STABILITY AND SECURITY ANALYSIS OF INDIA-SRI LANKA HVDC INTERCONNECTION

Ampegama Gamage Chenuka Uppalani Perera

(118076J)

LIBRARY UNIVERSITY OF MORATUWA

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

621.3 16" 621.3 (0+3)

18/00 N/138/2016

M. Phill92.

May 2016

T-1- 3207

TH 3207

+ cp. pom

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Name of CandidateA.G.C.U PereraDate10

The above candidate has carried out research for the MPhil thesis under our supervision.

UOM Verified Signature

10/05/2016

Date

Signature of the supervisor (Dr W.D.A.S Rodrigo)

UOM Verified Signature Signature of the co-supervisor (Eng W.D.A.S Wijayapala)

10/05/2016

Date

Dedicated to my Family

My parents, my husband Shami Mudunkotuwa and my baby girl Yanuli

Acknowledgments

I acknowledge with gratitude my advisor Dr. W.D.A.S Rodrigo for his excellent guidance, supervision and the encouragement during my entire period of study.

I would also like to express gratitude towards Eng. W.D.A.S Wijayapala for the assistance and support for this work.

Special thanks to Isuru Pasan Dasanayake and Supun De Silva for the great help given me during the study during their busy schedules.

I would like to thanks my husband Shami Mudunkotuwa for the support he gave me during this whole period of study.

Abstract

This thesis concentrates on the stability performance of HVDC-HVAC interaction of the transnational HVDC interconnection between Sri Lanka and India. This transmission line was under consideration since mid-1970 and the prefeasibility study was done by India in cooperated with Sri Lanka together. In this study it was focused on modeling the HVDC link between Indian and Sri Lankan power grids with the basic control system and studying the transient stability performance of the HVDC interconnection under the Sri Lankan transmission network perturbed conditions. The complete system was modeled on PSCAD/EMTDC software. The complete system was divided into five subsystems while modeling as, rectifier side AC source, converter transformers and converters, DC transmission line, HVDC control system and inverter side detailed Sri Lankan network. The simulations were done for steady state conditions, for system accuracy verification and for different system perturbed conditions. The analysis was done based upon the maximum power curve, Short circuit ratio (SCR) and time domain analysis. It was found that; modeled Sri Lankan network is a strong network for the proposed HVDC interconnection in steady state condition. However, there is a considerable impact on the stability of HVDC-HVAC interaction under different perturbed scenarios of Sri Lankan AC network. This study discusses the results obtained from the qualitative and quantitative analysis.

The results obtained from this study can be taken as guidance during the planning and designing stage of the proposed DC interconnection to have an idea on stability of the AC-DC interaction. The DC power operating curve, maximum DC power infeed to inverter side Sri Lankan network, AC system strength behavior during different disturbances, time domain faults behavior, impact of AC system impedance on the stability are the facts which are discussing in this thesis. Therefore, this thesis can be consider as guidance for the planning stage of the proposed interconnection.

iv

Contents

De	claration of	the candidate & Supervisor	i
De	dication		ii
Ac	knowledge	ments	iii
Ab	stract		iv
Ta	ble of conte	ent	v
Lis	st of Figures	5	vii
Lis	st of Tables		xi
Lis	st of abbrev	iations	xii
1.	Introductio	n	
	1.1. Backg	ground	1
	1.2. Thesis	s objectives	5
	1.3. Thesis	soutline	6
2.	Literature Survey		
	2.1. Introduction		7
	2.2. Worldwide interconnections		8
	2.3. Techr	nological Overview of Power Interconnection	11
	2.4. Confi	guration and Layout of HVDC system	20
	2.5. Contr	ol of HVDC converter and systems	25
3.	System M	odeling	
	3.1. Introd	luction	36
	3.2. System condition selection for modeling		37
	3.3. Stead	y State mathematical modeling	
	3.3.1.	Assumptions	40
	3.3.2.	Converter transformers parameter calculation	41
	3.3.3.	Rectifier AC network	44
	3.3.4.	Sri Lankan model	48
	3.3.5.	Filter circuit design	50
	3.3.6.	DC line design	54

	3.3.7. DC smoothing reactor	54
	3.3.8. HVDC control system	56
4.	AC-DC interaction	59
5.	Simulation results, Stability analysis & Discussion	
	5.1. Introduction	67
	5.2. Steady State Simulation Results	68
	5.3. System verification	71
	5.4. AC System Impedance Increment Condition	79
	5.5. QMPC Vs DMPC of the system	81
	5.6. Perturbed scenario results analysis	82
6.	Discussion	91
7.	Conclusions and Recommendations	
	7.1. Main contribution of the thesis	94
	7.2. Conclusions	95
	7.3. Future work	97
Re	eference List	98

List of Figures

Figure		Page
Figure 2.1	HVDC systems worldwide	08
Figure 2.2	ABB HVDC projects till 2011	09
Figure 2.3	India-Sri Lanka Transmission alternatives	10
Figure 2.4	Current Source Converters	11
Figure 2.5	Voltage Source Converters	11
Figure 2.6	Conventional HVDC (CSC HVDC) with current source	
	Converters	12
Figure 2.7	Reactive power compensation for conventional HVDC	13
	(CSC HVDC) converter station	
Figure 2.8	CCC configuration	14
Figure 2.9	HVDC with voltage source converters	14
Figure 2.10	HVDC converter development	15
Figure 2.11	HVDC light extended range	15
Figure 2.12	Operating range for voltage source converter HVDC transmission	1 17
Figure 2.13	HVDC Configurations	20
Figure 2.14	bipolar HVDC system configurations	21
Figure 2.15	Bipolar Transmission line	21
Figure 2.16	Bipole, Metallic Return configuration	21
Figure 2.17	Monopolar HVDC system with 12-pulse converters	22
Figure 2.18	Monopolar HVDC Transmission line	22
Figure 2.19	Monopole, Metallic Return configuration	22
Figure 2.20	Monopole, Midpoint grounded configuration	23
Figure 2.21	Monopole, Midpoint grounded Transmission line	23
Figure 2.22	back to back configurations	24
Figure 2.23	Multi terminal configurations	24
Figure 2.24	Typical HVDC linking two AC systems	26
Figure 2.25	Identification of Pole and valve group	26
Figure 2.26	Block diagram of HVDC control in one terminal	26

Figure 2.27	Two terminal DC link	28
Figure 2.28	Equivalent circuit of DC link with inverter	29
Figure 2.29	Control characteristic curves	30
Figure 2.30	VDCL characteristic	32
Figure 2.31	Rectifier current control block diagram	34
Figure 2.32	Inverter gamma control block diagram	34
Figure 2.33	Inverter gamma control and current control selection	34
Figure 2.34	overall controls	35
Figure 3.1	Modeled HVDC network	40
Figure 3.2	rectifier side schematic diagram	44
Figure 3.3	Equivalent network of above Indian network	45
Figure 3.4	Thevenin's equivalent impedance of Indian network	45
Figure 3.5	Algebraic diagram of Indian network	45
Figure 3.6	Modeled Sri Lankan networks	49
Figure 3.7	Low pass filter & High pass Filter diagrams	50
Figure 3.8	Low pass filter components	50
Figure 3.9	High pass Filter components	52
Figure 3.10	DC transmission line with smoothing reactors	54
Figure 3.11	Rectifier Current controller optimizing block diagram	56
Figure 3.11	Characteristic curve of the modeled system	57
Figure 4.1	Defining SCR and ESCR	61
Figure 4.2	Simplified representation of a dc link feeding an AC system	63
Figure 4.3	DC power - dc current curve for y minimum	64
Figure 5.1	Steady state DC powers	67
Figure 5.2	Steady state DC voltages	68
Figure 5.3	steady state rectifiers firing	68
Figure 5.4	steady state inverter extinction angles	68
Figure 5.5	Steady state MPC and AC voltage profiles	69
Figure 5.6	Comparison of steady state MPC curve with reference graph	70
Figure 5.7	DC power at 1- phase one cycle fault	71
Figure 5.8	DC voltage at 1- phase one cycle fault	72
Figure 5.9	rectifier firing angle at 1- phase one cycle fault	72

÷

.

Figure 5.10	inverter firing angle at 1- phase one cycle fault	72
Figure 5.11	Comparison of DC power at 1- phase one cycle fault	72
Figure 5.12	Comparison of DC voltage at 1- phase one cycle fault	73
Figure 5.13	Comparison of rectifier firing angle at 1- phase one cycle fault	73
Figure 5.14	Comparison of inverter firing angle at 1- phase one cycle fault	73
Figure 5.15	DC power at 1- phase five cycle fault	74
Figure 5.16	DC voltages at 1- phase five cycle fault	74
Figure 5.17	rectifier firing angle- 1-phase five cycle faults	74
Figure 5.18	inverter firing angle at 1- phase one cycle fault	74
Figure 5.19	Comparison of DC power at 1- phase five cycle fault	75
Figure 5.20	Comparison of DC voltage at 1- phase five cycle fault	75
Figure 5.21	Comparison of rectifier firing angle- 1-phase five cycle fault	75
Figure 5.22	Comparison of inverter firing angle at 1- phase one cycle fault	75
Figure 5.23	DC power at 3- phase fault	76
Figure 5.24	DC voltages at 3- phase fault	76
Figure 5.25	rectifier firing angle at 3- phase fault	76
Figure 5.26	inverter firing angle at 3- phase fault	77
Figure 5.27	Comparison of DC power at 3- phase fault	77
Figure 5.28	Comparison of DC voltage at 3- phase fault	77
Figure 5.29	Comparison of rectifier firing angle at 3- phase fault	77
Figure 5.30	Comparison of inverter firing angle at 3- phase fault	78
Figure 5.31	MPC for normal state and high impedance state conditions	78
Figure 5.32	Reference graphs for normal state and high impedance state	
	conditions	79
Figure 5.33	MPC for 3 coal units unavailable	80
Figure 5.34	MPC comparisons with high SCR/ESCR -graph 1	80
Figure 5.35	MPA comparisons with high SCR/ESCR – graph 2	8 0
Figure 5.36	QMPC and Slow DMPC graphs plot	81
Figure 5.37	QMPC and Slow DMPC reference graphs	81
Figure 5.38	Clarification for power order increment by characteristic curve	82
Figure 5.39	DC power curve for power order increment	83
Figure 5.40	DC voltage curve for power order increment	83

Figure 5.41	DC power curve for power order increment	83
Figure 5.42	Reference plot for power order increment at 0.04s-0.1s	84
Figure 5.43	DC power curve for 300 MW unit tripped condition	85
Figure 5.44	DC voltage curve for 300 MW unit tripped condition	85
Figure 5.45	AC voltage curve for 300 MW unit tripped condition	85
Figure 5.46	DC power curve for sudden AC load rejection	86
Figure 5.47	DC voltage curve for sudden AC load rejection	86
Figure 5.48	AC voltage curve for sudden AC load rejection	86
Figure 5.49	DC power curve for a transmission line tripped condition	87
Figure 5.50	DC voltage curve for a transmission line tripped condition	87
Figure 5.51	AC voltage curve for a transmission line tripped condition	87
Figure 5.52	DC power curve for sudden DC load rejection	88
Figure 5.53	DC voltage curve for sudden DC load rejection	88
Figure 5.54	AC voltage curve for sudden DC load rejection	88
Figure 5.55	Effect of exciter on MPC	89

List of Tables

Table

Page

Table 2.1	Comparison between CSC-HVDC and VSC-HVDC	18
Table 2.2	Hierarchical levels of HVDC control in order of authority	27
Table 3.1	Comparison of Two Technologies for optimum modeling	38
Table 3.2	Investment costs for proposed HVDC configurations	39
Table 3.3	Selection of AC system strength based on SCR	44
Table 3.4	Rectifier thevenin network parameters	34
Table 3.5	Rectifier side shunt filter & capacitor parameters	54
Table 3.6	Inverter side shunt filter parameters	54
Table 3.7	DC smoothing reactor parameter	55
Table 4.1	Categories of AC systems based on SCR	62

List of Abbreviations

Abbreviation	Description
AC	Alternative current
CC	constant current
CSC	Current source converter
CEA	Constant extinction angle
CEC	Current error control
CIA	Constant ignition angle
DC	Direct current
DMPC	Dynamic maximum power curve
ESCR	Effective short circuit ratio
HVDC	High voltage direct current
MPA	Maximum power availability
MPC	Maximum power curve
QMPC	Qusi-static maximum power curve
SCR	Short circuit ratio
VDCL	Voltage dependent current order limit
VSC	Voltage source converter