

GSM BASED REMOTE MONITORING

A thesis submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfilment of the requirements for the. Degree of Master of Engineering

> by JAYAWEERA KANKANAMGE KANTHI

Supervised By: Dr. J.P. Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

2005

84140

Abstract

Critical nature of certain processes has made 24 hour daily monitoring and remote signaling an essential requirement despite the practical difficulty in fulfilling it. On the other hand the advancement of technology has opened new ways to communicate between man and machine by generating Human Readable text instead of Indicator bulbs and Audible alarms which are also stationary.

Since SMS utilizes the unused component of the GSM voice bandwidth almost every GSM mobile service provider lets subscribers send and receive SMS for a nominal fee. Thus, SMS opens a new media for cost effective communication, across the globe to a fraction of the cost usually incurred in making a Voice call.

The aim of this project is to provide Proof of Concept to an effective way to communicate the occurrence of an event to a geographically remote location in a cost effective manner. The functionality is explained by simulating the Input of a Burglar Alarm which causes a Status change of the monitoring system, which in-turn triggers sending of an SMS to a predefined number describing the condition.

DECLARATION

"I certify that this thesis does not incorporate, without acknowledge, any material previously submitted for a degree or diploma in any university or higher educational institution in Sri Lanka or abroad and to the best of my knowledge and helief it does not contain any material previously published or written by another person except where due reference is made in the text".

28

uavollia

J K Kanthi

Date:

1 endorse the declaration by the candidate.

University of Moratuwa, Sri Lanka. UOM Verified Signature lectronic Theses & Dissertations ww.lib.mrt.ac.lk

Dr. J P Karunadasa

1i

CONTENTS

Declaration	i
Abstract	iv
Acknowledgement	v
List of Figures	vi
List of Tables	vii
Glossary	viii

Chapters

1. Introduction	1
1.1 Background	1
1.2 Monvations	2
1.3 Goals	3
1.4 Achievement in bhei	
2. Problem Statement	4
2.1 Preliminaries	4
2.2 Problem Identification	5
3. Proposed Solution	6
3.1 SMS based remote indication	6
3.2 Methodology University of Moratuwa, Sri Lanka.	7
Electronic Theses & Dissertations	2
4. Theoretical Developments www lib mut ac lk	9
4.1 GSM Technology	9
4.1.1 History of GSM (Global Standardization)	9
4.1.2 Services provided by GSM	10
4.1.3 Architecture of GSM	10
4.1.4 SMS	12
4.1.5 Character Encoding Scheme / PDU	12
2 Server	10
4.2 System selection	13
4.2.1 Selection of a Mobile Phone Unit	15
4.2.2 Selection of a Micro Controller	10
4.2.3 Interconnection between the mobile phone and the Circuit	19
5. The Components of the Design	20
5.1 Processing Unit	20
5.2 The Base Board / Prototyping Board	23
5.3 Mobile Phone	- 24
5.4 Level Converter and the Connecting Cable	24
5.5 Powering the Circuit	25

ii

6. The Design	
6.1 Designing a Feasible system	26
6.2 The AT Command set	26
7. Implementation	28
7.1 The Bill Of Materials (BOM)	28
7.2 Application Code Development & Programming	29
7.3 Source Code of the application.	32
8. Conclusion & Further Developments	65
8.1 Conclusion	65
8.2 Further Developments.	68
References	70
Appendix A	71

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

This report is a result of my Master of Engineering thesis which fulfils the Project Work of the Second Year program at the Department of Electrical Engineering, University of Moratuwa Sri Lanka. The complete project consists of a Theoretical Part and a Practical implementation of the proposed system which describes the applicability of the solution in a simulated environment.

I am highly grateful to Dr. J.P. Karunadasa Supervisor, for the invaluable guidance, assistance and encouragement given to me throughout the cours and specially during the initial stages of identifying the problem domain, and in the design & development stages thereafter.

Also I appreciate the contribution of Prof. J. R. Lucas, Prof. Ranjith Perera, Head of the Department of Electrical Engineering, and Dr Lanka Udawatta, Course Coordinator of the Master of Engineering Programme in Electrical Engineering.

ww.lib.mrt.ac.lk

This project wouldn't have been completed without the help and support of Mr. Manjulal Waas and Mr. Dinesh Lanka Bulathsinghala who provided Expert Help in programming the Micro Controllers and debugging the application program. Last but not least the ETSI (European Telecommunication Standards Institute) and the official Sony Ericsson Developer Forum deserve a big thank you for providing me the necessary documentation free of charge.

LIST OF FIGURES

Figu	Figure	
1.	Moeller, Remote Communication Module	2
2.	Use of Mimic Panels to locate the fault	6
3.	Basic Topology of the proposed system	7
4.	Layout of a Generic GSM Network	11
5.	Ericsson T10s Mobile Phone	13
6.	Ericsson T10 Mobile Phone PCB exposed	13
7.	ATMEL AVR Micro Controller family	15
8.	Generic AVR Functional Block Diagram	16
9.	A Universal Programmer	17
10.	ATMEL AVR Butterfly	18
11.	IAR Systems Embedded Work Bench (Screen Shot)	18
12.	Ericsson T10s Data Cable	19
13.	Working set up	20
14.	Pin description of the ATmega169 Micro Controller	22
15.	The Front side of the Butterfly Board showing the UART connector	23
16.	The Bottom side of the AVR Butterfly Showing the Battery & Flash chip	23
17.	Program Flow Chart	29
18.	IAR Systems Embedded work bench for AVR	30
19.	AVR Studio Version 4 Startup screen	31
20.	AVR Studio Flash Programming Screen	32
21.	Basic parallel port programmer of Moratuwa, Sri Lanka.	66
22.	Burning the micro controller ic Theses & Dissertations	67
23.	Mobile phone connected to external power supply	69

- Surent

Sec.

1

-

vi

LIST OF TABLES

Table	Page
1 Comparison of Mobile phones	14
2 Bill of materials	28

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF APPENDICES

Appendix

A - PDU character map

Page

71

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

-

viii

GLOSSARY

- Applications Programming Interface • API - Authentication Centre • AuC - Bits per second • Bps - Base Station Controller BSC - Base Transceiver Station BTS - Complementary Metal Oxide Semi Conductor • C MOS - Electrically Erasable Read Only Memory • EEPROM - Equipment Identity Register • EIR - European Technical Standards Institute established by the European ETSI Commission. - Global System for Mohile Communications • GSM - Graphical User Interface • GUI - Home Location Register • HLR - International Mobile Equipment Identity IMEI - International Mobile Equipment Identity IMEI - Integrated Services Digital Network ISDN - Kilo bits per second Kbps • ME - Mobile Equipment - Million Instructions per second • ME - Multimedia Messaging Service • MMS - Mobile Station • MS - Mobile services Switching Center • MSC - Plain Old Telephone System/Ioratuwa, Sri Lanka. • POTS - Personal Computernic Theses & Dissertations • PC - Protocol Description Unit • PDU - Programmable Logic Controller • PLC - Public Switched Telephone Network • PSTN RISC - Reduced Instruction Set Computers - Real Time Clock RTC - Receiver • Rx - Static Random Access Memory SRAM - Subscriber Identity Module • SIM - Short Message Service • SMS • TTL - Transistor-Transistor Logic - Transmitter • Tx . المعاصلين - Micro Controller μC - Universal Asynchronous Receiver Transmitter • UART - Universal Synchronous Asynchronous Receiver Transmitter USART
 - VLR Visitor Location Register

ix