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ABSTRACT 

The necessity of deployable mechanisms in the field of aerospace is inevitable 

due to volume limitations in the launch vehicles. Use of mechanical hinges with motors 

and springs for actuation make the structure heavy and complex. Alternatively, 

elastically deformable thin shell structures have become popular due to their light 

weight, ability to self-deploy using energy stored during folding and eliminating 

complex hinge mechanisms. 

Self-deployable booms made of fibre composites are widely used in the space 

industry. Design of booms made with traditional epoxy matrix are limited by the low 

failure curvatures. The dual-matrix composite with soft elastomers in the folding 

region has been identified as a better alternative which allows for high curvature folds 

of as much as 180o. However, the behaviour of folding and deployment of dual-matrix 

composites has not been studied in detail.  

This thesis presents a detailed study of finite element simulations of folding 

and deployment of a dual-matrix composite boom made of 3-ply plain-weave glass 

fibre laminates having a soft silicone matrix in the intended hinge region and rigid 

epoxy matrix elsewhere. Folding and deployment simulations were carried out under 

quasi static conditions using the commercial finite element package Abaqus/Explicit. 

The limitations and the necessary checks to obtain a robust solution are discussed in 

detail. 

Moment-rotation relationship is used to characterize the deployment behaviour 

under quasi-static conditions, because it gives an indication whether the structure can 

self-latch and achieve the intended configuration during deployment. Initially a stable 

folded configuration was simulated from the unstressed configuration of the dual-

matrix composite boom and then deployment was simulated by gradually decrease the 

relative rotation between two ends of the boom until it becomes zero. 

Reduction in the bending stiffness of silicone matrix under high curvature 

significantly influencing the folded configuration of dual-matrix composite booms. A 

detailed study on the cross sections of the folded configurations reveals that a modified 

bending stiffness has to be used for simulations. 10% of original bending stiffness 
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which corresponds to high curvature conditions was used for silicone region 

throughout the simulation.  

 The simulated response was compared against physical experiments carried 

out by Sakovsky et al. (2016) for validation. Simulation is capable of capturing both 

overall and localized deform configurations as well as the steady-state moment in the 

moment-rotation response. However it underestimates the peak moment because the 

modified bending stiffness leads to a weaker response. Further analysis was carried 

out using different bending stiffness modifications to understand the significance of 

the stiffness variation of silicone matrix. Also an attempt was made to understand the 

potential of dual matrix composite booms which is having a closed cross section by 

comparing with an equivalent tape spring hinge. 

 

Key words: dual-matrix composite boom, self-deployable structures, quasi-static 

simulations, moment-rotation response 
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NOMENCLATURE 

List of symbols 

ABDE constitutive matrix for epoxy matrix in coordinate system x and y 

ABDS constitutive matrix for silicone matrix in coordinate system x and y 

Aij coefficients of upper-left 3 x 3 submatrix of ABD, N/mm 

Bij coefficients of upper-right 3 x 3 submatrix of ABD, N 

Dij coefficients of lower-right 3 x 3 submatrix of ABD, Nmm 

cd dilatation wave speed, mm/s 

cv viscous pressure coefficient, Ns/mm3 

E modulus of elasticity, N/mm2 

Ei internal energy, mJ 

Eke kinetic energy, mJ 

Etotal total energy, mJ 

Evd viscous dissipation, mJ 

Ewk work done by external forces, mJ 

lmin shortest length of finite element, mm 

M moment per unit length stress resultant, N 

N force per unit length stress resultant, N/mm 

n unit surface normal 

p viscous pressure, N/mm2 

pb bulk viscosity pressure, N/mm2 

v velocity vector mm/s 

 

α time scaling factor 

ε mid-plane strain mm/mm 

𝜖𝑣̇𝑜𝑙 volumetric strain rate, 1/s 

ν Poisson’s ratio 

ρ density, kg/m3 

θ rotation, radian 

ξ fraction of critical damping in highest frequency mode 

Δt stable time increment 
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List of abbreviations 

CLT Classical Lamination Theory 

CFRP Carbon Fibre Reinforced Polymer 

CTM Collapsible Tube Mast 

FFT Flattenable Foldable Tubes 

FRP Fibre Reinforced Polymer 

MARSIS Mars Advanced Radar for Subsurface and Ionosphere Sounding 

MSAT Mobile SAT system 

STEM Storable Tubular Extensible Member 

TRAC Triangular Rollable And Collapsible 

 


