	13
3.	MATERIALS AND METHODS	
3.1.	Data Description	14
3.2.	Canonical Correlation Analysis (Unadjusted)	16
	3.2.1. Key Terms in CCA	18

	3.2.2.	Test of Significance for Canonical Correlation	19
3.3.	Adjuste	d CCA	20
	3.3.1.	Partial Canonical Correlation Analysis (Partial CCA)	20
	3.3.2.	Part Canonical Correlation Analysis (Part CCA)	20
3.4.	The Pro	positions	21
3.5.	Partial I	Least Squares Structural Equation Modeling (PLS-SEM)	21
	3.5.1.	Measurement Models	23
	3.5.2.	Structural Model	24
	3.5.3.	Assessment of Model Validation	24
	3.5.3	3.1. Assessment of Reflective Measurement Models	24
	3.5.3	3.2. Assessment of Formative Measurement Models	26
	3.5.3	3.3. Assessment of Structural Model	26
	3.5.4.	Bootstrapping Technique	27
3.6.	The Pro	posed Mathematical Influence Index	27
3.7.	Chapter	Summary	28

4. EXPLANATORY DATA ANALYSIS

4.1.	Descriptive Analysis of Overall Mathematics Marks in Level 1	29
4.2.	Descriptive Analysis of Mathematics Marks by Engineering Disciplines	31
	4.2.1. Analysis of Mathematics Marks in S1	31
	4.2.2. Analysis of Mathematics Marks in S2	33
4.3.	Analysis of Variance (ANOVA)	34
4.4.	Descriptive Analysis of Mathematics Marks in Level 2	35
4.5.	Comparison of GPA with Average / Weighted Average Marks	38
4.6.	Association between Mathematics in Level 1 and Overall	
	Performance in Level 2	40
4.7.	Analysis of Academic Performance by Engineering Disciplines	41
4.8.	Multiple Linear Regression Analysis	41
4.9.	Chapter Summary	45

5. COMBINED IMPACT OF MATHEMATICS IN LEVEL 1 AND LEVEL 2

5.1.	Combi	ined Impact on CH Student Engineering Performance	47
	5.1.1.	Academic Year 2010/2011 - S3 of CH Students	47
	5.1.2.	Academic Year 2010/2011 - S4 of CH Students	51
	5.1.3.	Academic Year 2011/2012- S3 of CH Students	54
	5.1.4.	Academic Year 2011/2012 – S4 of CH Students	58
5.2.	Combi	ined Impact on CE Student Engineering Performance	61
	5.2.1.	Academic Year 2010/2011 - S3 of CE Students	61
	5.2.2.	Academic Year 2010/2011 - S4 of CE Students	63
	5.2.3.	Academic Year 2011/2012- S3 of CE Students	63
	5.2.4.	Academic Year 2011/2012 – S4 of CE Students	63
5.3.	Combi	ined Impact on Student Performance in Other Disciplines	63
	5.3.1.	Impact on Student Performance in CS	64
	5.3.2.	Impact on Student Performance in EE	65
	5.3.3.	Impact on Student Performance in EN	65
	5.3.4.	Impact on Student Performance in ME	66
	5.3.5.	Impact on Student Performance in MT	67
5.4.	Relation	onship between GPA and First Canonical Variate	73
5.5.	Chapte	er Summary	73

6. SEPARATE IMPACT OF MATHEMATICS IN LEVEL 1 AND LEVEL 2

6.1.	Introdu	uction	75
6.2.	Individ	dual Impact of Mathematics in Level 1	76
	6.2.1.	Impact on CH Student Performance	76
		6.2.1.1. Academic Year 2010/2011 – S3	76
		6.2.1.2. Academic Year 2010/2011 – S4	78
		6.2.1.3. Academic Year 2011/2012 – S3	81
		6.2.1.4. Academic Year 2011/2012 – S4	83
	6.2.2.	Impact on CE Student Performance	85
		6.2.2.1. Academic Year 2010/2011 – S3	85
		6.2.2.2. Academic Year 2010/2011 – S4	86

	C 0 0 0	N J	07
		3. Academic Year 2011/2012 – S3	86
	6.2.2.4	4. Academic Year 2011/2012 – S4	88
	6.2.3. Impac	t on Student Performance in Other Disciplines	88
	6.2.3.1	. Impact on CS Student Performance	88
	6.2.3.2	2. Impact on EE Student Performance	89
	6.2.3.3	3. Impact on EN Student Performance	89
	6.2.3.4	Impact on ME Student Performance	89
	6.2.3.5	5. Impact on MT Student Performance	90
6.3.	Individual Im	pact of Mathematics in Level 2	96
	6.3.1. Impac	t on CH Student Performance	96
	6.3.1.1	. Academic Year 2010/2011 – S3	96
	6.3.1.2	2. Academic Year 2010/2011 – S4	98
	6.3.1.3	3. Academic Year 2011/2012 – S3	100
	6.3.1.4	Academic Year 2011/2012 – S4	103
	6.3.2. Impac	t on CE Student Performance	106
	6.3.2.1	. Academic Year 2010/2011 – S3	106
	6.3.2.2	2. Academic Year 2010/2011 – S4	107
	6.3.2.3	 Academic Year 2011/2012 – S3 	107
	6.3.2.4	4. Academic Year 2011/2012 – S4	107
	6.3.3. Impac	t on Student Performance in Other Disciplines	109
	6.3.3.1	. Impact on CS Student Performance	109
	6.3.3.2	2. Impact on EE Student Performance	109
	6.3.3.3	3. Impact on EN Student Performance	110
	6.3.3.4	Impact on ME Student Performance	110
	6.3.3.5	5. Impact on MT Student Performance	111
6.4.	Comparison o	f Joint Impact and Individual Impact of Mathematics	117
6.5.	-	1 I	117
	1	5	
7.	MODELING	THE RELATIONSHIP OF MATHEMATICS	AND
		ENGINEERING PERFORMANCE	
- 1			110
7.1.	Modeling CH	Student Performance	119

	7.1.1. Student Performance in Academic Year 2010/2011	119
	7.1.1.1. Evaluation of the Formative Measurement Model	120
	7.1.1.2. Evaluation of the Reflective Measurement Model	121
	7.1.1.3. Evaluation of the Structural Model	124
	7.1.2. Student Performance in Academic Year 2011/2012	127
	7.1.2.1. Evaluation of the Structural Model	130
7.2.	Modeling CE Student Performance	131
	7.2.1. Evaluation of the Measurement Model	132
	7.2.2. Evaluation of the Structural Model	134
7.3.	Modeling CS Student Performance	135
	7.3.1. Evaluation of the Measurement Model	135
	7.3.2. Evaluation of the Structural Model	137
7.4.	Modeling EE Student Performance	139
	7.4.1. Evaluation of the Measurement Model	139
	7.4.2. Evaluation of the Structural Model	141
7.5.	Modeling EN Student Performance	142
	7.5.1. Evaluation of the Measurement Model	142
	7.5.2. Evaluation of the Structural Model	144
7.6.	Modeling ME Student Performance	145
	7.6.1. Evaluation of the Measurement Model	145
	7.6.2. Evaluation of the Structural Model	147
7.7.	Modeling MT Student Performance	148
	7.7.1. Evaluation of the Measurement Model	148
	7.7.2. Evaluation of the Structural Model	150
7.8.	Proposed Index to Quantify the Influence of Mathematics	151
7.9.	Chapter Summary	152
0		
8.	CONCLUSIONS AND RECOMMENDATIONS	150
8.1.	Conclusions	153
8.2.	Research Limitations	155

8.3.	Recommendation for Future Research	155

9.	PUBLICATIONS BASED ON THIS STUDY	
9.1.	List of Publications	156
REF	TERENCES	191
APP	PENDIX 1	199
APP	PENDIX 2	207
APP	PENDIX 3	221

LIST OF TABLES

Table 3.1	Number of students in engineering disciplines	14
Table 3.2	Mathematics modules followed - academic year 2010/2011	15
Table 3.3	Mathematics modules followed - academic year 2011/2012	15
Table 4.1	Descriptive statistics of mathematics marks in Level 1	29
Table 4.2	Descriptive statistics of mathematics marks in S1 (Discipline wise)	31
Table 4.3	Descriptive statistics of mathematics marks in S2 (Discipline wise)	33
Table 4.4	ANOVA for mathematics performance in Level 1	35
Table 4.5	Descriptive Statistics for mathematics performance in Level 2 – 2010/2011	36
Table 4.6	Descriptive Statistics for mathematics performance in Level 2 – 2011/2012	37
Table 4.7	Correlation between GPA and average performance - 2010	39
Table 4.8	Correlation between GPA and average performance - 2011	39
Table 4.9	Correlation between mathematics marks and student performance - 2010	40
Table 4.10	Correlation between mathematics marks and student performance - 2011	40
Table 4.11	MLR model Summary for S3 (Discipline wise)	42
Table 4.12	MLR model Summary for S4 (Discipline wise)	43
Table 4.13	MLR model Summary for Level 2 (Discipline wise)	44
Table 5.1	Results of canonical correlations - performance of CH in S3 (2010)	48
Table 5.2	Canonical loadings and canonical cross loadings – performance of CH in S3 (2010)	50
Table 5.3	Canonical redundancy analysis – performance of CH in S3 (2010)	51
Table 5.4	Results of canonical correlations - performance of CH in S4 (2010)	52
Table 5.5	Canonical loadings and canonical cross loadings – performance of CH in S4 (2010)	53
Table 5.6	Canonical redundancy analysis – performance of CH in S4 (2010)	54
Table 5.7	Results of canonical correlations – performance of CH in S3 (2011)	55
Table 5.8	Canonical loadings and canonical cross loadings – performance of CH in S3 (2011)	56
Table 5.9	Canonical Redundancy Analysis – performance of CH in S3 (2011)	57
Table 5.10	Results of canonical correlations - performance of CH in S4 (2011)	58
Table 5.11	Canonical loadings and canonical cross loadings – performance of CH in S4 (2011)	59
Table 5.12	Canonical Redundancy Analysis – performance of CH in S4 (2011)	60

Table 5.13	Important statistics related to the first pair of canonical variate – CE student performance	62
Table 5.14	Important statistics related to the first pair of canonical variate – CS student performance	68
Table 5.15	Important statistics related to the first pair of canonical variate – EN student performance	69
Table 5.16	Important statistics related to the first pair of canonical variate – EE student performance	70
Table 5.17	Important statistics related to the first pair of canonical variate – ME student performance	71
Table 5.18	Important statistics related to the first pair of canonical variate – MT student performance	72
Table 5.19	Pearson correlation between GPA and first canonical variate of engineering modules in Level 2	73
Table 6.1	Results of Part CCA – performance of CH in S3 (2010)	76
Table 6.2	Standardized canonical coefficients and canonical structure - performance of CH in S3 (2010)	77
Table 6.3	Canonical Redundancy Analysis – performance of CH in S3 (2010)	78
Table 6.4	Results of Part CCA – performance of CH in S4 (2010)	79
Table 6.5	Standardized canonical coefficients and canonical structure – performance of CH in S4 (2010)	80
Table 6.6	Canonical redundancy analysis – performance of CH in S4 (2010)	80
Table 6.7	Results of Part CCA – performance of CH in S3 (2011)	81
Table 6.8	Standardized canonical coefficients and canonical structure – performance of CH in S3 (2011)	82
Table 6.9	Canonical Redundancy Analysis – performance of CH in S3 (2011)	83
Table 6.10	Results of Part CCA – performance of CH in S4 (2011)	83
Table 6.11	Standardized canonical coefficients and canonical structure – performance of CH in S4 (2011)	84
Table 6.12	Canonical redundancy analysis – performance of CH in S4 (2011)	85
Table 6.13	Results of first pair of part canonical variate - CE student performance	87
Table 6.14	Results of first pair of part canonical variate - CS student performance	91
Table 6.15	Results of first pair of part canonical variate - EE student performance	92
Table 6.16	Results of first pair of part canonical variate - EN student performance	93
Table 6.17	Results of first pair of part canonical variate -ME student performance	94
Table 6.18	Results of first pair of part canonical variate - MT student performance	95
Table 6.19	Results of Partial CCA – performance of CH in S3 (2010)	96

Table 6.20	Standardized canonical coefficients and canonical structure – performance of CH in S3 (2010)	97
Table 6.21	Canonical Redundancy Analysis – performance of CH in S3 (2010)	98
Table 6.22	Results of Partial CCA – performance of CH in S4 (2010)	99
Table 6.23	Standardized canonical coefficients and canonical structure – performance of CH in S4 (2010)	99
Table 6.24	Canonical redundancy analysis – performance of CH in S4 (2010)	100
Table 6.25	Results of Partial CCA – performance of CH in S3 (2011)	101
Table 6.26	Standardized canonical coefficients and canonical structure – performance of CH in S3 (2011)	102
Table 6.27	Canonical redundancy analysis – performance of CH in S3 (2011)	103
Table 6.28	Results of Partial CCA – performance of CH in S4 (2011)	104
Table 6.29	Standardized canonical coefficients and canonical structure – performance of CH in S4 (2011)	105
Table 6.30	Canonical redundancy analysis – performance of CH in S4 (2011)	105
Table 6.31	Results of first pair of partial canonical variate – CE student performance	108
Table 6.32	Results of first pair of partial canonical variate – CS student performance	112
Table 6.33	Results of first pair of partial canonical variate – EE student performance	113
Table 6.34	Results of first pair of partial canonical variate – EN student performance	114
Table 6.35	Results of first pair of partial canonical variate – ME student performance	115
Table 6.36	Results of first pair of partial canonical variate – MT student performance	116
Table 7.1	Indicator statistics of formative constructs – CH performance (2010)	121
Table 7.2	Reliability and validity statistics of reflective constructs – CH performance (2010)	122
Table 7.3	Cross loadings matrix – CH performance (2010)	123
Table 7.4	Fornell-Larcker criterion – CH performance (2010)	124
Table 7.5	Results of structural model- CH performance (2010)	125
Table 7.6	Direct, Indirect and Total effects assessment- CH performance (2010)	125
Table 7.7	Indicator statistics in formative constructs – CH performance (2011)	128
Table 7.8	Reliability and validity statistics of reflective constructs – CH performance (2011)	128
Table 7.9	Cross loadings matrix – CH performance (2011)	129

Table 7.10	Fornell-Larcker criterion – CH performance (2011)	129	
Table 7.11	Results of structural model – CH performance (2011)		
Table 7.12	Direct, Indirect and Total effects assessment-CH performance (2011)		
Table 7.13	Indicator statistics of formative constructs – CE performance		
Table 7.14	Reliability and validity statistics of reflective constructs – CE performance		
Table 7.15	Fornell-Larcker criterion – CE performance		
Table 7.16	Results of structural model- CE performance		
Table 7.17	Indicator statistics of formative constructs - CS performance		
Table 7.18	Reliability and validity statistics of reflective constructs – CS performance		
Table 7.19	Fornell-Larcker criterion – CS performance	137	
Table 7.20	Results of structural model- CS performance		
Table 7.21	Indicator statistics of formative constructs – EE performance		
Table 7.22	Reliability and validity statistics of reflective constructs – EE performance	140	
Table 7.23	Fornell-Larcker criterion – EE performance	140	
Table 7.24	Results of structural model- EE performance	141	
Table 7.25	Indicator statistics of formative constructs – EN performance	142	
Table 7.26	Reliability and validity statistics of reflective constructs – EN performance		
Table 7.27	Fornell-Larcker criterion – EN performance	143	
Table 7.28	Results of structural model- EN performance		
Table 7.29	Indicator statistics of formative constructs – ME performance		
Table 7.30	Reliability and validity statistics of reflective constructs – ME performance	146	
Table 7.31	Fornell-Larcker criterion – ME performance	146	
Table 7.32	Results of structural model- ME performance	147	
Table 7.33	Indicator statistics of formative constructs – MT performance	148	
Table 7.34	Reliability and validity statistics of reflective constructs – MT performance	149	
Table 7.35	Fornell-Larcker criterion – MT performance	149	
Table 7.36	Results of structural model-MT performance	150	
Table 7.37	Results of mathematical influenc index	151	

LIST OF FIGURES

Figure 3.1	Proposed model for conceptual framework	16
Figure 3.2	Illustration of the conceptual framework in CCA	
Figure 3.3	General PLS structural equation model	
Figure 4.1	Distributions of Mathematics marks in S1 and S2	
Figure 4.2	Distribution of mathematics marks in S1 by engineering discipline	34
Figure 4.3	3 Distribution of mathematics marks in S2 by engineering discipline	
Figure 4.4	4.4 Distributions of mean marks of S3 by engineering discipline	
Figure 4.5	Figure 4.5 Distribution of mean marks of S4 by engineering discipline	
Figure 7.1	PLS structural model for CH student performance – 2010	119
Figure 7.2	PLS structural model for CH student performance – 2011	127

LIST OF ABBREVIATIONS

Abbreviation	Description
ANOVA	Analysis of Variance
AVE	Average Variance Extracted
CCA	Canonical Correlation Analysis
CE	Civil Engineering
СН	Chemical and Process Engineering
CR	Composite Reliability
CS	Computer Science and Engineering
EE	Electrical Engineering
EN	Electronic and Telecommunication Engineering
ENG	Engineering
GPA	Grade Point Average
MAT	Mathematics
ME	Mechanical Engineering
MT	Material Science and Engineering
OLS	Ordinary Least Squares
PLS	Partial Least Squares
S 1	First Semester
S2	Second Semester
S 3	Third Semester
S 4	Fourth Semester
SE	Standard Error
SEM	Structural Equation Modeling
VIF	Variance Inflation Factor