UNIVERSITY OF MORATUWA. SRI LANA MORATUWA

1B/DON/20/2011

97)

ANALYSIS ON WIND SOLAR HYBRID SYSTEM FOR STAND –ALONE POWER GENERATION IN SRI LANKA

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirements for the Degree of Master of Science

by

HETTI PATHIRANEHELAGE HEMANTHA KUMARA KARUNASEKARA

Supervised by Prof. Lanka Udawatta Eng. W. D. Anura S. Wijayapala

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

96801

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

H.P.H.K. Karunasekara

Date 10/02/2011

We/I endorse the declaration by the candidate.

UOM Verified Signature

Prof. Lanka Udawatta

UOM Verified Signature

Eng. W. D. Anura S. Wijayapala

CONTENTS

Declaration	i
Abstract	v
Acknowledgement	vi
List of Figures	vii
List of Tables	xi
1. Introduction	1
1.1 Rural Electricity Generation	2
1.2 Rural Electricity Demand in Sri Lanka	4
1.3 Renewable Energy for Power Generation	5
1.3.1 Wind Power Home System	5
1.3.2 Solar Photovoltaic Home System	5
1.4 Literature Review	6
1.5 Scope of Study	7
2. Wind Power Generation	8
2.1 Wind Energy Resources in Sri Lanka	8
2.2 Small Scale Wind Turbine Technology	9
2.2.1 Operation of the Wind Turbine	9
2.3 NERDC Wind Turbine	9
2.3.1 Control Systems	10
2.4 Analysis of NERDC 100W Wind Turbine Performance	13
2.4.1 Wind Rotor Geometry	13
2.4.2 Wind Rotor Performance	14
2.5 Electrical Generates Used for Wind Turbines	18
2.5.1 Wind Turbines with Multi Pole PMGs	18
2.5.2 Generators used for Small Scale Off- Grid Wind Turbines	18
2.6 Performance of PMG Developed by NERDC	19
2.6.1 Characteristics of NERDC PMG	20

ii

3. Case Study of Nikavaratiya 100w Wind Turbine Site	22
3.1 Wind Data Measurements	24
3.2 Solar Irradiation Measurements	25
4. Wind Turbine Model & MPPT Controller	27
4.1 Control Strategies	27
4.2 Aerodynamic Characteristics of the Rotor	28
4.3 Permanent Magnet Generator (PMG) Model	29
4.4 Maximum Power Point Tracking Control Mechanism	30
4.4 Fuzzy Logic Controller	32
4.5 Simulink Model for MPPT Controller for Wind Turbines	35
5. Photovoltaic Model	40
5.1 Photovoltic Cell	40
5.2 Modeling of a PV Cell	41
5.2.1 The Simplest Model	41
5.2.2 The More Accurate Model	43
5.3 Modeling a PV Module by MATHLAB	45
6. Maximum Power Point Tracing (MPPT) of Photovoltaic Module	48
6.1 Maximum Power Point Tracking Algorithm	49
6.2 Perturb & Observe (P&O) Algorithm	50
6.3 Simulation of the P&O Algorithm	51
7. Lead – Acid Battery Modeling and Testing	55
7.1 Battery State of Charge (SOC)	55
7.2 Lead – Acid Battery Model by MATLAB	57
7.3 Laboratory Testing of Lead – Acid Battery	63

8. Wind Solar Hybrid System and Optimization	66
8.1 System Optimization	67
8.1.1 Simulation and Optimization Software	67
8.2 Component Detail of Hybrid System	68
8.3 Resources Details of Hybrid System	69
8.4 Simulation of Hybrid System	70
8.5 Sensitivity Analysis	71
8.6 Conditions of Battery State of Charge (SOC)	72
9. Results and Analysis	76
10. Conclusions	79
10.1 Summary	79
10.2 Difficulties and Future Research	80
10.3 Concluding Remarks	80
References	81
Appendix A Analysis of Cpr Values for Each Blade Elements (C ⁺⁺)	85
Appendix B Analysis Characteristics of Solar PV Module (MATHLAB)	. 87

Abstract

The 100W wind home power generation system fabricated and installed by the NERDC at Nikavatiya in Kurunagala district is facing insufficient power generation within few months due to monsoon wind changes. The researcher was motivated to develop a hybrid wind solar power generation system to overcome this challenge. The power consumption of a rural house was evaluated and metrological data (wind speed and solar irradiance) were measured during year 2008 as part of this study. According to the metrological data, 3.92 m/s wind speed and 5.44 kWh/m²/day solar potential could be obtained from the site annually.

The dynamic behavior and simulation results in a stand – alone hybrid power generation system of wind turbine, solar array and battery storage are presented by this analysis. This study is to review the state of the simulation, optimization and control technologies for the stand-alone hybrid solar-wind energy systems with battery storage. The hybrid system includes a 100W wind turbine, 150W solar array, 70Ah Lead -acid battery, AC/DC rectifier and DC/AC inverter.

The NACA 4415 two bladed wind rotor performance was analyzed theoretically by using blade elementary and momentum theory and the parameters of this analysis were found by using C++ program. The performance of a Fuzzy Logic Maximum Power Point Tracker (MPPT) controller (hill climbed) was applied for variable – speed, fixed –pitch NERDC small-scale wind turbines as wind speed sensor less application. More 35 % of extra energy absorb from the system by using Fuzzy Logic controller than fixed voltage method. The maximum power point tracking (MPPT) method based on perturbation & Observation (P&O) searching algorithm was applied to stand – alone solar photovoltaic system. The P&O algorithm was tested with actual irradiance data provided by simulations, using sunny day and cloudy day two sets of irradiation data. The simulation result shows the efficiency of 96.2% for P & O algorithm. The 70Ah lead – acid batteries were used in for the analysis and the same type is used for the hybrid solar–wind power generation system. Lead – Acid battery model was developed and simulated with Simulink software platform. Also laboratory testing was done according to the SLS 1126 test procedures.

MATLAB SimulinkTM 7.2 / Simpower system software environment was used to simulate individual wind and PV dynamic models of hybrid system. HOMER has being used extensively to optimize the hybrid system size, sensitivity analysis with case study data in stand-alone areas in Sri Lanka. The 60 W solar PV array and NERDC 100W wind turbine with 70Ah four battery bank is proposed as hybrid power system and battery state of charge (SOC) is close to 100 % present level annually. Correct modeling of the dynamic and non linear systems is an important area of the study, but various difficulties remain in the current study. Some approaches of analysis are limited with use of commonly available simulation software.

Physical implementation of the system with power electronics remains for future research. The author suggests that solar home power system is suitable below the wind speed of 3.5 m/s, solar and wind hybrid system for the wind speed between 3.5 m/s to 4.5 m/s and the wind turbine home power generation system for the wind speed above of 4.5 m/s to fulfill the rural energy requirement.

Acknowledgment

First I would like to thank Prof. Lanka Udawata and Eng. W. D. Anura S. Wijayapala for guiding me to successfully complete this research within the time frame. As search supervisors, they directed me to find all necessary literature and to do the research work to the standard.

My sincere thanks go to the officers in Post Graduate office Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

I extend sincere gratitude to the National Engineering Research & Development Centre of Sri Lanka for providing me necessary founds laboratory facilities and other resources during my academic period.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your supports.

List of Figures

Figure	Page
1.1 Gross Electricity Generation in Sri Lanka	2
1.2 Total Grid Connected Capacities of Power Plant	2
1.3 Fuel used for Electricity Generation is Sri Lanka	2
1.4 Electricity consumption by sector for year 2007 – Sri Lanka	2
1.5 Daily electric demand pattern of rural house in Sri Lanka	4
1.6 Off – grid power generation pattern growth in Sri Lanka	5
2.1 WRAM wind resource map in Sri Lanka	9
2.2 NERDC 100W Battery charging wind turbine system	10
2.3 Tilt -up rotor passive control system	11
2.4 Gravity operated furling tail with offset wind rotor passive control system	11
2.5 inclined hinged tail vane with side vane passive control system	11
2.6 Arrangement of inclined hinged passive control system	11
2.7 Operation of inclined hinged passive control system	12
2.8 Torque against wind on the side vane and tail vane	13
2.9 Geometry of NACA 4415 wind rotor	13
2.10 Flow behind the rotor with wake-rotational effect	15
2.11 Velocity diagram of a blade element	15
2.12 Control volume used for a wind turbine	15
2.13 NERDC wind rotor performance variation with wind speeds	17
2.14 NERDC 100W Permanente magnet generator	19
2.15 PMG performance test arrangement	20
2.16 NERDC 100W PMG performance test result	21
2.17 NERDC 100W PMG performance plot with wind rotor performance curve	21

3.1 100W wing turbines installing at Nikavaratiya site	22
3.2 Locations of 100W wing turbines on digitized map at Nikavaratiya	23
3.3 Electrical components of 100W wing turbines system	24
3.4 Three cup anemometer used to measure wind speed	24
3.5 Hourly average wind speed variation	25
3.6 Daily average wind speed variation	25
3.7 Hourly average solar irradiation variation	26
4.1 Operating point of the wind turbine	28
4.2 Wind rotor characteristics	29
4.3 The equitant circuit of DC motor	30
4.4 Small scale wind power generation system	31
4.5 Generator restoring torque controlling criteria	32
4.6 Fuzzy logic input and output membership functions	33
4.7 Membership functions for fuzzy variables	34
4.8 Rule surface of FLC	34
4.9 Simulink model of the 100W wind power generation system	35
4.10 Block Parameters and Arrangement of (2-D) Lookup Table	36
4.11 Fuzzy Logic Controller and Function Block Parameters	36
4.12 Block parameters of the permanent magnet generator (PMG)	37
4.13 PMG Voltage Variation with Fuzzy Logic Controller	37
4.14 PMG Stator Current Variation with Fuzzy Logic Controller	38
4.15 PMG Stator Current Variation with Fuzzy Logic Controller	38
4.16 PMG Rotational Speed Variation with Fuzzy Logic Controller	38
4.17 PMG Power Generation Variation with Fuzzy Logic Controller	38
4.18 Simulation characteristics of 100W wind turbine with Fuzzy controller	38
5.1 Illustration of the p-n junction of PV cell	40
5.2 Side view of solar cell and the conducting current	41
5.3 PV cell simple equivalent circuit with load	41
5.4 Short – circuit and an open – circuit PV cell condition	42

viii

5.5 I-V plot of ideal PV cell under two different level of irradiance	43
5.6 Accurate equivalent circuit of PV cell	44
5.7 PV cells are connected in series to build up a PV module	45
5.8 150 W PV module (BP SX 150S)	46
5.9 Equivalent PV cell circuit used in the MATHLAB simulations	46
5.10 Effect of diode ideally factor by MATHLAB simulation	47
5.11 I-V curve of PV module at various temperatures	47
6.1 Simulated MPPT I-V curve of 150W PV module	48
6.2 I-V curve for varying irradiance and a trace of MPPs(25 ⁰ C)	48
6.3 I-V curve for varying irradiance and a trace of MPPs(50° C)	18
6.4 Plot of power Vs voltage for PV module	50
6.5 MPP points on Power Vs voltage curves for PV module	50
6.6 Shows the flow chart of P & O algorithm	51
6.7 Sunny day irradiance variation in September-15 th - 2008	52
6.8 Cloudy day irradiance variation in Octomber-4 th -2008	52
6.9 Trace of MPP tracking on a sunny day (25°C)	53
6.10 Trace of MPP tracking on a cloudy day (25 ⁰ C)	53
7.1 Construction of simple Lead – acid battery cell	55
7.2 Generic dynamic model for Lead – acid battery	57
7.3 Simulink Simpower system Lead – Acid Battery.	58
7.4 Block parameters of Simpower system Battery model	58
7.5 Discharge characteristic of 70 Ah Lead – Acid Battery	59
7.6 Equitant circuit of battery model	60
7.7 Simulink Simulation diagram of lead – acid battery	61
7.8 Charging \ Discharging Voltage variation of 70 Ah lead – acid battery	62
7.9 Battery Voltage variation of 70 Ah lead – acid battery	62
7.10 Battery SOC variation of 70 Ah lead - acid battery	62
7.11 Battery charging process under the laboratory condition	63
7.12 Electronic load connect to the battery discharging process	63

ix

7.13 Lead – acid battery (70Ah) Charging & Discharging characteristics	64
7.14 Battery Electrolyte Parameters Change due to Charging and Discharging	64
7.15 Battery electrolyte Sp. Gravity measurement	65
7.16 Battery electrolyte Temperature measurement	65
8.1 Proposed centralized DC bus Wind Solar hybrid architecture	66
8.2 HOMER hybrid architecture for simulation study	67
8.3 NERDC 100W Wind turbine data	68
8.4 PV array capacity table.	68
8.5 Battery details for simulation	68
8.6 Monthly average wing speed variation at Nikawaratiya	69
8.7 Monthly average solar irradiation at Nikawaratiya	69
8.8 Monthly average electric production of the wind PV hybrid system.	70
8.9 Simulation results of annual power generation of Hybrid system	71
8.10 Sensitivity analysis of primary load with wind speed variation	72
8.11 Battery State of Charge (%) of Hybrid system (One Battery)	72
8.12 Battery State of Charge (%) of Hybrid system (Two Battery)	73
8.13 Battery State of Charge (%) of Hybrid system (Three Battery)	73
8.14 Battery State of Charge (%) of Hybrid system (Four Battery)	73
8.15 Battery State of Charge (%) of Hybrid system (Five Battery)	74
8.16 Battery State of Charge (%) of Hybrid system (Six Battery)	74
8.17 Battery State of Charge (%) of Hybrid system (Seven Battery)	74
8.18 Battery State of Charge (%) of Hybrid system (Eight Battery)	75
8.19 Number of Batteries Vs Primary load Characteristics plot	75
9.1 Relative Best estimation results of power system	77

9.2 Optimal Hybrid architecture for Nikavaratiya 100W wind Turbine site 78

List of Tables

Table	Page
1.1 Status of electrification in Sri Lanka	3
1.2 Status of Off – Grid rural Energy Supply systems	3
1.3 Statistic data of Generation Capacity for Rural Electrification	3
1.4 Minimum Daily Energy Demand for a typical Rural House in Sri Lanka	4
2.1 windy areas with good-to-excellent wind resource potential in Sri Lanka	8
2.2 Specifications of NERDC 100W wind turbine	10
2.3 Geometrical parameters of NERDC 100W wind rotor	14
3.1 Locations of 100W wing turbines at Nikawaratiya site	22
3.2 Monthly energy generation of 100W wing turbines locations	23
4.1 Fuzzy logic controller input and output rules	33
5.1 Electrical characteristics data of (BP SX 150S) PV module	46
7.1 Relationship of battery voltage and state of charge	59
8.1 HOMER optimized solution for the wind solar hybrid system	70
8.2 Energy production of Hybrid system during year 2008	71

and here is a plantic collipsion in the seal to the short of a starting of and here a